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Abstract. We study the simultaneous use of multiple modeling tech-
niques in the design of embedded systems. We begin with a pre-existing
Statecharts model of a simple case study, a traffic light for a pedestrian
crossing, using it to illustrate the need for multimodeling and the pit-
falls. The original model combines two distinct models of computation
(MoCs), finite state machines (FSMs) and synchronous/reactive (SR).
We add an additional MoC, a discrete-event (DE) model of the environ-
ment in which the traffic light operates, including a simple fault model,
yielding a model that combines three different modeling techniques. We
construct a second model of a hardware deployment and a third model
that is an abstraction used for formal verification. The result is that
this simple example uses three distinct models of the system (functional,
deployment, verification), two of which hierarchically combine distinct
modeling techniques (DE, SR, FSM). This exercise reveals some pitfalls
of model-based design where multiple models are needed as well as some
of the opportunities.

1 Introduction

Multimodeling is the act of combining diverse models. We consider two forms
that this can take. In the first form, hierarchical compositions of distinct model-
ing styles are combined to take advantage of the unique capabilities and expres-
siveness of the distinct modeling styles. In the second form, distinct and separate
models of the same system are constructed to model different aspects of the sys-
tem. We call the first form hierarchical multimodeling and the second form
multi-view modeling.

This paper starts with a simple traffic light controller given as a Statecharts
model, and interprets it as a hierarchical multimodel. This model is simple
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enough to be fully described in a short paper, and yet rich enough to illustrate
many major design issues. We first show an equivalent model constructed with
Ptolemy II [13] that is much more explicit about the fact that this is a hierarchi-
cal multimodel that combines two distinct modeling formalisms (state machines
and synchronous/reactive models). We next show that the model can be con-
siderably enriched with a third modeling formalism, discrete events, something
that is not possible using Statecharts alone. The resulting model is a hierarchi-
cal multimodel of the functionality of a simple traffic light interacting with the
environment in which it operates.

We continue by constructing a deployment model, which models a hard-
ware implementation (in our example, two components of the traffic light com-
municate wirelessly). The deployment model and the functional model together
are a form of multi-view modeling. The distinct models share certain compo-
nents. We show that we can use actor-oriented classes [26] to maintain consis-
tency across these distinct models. That is, as the models evolve, their shared
components remain identical.

We show that the process of constructing the deployment model reveals that
the original functional model is not agnostic about implementation. Particular
choices made in the functional model are inconsistent with the wireless deploy-
ment that we selected. Maintaining orthogonality between models in multi-view
modeling is challenging. As additional models are constructed for distinct views,
refactoring of previously constructed models invariably becomes necessary.

A third kind of model is often required for safety-critical embedded systems.
In particular, the functional and deployment models may be too detailed for
effective use of formal verification techniques such as model checking, and may
include complicated temporal dynamics that are difficult to handle. We illustrate
an applied verification technique where we synthesize from the functional model
using code generation technology an SMV (Symbolic Model Verifier) model that
can be used to check safety properties via model checking. This reveals that
while the functional model satisfies a key safety requirement, the refactored
deployment model does not.

2 Related Work

One of the key innovations in Statecharts [19] is the introduction of concurrency
(“and states”), as well as hierarchy, to state machine models. There exist sev-
eral variants of Statecharts, which differ in the precise timing and concurrency
models and other aspects such as possible reaction to signal absence; von der
Beeck [5] compares 21 dialects, and since then numerous other variants have been
developed, such as Simulink/Stateflow and UML Statecharts. We here presume
a “fully synchronous” semantics of Statecharts, as embodied in SyncCharts [2],
also called Safe State Machines (SSMs) [3], and use the SyncChart graphical syn-
tax. However, for the case study discussed here, other semantics such as Harel’s
original semantics or the Stateflow semantics produce equivalent results.



Statecharts can be viewed as a hierarchical mix of a state machine model and
a synchronous/reactive (SR) concurrent model of computation (MoC) [6]. This
is a form of hierarchical multimodeling. This idea has been generalized, showing
that other concurrent MoCs can be usefully combined with state machines [15].
That work followed on Ptolemy Classic [9], which provided a software architec-
ture supporting a general form of hierarchical multimodeling. In [9], Buck et al.
showed how to apply hierarchical multimodeling in applications that combined
networking and signal processing. Hierarchical multimodeling has also been elab-
orated in ForSyDe [22], SPEX [28], and ModHelX [18]. A non-hierarchical ap-
proach to multimodeling is provided by Metropolis [16] and Colif [10]. This
approach does not segregate distinct models of computation hierarchically.

