Evaluation of Runtime Monitoring Methods for Real-Time Event Streams

Biao Hu!,Kai Huang!?, G
ITech. Univ. Muenchen TUM,

ang Chen', Alois Knoll!

Sun Yat-sen University

1 {hub,huangk,cheng knoll} @in.tum.de, 2huangk3>6 @mail.sysu.edu.cn

Abstract— Runtime monitoring is of great importance as a safe
guard to guarantee the correctness of system runtime behaviors.
Two new methods, i.e., dynamic counters and [-repetitive func-
tion, are recently developed to tackle the runtime monitoring for
hard real-time systems. This paper investigates in depth these two
newly developed runtime monitoring methods, trying to evaluate
and identify their strengths and weaknesses. Representative sce-
narios are used as our case studies to quantitatively demonstrate
our comparisons. We also provide FPGA implementations and
resource usages of both methods.

I INTRODUCTION

For the class of hard real-time embedded systems, meeting
timing constraints, e.g., worst-case response time, is a funda-
mental requirement. Therefore, a large amount of research has
been devoted to the design-time schedulability analysis at d-
ifferent abstraction levels. The resulting schedule of an ana-
lyzed system, on the other hand, relies on the assumption that
all task activations and execution conform to the specification-
s used by the design-time analysis. But with the increasing
complexity of embedded systems, runtime behaviors of tasks
may not conform to the design-time specifications. For exam-
ple, in heterogeneous distributed architectures, resources shar-
ing or data-dependencies often result in unexpected execution
sequences even when input tasks are activated strictly period-
ically [2]. Therefore, runtime monitoring is important to fur-
ther guarantee the system timing properties obtained from the
design-time analysis.

Two state-of-art online monitoring algorithms are recently
developed, i.e., dynamic counters monitoring and [-repetitive
function monitoring. Both monitoring algorithms are based
on arrival curve model that can capture arbitrary event arrival
patterns in the time interval domain. Dynamic counters moni-
toring assumes that an arrival curve can be conservatively ap-
proximated by a set of staircase functions, and each staircase
function can be monitored by a counter [4]. Its validity has
been mathematically proofed in [3]. The [-repetitive function
assumes that an [-repetitive function can be constructed in a
maximum busy-window period, then a history of most recent
[events arrival time is kept to monitor coming events [7]. It
is also a light-weight approach for monitoring arbitrary event
streams. Although both monitoring algorithms are reported to
be efficient, their monitoring differences are still unknown.

This paper investigates in depth these two newly developed
runtime monitoring methods, trying to evaluate their perfor-
mances and identify their strengths and weaknesses with re-
spect to different system scenarios, and event arrival patterns.
We consider it is important to know the differences in the mod-
eling scope, the corresponding monitoring accuracy, and com-
putation or memory overhead for these two methods, such that
the techniques can be better used for specified systems. The
detailed contributions are summarized as follows:

e We analyzed the differences of the dynamic counters [3, 4]
and the [-repetitive function [7] for runtime monitoring of
differently representative real-time system scenarios and
event arrival patterns.

e It has to be noted here that authors in [7] claimed that
it is not possible to monitor the pattern of periodic burst
with dynamic counters. We developed a dynamic-counter
based approach to monitor such pattern with low over-
heads.

e We prototyped hardware implementations on FPGA and
presented FPGA resource usage for both methods.

The rest of this paper is structured as follows. We review re-
lated work in the next section. In Section III, basic background
knowledge of the used techniques is described. In Section IV,
we present the differences in modeling effects for the non-lossy
and lossy real-time systems. Then we use standard and com-
plex arrival curves to discuss their monitoring strengths and
weaknesses. In Section V, FPGA experiments show resource
overheads and timing latencies of both methods. Section VI
concludes the paper.

