
Hierarchical Reinforcement Learning
for Robot Navigation

B. Bischoff1, D. Nguyen-Tuong1, I-H. Lee1, F. Streichert1 and A. Knoll2

1- Robert Bosch GmbH - Corporate Research
Robert-Bosch-Str. 2, 71701 Schwieberdingen - Germany

2- TU Munich - Robotics and Embedded Systems
Boltzmannstr. 3, 85748 Garching at Munich - Germany

Abstract. For complex tasks, such as manipulation and robot navi-
gation, reinforcement learning (RL) is well-known to be difficult due to
the curse of dimensionality. To overcome this complexity and making RL
feasible, hierarchical RL (HRL) has been suggested. The basic idea of
HRL is to divide the original task into elementary subtasks, which can be
learned using RL. In this paper, we propose a HRL architecture for learn-
ing robot’s movements, e.g. robot navigation. The proposed HRL consists
of two layers: (i) movement planning and (ii) movement execution. In
the planning layer, e.g. generating navigation trajectories, discrete RL is
employed while using movement primitives. Given the movement plan-
ning and corresponding primitives, the policy for the movement execution
can be learned in the second layer using continuous RL. The proposed
approach is implemented and evaluated on a mobile robot platform for a
navigation task.

1 Introduction

Incorporating autonomous robots into daily life has been a long-standing goal
in the robotics community. While modern service robots can fulfil simple tasks,
e.g. vacuum cleaning, more complex tasks, such as manipulation and navigation,
pose a remarkable challenge [1, 2, 3]. In such cases, it can be difficult to plan
and execute the tasks due to uncertainties in the physical system, as well as
in the environment. For example, for complex robot systems, controllers based
on analytical models often fail to provide satisfying task performance [4]. Here,
learning desired tasks from experience using machine learning techniques, e.g.
reinforcement learning (RL) [5, 6], can offer an appealing alternative.

When learning tasks from data using RL, uncertainties in the environment
can also be taken into account, as they are encoded in the sampled data [1].
Although RL techniques are well developed during the last decades, their major
drawback is the inefficiency and lack of robustness for complex learning prob-
lems. For navigation tasks, for example, if the desired trajectory is sufficiently
complex, learning a corresponding controller using RL can be difficult. To over-
come this limitation and making RL feasible, hierarchical RL (HRL) has been
suggested [7, 8]. Inspired by the idea of HRL, we propose a RL architecture
appropriate for learning complex robot movements. The proposed approach in-
cludes two hierarchical layers: (i) motion planning and (ii) movement execution.

227

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

In the planning layer, the original complex motion of the robot is decomposed
into movement primitives. By using the primitives, trajectory planning can be
performed for the desired task. In this paper, we employ discrete RL [5] for the
task planning based on decomposed primitives. Subsequently, the execution of
primitives can be learned using continuous RL [5, 6] in the second layer. Given
the trajectory and learned primitives, robot movements can be performed fulfill-
ing desired tasks. Due to the straightforwardness of primitive movements, RL
becomes more robust and efficient.

Figure 1: Service robot plat-
form Festo Robotino used for
evaluation.

In this paper, we evaluate the proposed ap-
proach for learning navigation tasks. Here, the
robot needs to learn how to move from a start-
ing point to a goal position. We first identify
the primitives required for navigation. Using
the primitives, discrete RL is employed to learn
a feasible path from starting point to goal posi-
tion while taking in account possible obstacles.
The learned policy, i.e. the navigation path, can
be updated online when new obstacles are de-
tected. On the second level, we learn the exe-
cution of the primitives for the navigation path.
In this work, we employ Value-Iteration [5] for
discrete RL and Pilco [6] as continuous RL. For
evaluation, we implement the proposed hierar-
chical approach on a mobile robot system, e.g.
the Festo Robotino shown in Figure 1.