I RELATED WORK

Classically, in network communication systems, traffic
shaper buffers the data packets of an incoming stream and de-
lays them to conform to a specific arrival curve [5]. In real-
time systems, shaper can also be used to regulate the system
runtime behaviors. Wandeler ef al. [13] analyzed the detailed
buffer requirement and end-to-end delay of greedy shaper in t-
wo case systems. The analysis reveals the positive influence of
greedy shaper on the system performance and buffer require-
ment. Richter et al. [10] proposed an event adaptation function
to transform an event stream into another given stream. With
the event adaptation function, buffering-size and buffering-
delay calculation are automatically performed during adapta-
tion. The drawback of all aforementioned work is the offline
analysis. Compared to offline analysis, online monitoring is
more useful in practical applications.

Except for online monitoring of dynamic counters or I-
repetitive function, Moritz et al. [8] proposed a scheme for
monitoring activation patterns of multiple streams in mixed-
criticality real-time systems. This scheme provides a method-
ology, which is based on the interface design [14] and sensitiv-
ity analysis [9], to derive sets of activation pattern bounds for
each monitored software component. However, the accuracy
and efficiency of this methodology still rely on the single event
stream monitoring method defined in Pareto interface tuples.
Besides, authors in [6] also presented a monitoring scheme
which monitors workload arrival functions for mixed-criticality
systems. By specifying the cumulative worst-case workload of
a group of streams through a workload arrival function, it is
possible to increase the resource utilization while guarantee-
ing the system timing constraints. However, this monitoring
scheme is used for monitoring low criticality tasks in a mixed-
criticality system. For the high criticality tasks or strictly iso-
lated tasks, it may be not effective. Though multi-mode moni-
toring or workload arrival function monitoring can increase the
resource utilization, monitoring single task activation pattern
is still significant for practical real-time system, because most
of high safety systems isolate source event streams strictly [1].
In this paper, we only concentrate on monitoring single event

stream of the real-time task.
III BACKGROUND

In a network of multiple processors, tasks are interconnected
among processors by a set of directed event streams. A task is
activated by an incoming event. After the completion of a task,
an event is produced at the task’s outgoing event stream. Dur-
ing the design time, tasks are assumed to be executed within
a designed extent. But during the runtime, the event stream-
s should be monitored to guarantee that tasks are executed as
designed.

A Dynamic counters monitoring

Event streams in a system can be described by a cumulative
function R(s,t), defined as the number of events seen in the
time interval [s,¢). In Real Time Calculus [12], arrival curves
with 2-tuple a(A) = [a*(A), o' (A)] are used to describe the
allowable maximum arrival events and minimum arrival events
in the time interval of length A. It is expressed as follows:

al(t—s) < R(t)—R(s) <a“(t—s),Y0<s<t, (1)

with o/ (A) = a*(A) = 0 for A < 0.

Dynamic counters monitoring is based on the assumption
that any monotone and time-invariant arrival curve can be con-
servatively approximated as the minimum on a set of staircase
functions with the form o¥(A) = N} + L%J:

VA € Rsg: a%(A) < ‘mlin (o (A)). 2)
A dynamic counter (DC};) can be used to bound a single up-
per staircase function (af'). The detail algorithm is shown in
Algo. 1 [4]. Note that when an event arrives, all DC; should
be reduced one, and the exception is reported when any one of
DC; is less than 0.
The memory and computation overhead of Algo. 1 is decid-
ed by the number of used dynamic counters, and the error de-

pends on how close the approximation is between a*(A) and
min (a(A))

Algorithm 1 Implementing a dynamic counter to monitor a s-
taircase function
Input:
signal s, btuple < DC;, CLK; >;

Output:

1: if s = event_arrival then

2. if DC; = N;* then
3 reset_timer(C' LK, 6")
4: end if
6: end if
7
8
9

. if s = CLK;_timeout then
. reset_timer(C LK, §})
10: end if
11: if DC; < 0 then
12: report_exception
13: end if

B [-repetitive function monitoring

For discrete task activation patterns, arrival curves can also
be described with a minimum distance function and maximum

distance function. The minimum distance function d™"(n)
specifies the minimum distance among n—+1 consecutive events
in an event stream. And the maximum distance function
d™**(n) specifies the maximum distance among n + 1 con-
secutive events in an event stream. For example, for periodic
with jitter event models, we obtain

d™™(n) = maz{0,n* P — J} 3)
A" (n)=nxP+J, 4)
where P is the period and J is the jitter.

An [-repetitive distance function is a special minimum dis-
tance function that satisfies the following condition:

dn(given), n<l,
d(n) = m[alxl](d(w) +d(n—w)), n>I. ®)
we|l,

For such [-repetitive function, it has been shown that this I-
repetitive function can conservatively approximate the upper
arrival curve.

An assumption of [-repetitive function monitoring is that on-
ly a part of the d function is relevant to the verification of tim-
ing constraints. The relevant domain is [1, 74,] Where 1,z
is the number of task executions in the maximum system busy-
window period. Then at most n,,,, task activations should
be monitored in the system because pending task activations
will only exist no longer than maximum system busy-window
period [8]. The idea of [-repetitive function monitoring is to
construct a more restrictive [-repetitive distance function with [
events (I < n,,4,) to represent the distance function with 7,44
events. Then the monitoring overhead can be reduced to [. The
monitoring algorithm can be seen in Algo. 2 [7].

Algorithm 2 Implementing [-repetitive function to monitor an
event stream

Input:
current time, trace buffer[l], d[l];
Output:
1: fori € [0,l —1] do
2. if current time - trace buffer[i] < d[¢] then
3: report_exception
4: endif
5: end for
6: right shift trace buffer
7: trace buffer[0] = current time

The computation and memory overhead of Algo. 2 is de-
cided by the number of events in [-repetitive function, i.e., [.
The error depends on how close the approximation is between
d™™(n) and the constructed [-repetitive function.

IV MONITORING ALGORITHM COMPARISON

As presented in the previous section, both monitoring meth-
ods need certain assumptions. The dynamic counters moni-
toring assumes that the arrival curve can be approximated by
the minimum on a set of staircase functions, which indicates
that arrival curve should be concave. On the other hand, the
[-repetitive function monitoring assumes that the maximum
number 1,4, of task activations can be obtained in the design-
time analysis, and a conservatively /-repetitive function can be
constructed to approximate d function. However, in some sys-
tem scenarios, or for some arrival curves, the aforementioned
assumptions are not valid.

In this section, we first analyze the monitoring differences
of both methods in the non-lossy and lossy real-time system.
Then, four standard and two special complex arrival curves are
used to analyze the overhead and accuracy of the two monitor-
ing methods.

A Real-time system scenarios

As depicted above, both monitoring methods can detect the
violated event online under their respective assumptions. But
how to deal with the violated events depends on what the sys-
tem is. To the non-lossy real-time systems, the violated events
cannot be discarded. Therefore, a buffer is needed to store the
violated events, and to send the violated events out based on
the designed arrival curve.

In [3], authors propose to use two dynamic counters to con-
form the runtime inputs as each designed staircase function.
One conformity counter BF'LY is used to check the conformi-
ty of coming event, and another regulation counter BF'L} is
used to regulate the event with a buffer. But actually, authors
in [3] ignore a fact that the proposed conforming scheme only
relies on regulation counter BF'L. The conformity checking
can also be done by BF'L]. A coming event is a violated event
when BF'L] = 0, which means no event is allowed to arrive.
We skip the proof because of page limit.

When the [-repetitive function monitoring is implemented
in a non-lossy real-time system, Algo. 2 should use a buffer
to store the violated events. The regulation scheme is that
the earliest violated event in the buffer is sent out when cur-
rent time satisfies the [-repetitive function. However, one as-
sumption of Algo. 2 that the maximum busy-window period
exists may be not true. The busy-window approach calculates
the maximum time-window w(q) during which the resource is
busy processing until completion of the g-th instance of task
7;. Thus, w = max(w;(q)) is the longest time w to execute

i,q

tasks without becoming idle [7]. But in the non-lossy real-time
systems, the violated events will interrupt the task execution.
It is impossible to calculate the maximum busy-window peri-
od because violated events cannot be predicated. Thus, 7,42
may not exist. To get | without n,,4,, We propose to employ
the concept of the sub-additive closure, which is known from
Network Calculus [5].