The remainder of the paper will be orga-
nized as follows: in Section 2, we briefly review

the basic concepts of RL. In Section 3, we explain our navigation setting and
show how the proposed approach can be realized in this framework. In Section 4,
the approach will be evaluated on a real robot platform for an indoor navigation
task. A conclusion and outlook will be given in Section 5.

2 Reinforcement Learning: A Review

In this section, we provide a short review on the basic concepts of RL [5]. We
proceed to discuss the relevant RL methods, i.e. Value-Iteration [5] for discrete
RL, and probabilistic inference for learning control (Pilco) [6] for continuous RL.

In RL, we consider an agent and its interactions with the environment. The
state of the learning agent is defined by s ∈ S. The agent can apply actions a ∈ A
and, subsequently, moves to a new state s′ with probability p(s, a, s′). A reward
function R : S,A, S → R determines the reward for given state transitions, a
policy π : S → A determines in every state the action to be used. The goal
of RL is to learn a policy π∗ that maximizes the expected long-term reward,
π∗ = argmaxπ

∑∞
t=0 γ

tE(R(st, at, st+1)) for all start states s0 ∈ S0 ⊆ S. Here,
γ is a discount factor with 0 < γ ≤ 1.

228

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

2.1 Discrete RL

Discrete RL considers RL problems with finite state space S. Value-Iteration
[5] is an established algorithm of this well-studied field. The main idea is to
estimate the value function Vπ∗ : S → R, which returns the expected long term
reward for any state s ∈ S under an optimal policy π∗. The value function Vπ∗

can be written as given in (1) according to the Bellman optimality equation.
Value-Iteration determines a sequence of value functions V k, see (2), which is
guaranteed to converge to Vπ∗ under some mild assumptions [9].

Vπ∗(s) =
∑
s′∈S

p(s, π∗(s), s′) [R(s, π∗(s), s′) + γVπ∗(s′)] (1)

∀s ∈ S : V k(s) = max
a∈A

∑
s′∈S

p(s, a, s′)
[
R(s, a, s′) + γV k−1(s′)

]
(2)

π∗(s) = argmax
a∈A

∑
s′∈S

p(s, a, s′) [R(s, a, s′) + γVπ∗(s′)] (3)

Equation (3) describes how the policy π∗ can be derived given Vπ∗ . Before
using the Value-Iteration approach, the transition probabilities p(s, a, s′) must
be determined, either analytically by prior knowledge or learned from experience.

2.2 Continuous RL

Algorithm 1
Episodic Policy-Search framework

1: for e = 1 to Episodes do
2: Rollout: apply policy on system, col-

lect experience {si, ai, s′i}
3: optional: learn dynamics model

p(s, a, s′)
4: Improve policy by adapting policy pa-

rameters
5: end for

For continuous RL tasks, i.e.
problems with continuous states
s ∈ S, Value-Iteration as de-
scribed in the previous section
cannot be employed. Many ap-
proaches are suggested for contin-
uous RL [5]. Here, we consider
Pilco [6], which belongs to the
RL class of Policy-Search meth-
ods. Algorithm 1 provides the
basic concept of episodic Policy-
Search RL.

The Policy-Search algorithm Pilco [6] is a model-based RL algorithm, where
Gaussian processes (GP) are used to model the dynamics p(s, a, s′). Given a
Gaussian state distribution p(st), Pilco analytically approximates the action
distribution p(at) = π(p(st)) according to the policy π as Gaussian distribution.
Accordingly, a Gaussian approximation of the distribution p(st+1) for the next
state is derived based on the GP dynamics model. With this technique, a rollout
[p(s0), p(s1), . . .] of a policy π can be simulated. The policy parameters can then
be adapted to maximize the sum of expected reward

J(π) = γ0E [R(s0, a0, s1)] + . . .+ γTE [R(sT−1, aT−1, sT)] .

The policy is parametrized as radial basis function network (RBF) with squared-
exponential kernels as basis functions.