Definition 1. The sub-additive closure of a function oy is given
as
closure(aq) = ir;fo{al(n)} (6)

where al(n) denotes the function obtained by repeating (n-1)

convolutions & of oy with itself' [5].

Theorem 1.2.1 in [5] says that it is equivalent whether a trace
is constrained through any wide-sense increasing arrival func-
tion or through the corresponding sub-additive closure, i.e., an
event e; satisfies a; < e; satisfies closure(c;). This theorem
indicates we can use a sub-additive closure of a limited seg-
ment to conservatively constrain the designed wide-sense ar-
rival curve. To construct such a limited segment, [-repetitive
arrival function that satisfies closure(a;) > a* (a* is the de-
signed upper arrival curve) is redefined as follows

Agdlv
A > d;.

a1 (A)(given),
+00,

(D) = @)

o) = int {f(A=X)+a(0)

= a—> -

g =

> 1= -

& - ‘ closure of a
! A
d

Fig. 1.: A limited [-repetitive arrival curve and its sub-additive closure

where «;(A) is sub-additive for A < dy, i.e., Va,b,a + b <
U: ay(a+b) < ag(a)+ a(b). As shown in Fig. 1, the closure
of a limited [-repetitive arrival function o can represent a wide-
sense increasing arrival curve.

In the lossy real-time systems, the violated events are dis-
carded so that the non-violated events will not be interfered by
the violated events. In this scenario, buffer is not necessary for
a monitor. In Algo. 1, a little change that should be done is
that DC; is not reduced one by the violated event. In Algo. 2,
Nmaz can be computed by the busy-window approach, and (-
repetitive distance function can be constructed from n,,4, by
the approximation approach introduced in [7].

In short, both algorithms can be applied in the non-lossy
real-time systems with a support of buffer, and can be applied
in lossy real-time systems without a buffer support. For [-
repetitive function in non-lossy real-time systems, the assump-
tion of busy-window period is invalid, then we propose to use
the concept of sub-additive closure to construct l-repetitive
Sfunction.

B Standard events pattern

The four standard event streams are strictly periodic events,
sporadic events, periodic with jitter events, and periodic burst
events [11]. Figure 2 shows their upper arrival curves. In
this paper, we only concentrate on monitoring the upper arrival
curve. Monitoring lower arrival curve is similar to monitor up-
per arrival curve.

4 4 4

2 2 2 5

0 0 0 0

0 2 .0 2 .0 2 .0 5
(a) (b) © (d

Fig. 2.: Upper arrival curves of four standard arrival curves. (a) Strictly
periodic model; (b) Sporadic model; (c) Periodic with jitter model; (d)
Periodic burst model.

From Fig. 2, we know the upper arrival curve of periodic
events and sporadic events are the same pattern, and one stair-
case function or [= 1 repetitive function is enough to represent
it. Periodic with jitter events model can be approximated as the
periodic pattern, which however introduces some false nega-
tives. It can be deduced that if the period of the approximated
periodic events model is the same for the two methods in mon-
itoring periodic with jitter model, the accuracy of both moni-
toring methods is also the same. The authors in [7] argue that
dynamic counters algorithm is invalid to monitor periodic burst
event pattern. However, for the standard periodic burst events,
a scheme using dynamic counters can be effectively used to
monitor it.

The standard periodic burst events model is characterized by
three parameters, i.e., a minimum timing separation d between
successive events, an interval that coming events number can-
not exceed b, as is shown in Fig. 2(d). The upper arrival curve

»1_! 6
T 4
I b x

2
.)
A

(Is Z 0 nd 0 3 JAN
Fig. 3.: The diagram of periodic burst pattern equivalence.

0 nd

can be expressed as follows [11],

ot(a) = [SPmn((200 ®

A— 310

d
Periodic burst arrival curve cannot be approximated as the min-
imum of a set of staircase functions, but can be equivalent to a
special logic composition of staircase functions.

As shown in Fig. 3, periodic burst is equivalent to a staircase
function with a period of d, and the constraint of b staircase
functions with period of §. A counter with the period d and n
counters with the period ¢ are used to guarantee that the min-
imal distance between two events, and the maximum events
within any ¢ interval. The detail procedures are that, as shown
in Fig. 4, we first check the arrival events conform o or not.
If not, we buffer it. If yes, we check whether it conforms the b
staircase functions. b staircase functions are assumed to be OR
composition, i.e., any event is accepted if it does not violate any
one of respective staircase functions [2]. If none counters in b
staircase functions can accept an event, this event is violated. It
will be delayed by buffer. Note that the two buffers in Fig. 4 are
separated, and the buffer obeys first-in-first-out principle. The
pseudo codes of this monitoring algorithm is shown in Algo. 3.

Fig. 4.: The flow of monitoring periodic burst arrival events.

We use a case to test the accuracy of this monitoring scheme.
A periodic burst events stream specified as b = 6, § = 180[us],
and d = 20[us] runs in a non-lossy real-time system. A mat-
lab simulation result using this monitoring scheme is shown
in Fig. 5. The solid curve a%5 is the designed arrival curve.
The dash curve R is the actual events curve. The dash curve
R* is the regulated curve. The circles maker V are the vio-
lated events detected by the proposed monitoring scheme, and
asterisks D are checked out by min-plus deconvolution”. For
instance, events (e, es, e3) are the violated events, and they
are delayed by buffer to be sent out at (e, €5, e3). As expect-
ed, the V' and D are the same, and the regulated curve R* is
lower than o 5, which indicates the accuracy of this monitor-
ing scheme.

To the [-repetitive function, keeping a history of most recent
b events is sufficient to monitor this curve. Note that the d-
ifference of Algo. 3 and Algo. 2 in monitoring periodic burst
events is that Algo. 2 does not require the minimal distance of
successive events be the same, but Algo. 3 requires that. When
monitoring a periodic burst events with the different minimal
distance of successive events, an upper bound approximation
with form of Eq. 8 can be used to represent this periodic burst
arrival curve, and Algo. 3 can be applied to monitor it based on
the approximated arrival curve. In short, both monitoring meth-

zsg%{R(t +u) — R(u)} = R(t) @ R(t) > o®(t)

Algorithm 3 Online monitoring a periodic burst arrival events
pattern.

Input:
signal sq, S5, tuple < DCd, CLK? >, tuple <
DC’?, C’LK{S > and event queue q1, go;
Output:
1: Algorithm 1 < (sq, tuple < DO, CLK?® >)

2. Algorithm 1 < (s4, tuple < DC?,CLK? >)
3: if report_exception(sy) then
4: gj.enqueue();
5. end if
6: if report_exception(s;s) then
7: gz.enqueue();
8: end if
9: while ¢;.length()>0 A DC? > 0 do
10: g;.dequeue
11: DC?=DC? -1
12: end while
13: while go.length()>0 A max(DC?) > 0 do
14: qo.dequeue
15: fori <+ 1tondo
16: if DC? > 0 then
17: DC? = DC? -1
18: break
19: end if
20: end for
21: end while
10 ‘ ; ‘ —
°l ¢) P
+— e, €, €3 . -
% 6 x _ — -_LUPB
é 4t ®_$- _: ‘‘‘‘‘ R
i -1 ---F
2 @ Ov
o i-- ‘ X D
0 50 100 150 200 250
Alps]

Fig. 5.: Detection and traffic regulation

ods can be used to monitor periodic or sporadic events without
error, and can be used to monitor periodic with jitter events
with the same error. For periodic burst events that dynamic
counters cannot directly monitor, we develop a new scheme to
monitor it.

C Complex arrival curves

From the above description, we may notice that dynamic
counters monitoring is good at dealing with the type of ar-
rival curve that can be conservatively approximated by stair-
case functions. [-repetitive function monitoring is good at deal-
ing with the arrival curve that is segmentally repetitive. In this
subsection, we discuss how to apply the two monitoring algo-
rithms in monitoring an arrival curve marked Type 1 that is the
minimum of a set of staircase functions, and another arrival
curve marked Type 2 that is segmentally repetitive.