229

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

3 HRL for Navigation

Figure 2: The figure shows
an exemplary path policy.
Black cells represent obsta-
cles, the red cell is the
goal position. Black ar-
rows correspond to primi-
tives with 0.25m displace-
ments (blue arrows for 1m
displacements).

In this section, we describe in details how HRL
can be employed for navigation tasks. First, a
set of movement primitives is defined. Here, we
choose to decompose the navigation trajectory in
8 movement primitives, e.g. forward, backward,
left and right translation with 0.25m and 1m dis-
placements. The navigation task can now be em-
ployed in two layers. On the first level, the state
s ∈ N

2 represents the robot’s grid-cell position in
a map. Possible actions are the movement primi-
tives, a ∈ {1m forward, 1m backward, . . .}. Given
the grid map and a desired goal, a navigation pol-
icy can be obtained for this grid map using dis-
crete RL, as described in Section 2.1. The naviga-
tion policy thus determines how the robot should
move in each grid-cell in order to reach the de-
sired goal, as illustrated in Figure 2. Technically,
the RL reward function is defined as 1 at the goal
position and 0 else. We further include a penalty for moving directly along walls
to avoid the risk of collisions. Additionally, we set higher rewards on primitives
with 1m displacements (compared to 0.25m displacements) leading to trajec-
tory decompositions with less primitives. Furthermore, policy updates can be
performed online in realtime to address dynamic obstacles.

The second hierarchical level corresponds to movement control. For each of
the 8 movement primitives, a control policy is learned with continuous RL in the
episodic setting, as described in Section 2.2. The state s ∈ R

3 corresponds to
x, y-position and yaw θ of the mobile robot, (1, 0, 0) is e.g. the goal state for 1m
forward translation. For an omni-directional robot drive, the control task is to
adjust the rotational speed (and, thus, the action a ∈ A) of each wheel to follow
the desired movement primitive. For the reward function of continuous RL, a

saturated immediate reward is employed, R(s, a, s′) = R(s) = exp
(
− |s−sgoal|

2c2

)
.

Here, the hyper-parameter c describes the width of the reward.

4 Robot Evaluation

In this section, we evaluate the presented HRL approach on the mobile service
robot platform Festo Robotino (see Figure 1). The omni-directional drive of the
Robotino consists of three mecanum wheels. Additional devices are attached on
the robot, for example, extra sensors, energy supply and localization devices.
These additional build-ups significantly change the robots dynamics making
the analytical control more difficult and, thus, motivates the use of machine
learning for control. For robot localization, we use the A.R.T DTrack system
which employs infrared markers on the robot detected by three external cameras.

230

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Figure 3: Learning results for
1m forward translation. The
boxes show the reward for
each episode averaged over 3
learning attempts.

Figure 4: The figure shows a robot navigation
task. Starting position is on the right, the goal
is on the bottom left corner. HRL is employed
for movement planning and execution. The
yellow crosses mark the path already taken.

Task

Mean
dist.
error
in cm

Mean
angle
error
in deg.

#
success.
runs /
total

1m forward 1.7 0.42 3/3
1m backward 1.48 0.57 1/1

1m right 2.97 0 1/1
1m left 2.28 1.2 1/1

0.25m forw. 2.49 0.90 3/3
0.25m back. 0.98 0.23 1/1
0.25m right 3.13 0.8 1/1
0.25m left 1.0 0.8 1/2

Table 1: Learning movement primi-
tives using Pilco on the Robotino

As first step, we perform Value-
Iteration on the upper hierarchical layer
to learn a navigation policy given a map
of our lab. The map is divided in a
18×9 grid of squared cells with 0.25m edge
length. Even for larger maps, the naviga-
tion policy can be learned within a few
seconds (e.g. 2.5 seconds for a map with
1000 cells). To address dynamic obstacles,
policy updates can be performed in real-
time. For example, the computation time
for the policy update is less than 0.15s in
our experiment. For larger maps, updates
can also be performed locally around the
obstacle to decrease computation time.