C.1 Complex arrival curve of Type 1

The arrival curve au,;, of Type 1 is shown in Fig. 6, where
Qmin = min(ay, ag,a3), 01 = Ni' + | £], a0 = N3 + | £],
and az = Nj + [£] (N* < N§' < N4, 61 < 6 < 83). We
can use three dynamic counters to monitor it in full accuracy,

whenever in non-lossy or lossy real-time system.
For the [-repetitive function monitoring, [-repetitive minimal

TABLE I
: The error and overhead of both monitoring methods in different scenarios

Monitor Dynamic Counters l-repetitive function
Arrival Curve Type 1 Type 2 Type 1 Type 2
Property error | overheads error overheads error overheads error | overheads
Non-lossy system 0 #DC Qp — Qmin #DC Qmin —oq | {lJl = 5 4 -} 0 # events
Lossy system 0 #DC QL — Qmin #DC amin —ay | {I|l = 6521 } 0 # events

Ni—_ 1 \ A
01 09
Fig. 6.: The minimum of a set of staircase functions

distance is different in different real-time system scenarios. For
the non-lossy real-time system, a repetitive segment «; with [
and d; (Eq. 7 and Fig. 1) is assumed to be constructed. In a case
that A = k- d;(k € N,k = 400), we have mlin {a;}(A) =

=1..n

N¥ + L%J, where 0,ar = max {6;} (in this case, 00z =
83, N = N, and)

closure(ag(A)) — min {a; }H(A)

i=1l..n) (9)
=al- N =5 ::k~lg—A@——[££:J
We can get,
kllin (closure(ay(A)) — _£r11111 {a;}(A)) =
+00, dl <l 6mam (]0)
constant, d; =1 Omas
—00, dp >1- 5mam

The offset between closure(c;) and vy, should not increase
with the increasing of k. Otherwise, the monitor perfor-
mance will become worse and worse with increasing number
of events. So a requirement of d; and [is d; = [- d,,4,. Then
l-repetitive function will keep a limited error in monitoring ar-
rival curve of Type 1.

In lossy real-time systems, there exists n,,q, that keeping
most recent n,,, 4, €vents arrival time is enough to monitor com-
ing events, and there is no error. If a more restrictive segment
with [events (less than n,,,, events) is constructed, the com-
putation and memory overhead is reduced, but an extra error is
also introduced because Type 1 arrival curve cannot be fully ac-
curately approximated by an [-repetitive function (I < n,44)-

In short, to monitor Type 1 arrival curve, the overhead of
l-repetitive function algorithm is | that satisfies d; = 1 - dpaz
in non-lossy real-time systems, and there is a limited error. In
the lossy real-time systems, the overhead is Ny,q., and there
is no error. The overhead of dynamic counters monitoring is
the number of used dynamic counters, and there is no error,
whenever in the non-lossy or lossy real-time systems.

C.2 Complex arrival curve of Type 2

The second arrival curve «; is segmentally repetitive, and each
segment is sub-additive, as shown in Fig. 7. The length of the
repetitive segment is d;, which contains [events. With the the-
orem 1.2.1 in [5], the closure of a segment with the length of
l is equivalent to the whole arrival curve. Therefore, monitor-
ing most recent [events is enough to monitor the whole arrival
curve. From this figure, we can find that the interval between t-
wo different events is different. We assume the minimum of

a set of staircase functions (‘mlin {a;}, &y = N} + L%J)
1=1..n N

are used to approximate oy, where d,mqr = max {6;}. In
the case that A = k- d; (k € N,k = —&-oo.)., we have
4_1ir} {a;} = N + Lﬁj, and we can get the same con-

clusion with Type 1 arrival curve analysis, i.e., d; = [- dpax
is required to guarantee that monitoring error is limited with
increasing number of monitored events.

=~ #event

A

d
Fig. 7.: The segme]htally repetitive curve

Therefore, to guarantee monitoring performance will not de-
crease with increasing number of events in the non-lossy real-
time systems, it is required that the maximum period in this set
of staircase functions satisfies d; = 1 - O qz, as shown in Fig. 7.
In the lossy real-time systems, the set of staircase functions can
be obtained based on maximum busy-window period. How-
ever, for l-repetitive function monitoring, keeping the arrival
time of most recent | events is enough to monitor this segmen-
tally repetitive curve without error, whenever in the non-lossy
or lossy real-time systems. The monitoring differences of two
types arrival curves are summarized in Tab. 1.

V IMPLEMENTATION OVERHEADS EVALUATION

In this section, we implement both online monitoring meth-
ods with FPGA in the non-lossy real-time systems, and evalu-
ate their effectiveness with synthesis report.

As shown in Fig. 8, the monitoring FPGA IP contains four
modules [3]. The EventSyn module checks the coming event
signal and data, and transmit them to FIFO. The FIFO mod-
ule is used to buffer regulated events. The OutPutCtrl mod-
ule control the release of data. Dynamic Counter module or -
repetitive module is used to regulate the output of event stream-
s. In ModelSim, the coming events and data are generated with
an event generator. For both approaches, we set the timer 16
bits. For [-repetitive monitoring, we have to initialize the min-
imal distance. Since the frequency of the processor is 50 Mhz,
the tick is 0.02us. Assume the length of repetitive segment d;
defined in Eq. 7 is 500us, the initial minimal distance should
be 16 bits to keep this events arrival trace.

After testing the correctness of our Verilog HDL code in
ModelSim, we synthesize the implementations in Quartus us-
ing ALTERA Cyclone III EP3C120F780 device. In this test,
we only concentrate on the resource overhead of each mon-
itoring method, and ignore their accuracies. For [-repetitive
monitoring scheme, we choose six [values. [values are 5 to
30 with increment of 5. For dynamic counters monitoring, we
choose six dynamic counters to be 1 to 6 with increment of
1. As shown in Fig. 9, we list the logic elements, registers
and logic array blocks (LABs) as three resource usage metrics.

— 4= J
ok [+ ek
Event I em
rst [———— rst wweq FIFO . ‘ﬂp;v
event.in [event in SYn data_sig wreq fata[7:0] (] data_ou7:0]
data_in[7:0] [Dmtm——] data_in70] gagrrig) ‘ datain7:0]
el s f
L] clk D, < counter_1|| 4
1
o1 | st N
| Counter 1
DI— allower
! HI
,4(: A cik Dynamiccoun(eL (] violation
] rst

1 Counter n

alloy

] clk counter_n|
st J-repetitive
allowed

Fig. 8.: Block diagram of the FPGA testbed

300 1000

—e— Logic Elements —e—Logic Elements
-¢- Registers

800| —¢- Registers
200 * LABs

¢+ LABs

__.-% 600 -
o7 e -
e 400
100" -
P 20097
0 - - - * 0 + - - *
1 2 3 4 5 6 5 10 15 20 25 30

Number of dynamic counters l-repetitive: [

(2) (b)

Fig. 9.: Results of resource usage after synthesis. (a) Dynamic coun-
ters monitoring; (b) [-repetitive monitoring.

From this figure, we can see that resource usage is linear with
increasing ! or number of dynamic counters. Resource usage
of 5-repetitive monitoring is almost the same with 4 dynam-
ic counters, which counts less than 0.3% of the total resources
(total logic elements is 119,008 in this FPGA board).

We are also concerned about the influence of the d; on the
resource usage. In a non-lossy realtime system, we use 4 dy-
namic counters or 5-repetitive function to monitor a Type 2 ar-
rival curve. In d; = [- dypau. ! 1s fixed to be 5, and 6,,,4, Will
be positively monotone with d;. We set d; to be [10°, 10, 102,
103, 104, 10°] us, then the repetitive minimum distance and
dmae in dynamic counters monitoring should be 6, 9, 13, 16,
19, 23 bits. The resource usages are shown in Fig. 10. From
these two figures, we can find that the resource overhead of dy-
namic counters monitoring changes not much with the increas-
ing of d;. However, the resource overhead of [-repetitive func-
tion monitoring changes more obviously than dynamic coun-
ters monitoring, but still keeps a low level.