In the next experiment, the 8 movement primitives, forward, backward, left
and right translation with 0.25m and 1m displacements, are learned as described
in Section 2.2 and 3. The policy is implemented as RBF with 50 support points,
in every episode a rollout consisting of 10 samples {s, a, s′} is performed. Actions

a ∈ A = [−827, 827]
3
, which correspond to rotational speeds for the three-wheels,

are applied constantly for 1 second. Figure 3 exemplary shows the learning
result for 1m forward translation. The x-axis of the figure shows the learning
episodes, the accumulated saturated immediate reward with c = 0.25 of three
independent learning attempts is plotted on the y-axis as boxplot. The figure
shows that the primitive can be learned in only 4 episodes in a robust manner.
Table 4 gives the learning results for all 8 primitives. As evaluation, we consider
the Euclidean distance from the last position to the goal state as distance error
(in cm). The angle error is defined analogously (in degree). The results show
that all directions seem to be almost equally difficult and sufficiently accurate
policies can be learned for all primitives.

231

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Finally, a robot navigation task with static and dynamic obstacles is per-
formed, while combining the two hierarchical layers. The setting is shown in
Figure 4. A video showing the policy learning on both layers as well as the
navigation task with obstacles is available as supplementary material:
http://www.youtu.be/6CWmoTHa968.

5 Conclusion and Outlook

Inspired by the idea of HRL, we proposed a RL architecture appropriate for
learning complex robot movements. The proposed approach includes two hierar-
chical layers for movement planning and execution, using decomposed movement
primitives. Due to the simplicity of primitive movements, planning and execu-
tion using RL becomes more robust and efficient. In this paper, we employed
the proposed approach for robot navigation while showing how the navigation
task can be realized in this framework. We evaluated the approach on a mobile
robot platform. The results show that the hierarchical architecture is suitable
for learning robot navigation. Especially, the learned navigation policy, i.e. the
movement planning, can be updated online and in realtime taking in account dy-
namic obstacles. In the next steps, we investigate possibilities for the automatic
decomposition of complex trajectories into movement primitives. This can be
done using machine learning methods, for example [10]. Further applications of
this framework, e.g. robot manipulation, will also be considered in future work.

References

[1] A. Cassandra, L. Kaelbling, and J. Kurien. Acting under uncertainty: Discrete bayesian
models for mobile-robot navigation. In IROS, pages 963–972, 1996.

[2] Takanori Fukao, Hisashi Nakagawa, and Norihiko Adachi. Adaptive tracking control of a
nonholonomic mobile robot. IEEE Transactions on Robotics, 16(5):609–615, 2000.

[3] William D. Smart and Leslie Pack Kaelbling. Effective reinforcement learning for mobile
robots. In ICRA, pages 3404–3410, 2002.

[4] Duy Nguyen-Tuong, Matthias W. Seeger, and Jan Peters. Model learning with local
gaussian process regression. Advanced Robotics, 23(15):2015–2034, 2009.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE
Transactions on Neural Networks, 9(5):1054–1054, 1998.

[6] Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. In ICML, pages 465–472, 2011.

[7] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13, 2003.

[8] Bernhard Hengst. Hierarchical reinforcement learning. In Encyclopedia of Machine Learn-
ing, pages 495–502. 2010.

[9] Eugenio Della Vecchia, Silvia Di Marco, and Alain Jean-Marie. Illustrated review of
convergence conditions of the value iteration algorithm and the rolling horizon procedure
for average-cost mdps. Annals OR, 199:193–214, 2012.

[10] Dana Kulic, Wataru Takano, and Yoshihiko Nakamura. Online segmentation and clus-
tering from continuous observation of whole body motions. Transactions on Robotics,
25(5):1158–1166, 2009.

232

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

http://www.youtu.be/6CWmoTHa968

	Introduction
	Reinforcement Learning: A Review
	Discrete RL
	Continuous RL

	HRL for Navigation
	Robot Evaluation
	Conclusion and Outlook