From the above resource usage comparisons of two mon-
itoring methods, we can find that resource overhead is more
sensitive to dynamic counters number or the events number
in [-repetitive function, and not sensitive to the length of one
repetitive segment.

As for the monitoring timing latency, 5 clock cycles are
needed to transfer an event from the input to the output in the
case that no data is regulated. The timing latency is the same in
both monitoring methods, and keeps constant with different [or
number of dynamic counters because programs run in parallel
in FPGA hardware. This result indicates that timing overhead
of both monitoring methods is considerably small, which have
little influence on system timing behavior.

VI CONCLUSIONS

This paper presents evaluations of the two latest developed
runtime monitoring techniques. We demonstrate the strengths
and weaknesses of these two techniques in different real-time

—e— Logic Elements —e—Logic Elements
300 -¢- Registers 300 -0-Registers
250('+ LABs 250| '+ LABs
200 200 3
—4 T
150 P 150 e
B g -
100f-.-= 9~ 100[~.--= %
50 50
0 . » * * 0 . . - .
0 1 2 3 4 5 0 1 2 3 4 5
Length of repeat segment (log(d;) [ps]) Length of repeat segment (log(d;) [ps])
(a) (b)

Fig. 10.: Resource usage with increasing busy-window period. (a)
Dynamic counters monitoring; (b) [-repetitive monitoring.

scenarios, and provide the accuracy and overhead analysis with
different arrival curves. By implementing both methods as
hardware IP on FPGAs, we also provide comparisons on the
level of hardware resources.

ACKNOWLEDGMENTS

This work has been partly funded by German BMBF projects
ECU (grant number: 13N11936) and Car2X (grant number:
13N11933).

REFERENCES

[1] Do-178b - software considerations in airborne systems and equipment
certification. Dec 1992.

[2] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis - the symta/s approach. Computers
and Digital Techniques, 152(2):148-166, Mar 2005.

[3] K. Huang, G. Chen, C. Buckl, and A. Knoll. Conforming the runtime
inputs for hard real-time embedded systems. In Design Automation Con-
ference, pages 430—436, 2012.

[4] K.Lampka, K. Huang, and J.-J. Chen. Dynamic counters and the efficient
and effective online power management of embedded real-time systems.
In International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS, pages 267-276. ACM, 2011.

[5] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of determin-
istic queuing systems for the internet, volume 2050. Springer, 2001.

[6] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. Monitoring of work-
load arrival functions for mixed-criticality systems. In Real-Time Systems
Symposium, pages 88-96, Dec 2013.

[7] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst. Mon-
itoring arbitrary activation patterns in real-time systems. In Real-Time
Systems Symposium, pages 293-302, Dec 2012.

[8] M. Neukirchner, S. Quinton, R. Ernst, and K. Lampka. Multi-mode mon-
itoring for mixed-criticality real-time systems. In Hardware/Software
Codesign and System Synthesis, CODES+ISSS, pages 1-10, Sept 2013.

[9] M. Neukirchner, S. Quinton, T. Michaels, P. Axer, and R. Ernst. Sen-
sitivity analysis for arbitrary activation patterns in real-time systems. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
pages 135-140, March 2013.

[10] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc perfor-
mance verification. Computer, 36(4):60-67, April 2003.

[11] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor soc. In Real-Time Systems Symposium,
pages 236245, Dec 2003.

[12] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Circuits and Systems, volume 4,
pages 101-104, 2000.

[13] E. Wandeler, A. Maxiaguine, and L. Thiele. On the use of greedy shaper-
s in real-time embedded systems. ACM Trans. Embed. Comput. Syst.,
11(1):1:1-1:22, Apr. 2012.

[14] E. Wandeler and L. Thiele. Real-time interfaces for interface-based de-
sign of real-time systems with fixed priority scheduling. In Proceedings
of the 5th ACM international conference on Embedded software, pages
80-89. ACM, 2005.