Ptolemy Classic [9] also illustrates multi-view modeling applied to hard-
ware/software codesign. One model specifies functionality and one specifies hard-
ware architecture. This concept has been elaborated into a sophisticated method-
ology for hardware/software codesign called Y Charts [24], and has been devel-
oped into design tools like Metropolis [16]. Multi-view modeling has also formed
a centerpiece of model-integrated computing [32] and has been applied in a
number of large-scale system designs [17]. Multi-view modeling in the sense of
providing alternative views of the same system, e. g. dynamically created during
a simulation, is investigated by the KIEL system [31].

A third form of multimodeling, where a single model can be specialized to
multiple distinct implementations [29], is not discussed in this paper. In this
paper, we use a simple traffic light controller to illustrate the issues in multi-
view modeling. A similar approach is taken by Feng, Zia, and Vangheluwe [14].
Our approach was also influenced by Huang [21]. We also leverage actor-oriented
classes [26, 23, 25] to maintain consistency across multi-view models.

3 The Traffic Control Model

A Statecharts model [19] of a simple traffic light controller is shown in Fig. 1.
The module TRAFFIC_LIGHT has two states. The left state (the initial state)
represents normal operation, and the right state represents error condition op-
eration. The transition to the error state is triggered by an unspecified external
event called Error, and the transition back to the normal state by another exter-
nal event called Ok. Each of the normal and error states contains two concurrent
state machines, one governing the operation of a pedestrian light and the other
governing the operation of a car light. To determine the initial state of the pedes-
trian light, follow from the “I” bubble through the “C” (connector) bubble along
the arc labeled /Pred(1), Pgrn(0). The (unlabeled) state at the end of that arc
is the initial state.

In Statecharts, arcs are labeled with guard/action, where the guard specifies
the conditions under which the transition is taken. The label /Pred(1), Pgrn(0)
does not include a guard, so the transition is taken unconditionally. The action
Pred(1), Pgrn(0) assigns to variable Pred (for “pedestrian red light”) the value 1,
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Fig. 1. A Statecharts model of a simple traffic light controller.

which we interpret to mean to illuminate the pedestrian red light. The pedestrian
green light is turned off by the action Pgrn(0).

The transition labeled Pgo / Pred(0), Pgrn(1) is triggered by the event Pgo
(for “pedestrian go”) and turns off the red light and on the green. The transition
labeled Pstop specifies only a guard, no action. This transition is triggered by the
signal Pstop, and then proceeds instantaneously through the connector bubble
and along the transition labeled /Pred(1), Pgrn(0), which specifies an action.

The concurrent car control state machine is to the right of the dashed line
that separates it from the pedestrian light control state machine. It has four
states, and using a similar notation, turns on and off red, yellow, and green
lights for the cars. For example, the action Cred(1) turns on the car red light.

The car state machine has an additional notation where a guard like 2 Sec is
given. This specifies that the transition is triggered after remaining in the pre-
vious state for two consecutive instances of the event Sec. This event is supplied
by the environment, in this case to indicate the passage of one second. Note that
at this level we do not explicitly model physical time as part of our semantics,
but instead assume it is supplied by the environment. This differs from Harel’s
original Statechart dialect, which did include a timeout mechanism as part of the
language. Instead, we adopt the multiform notion of time, where the passage of
time is seen just as any other event, such as passage of distance, and is handled
with the same mechanisms [8]. The error state on the right can now be easily
read, knowing the notation. It turns off both the red and the green pedestrian
lights, and blinks the car yellow light.



4 Hierarchical Multimodeling

Statecharts can be viewed as a hierarchical combination of synchronous/reactive
(SR) models and finite state machines (FSMs). The “and states” compose com-
ponents according to the SR concurrency model, while the “or states” describe
classical FSMs [19].
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Fig. 2. The traffic light controller in Ptolemy II.

In this paper, we use Ptolemy II [13] as a laboratory for experimenting with
model engineering precisely because it embraces all the forms of multimodeling
in which we are interested. In Ptolemy II, the hierarchical combination of MoCs
is more explicit than in Statecharts. A Ptolemy II model equivalent to that of
Fig. 1 is shown in Fig. 2. The top level of the hierarchy, labeled TrafficLight, just
like Fig. 1, shows two states, Normal and Error. Unlike the Statecharts model, this
figure also shows explicitly the three external inputs that need to be provided
(Sec, Error, and Ok). In the graphical part of the Statecharts model, one can
only infer from the fact that these events are mentioned and not asserted any-
where that they are in fact external inputs. The Ptolemy II model also explicitly



shows five outputs (Pred, Pgrn, Cred, Cyel, and Cgrn), which control whether the
pedestrian and car lights are on or off.

The transitions between the normal and error states are labeled with guards,
Ok_isPresent and Error_isPresent. This means that these transitions are triggered
by the presence of these externally provided events.

The normal and error states have refinements, shown in boxes labeled Normal
and Error. These refinements inherit the input and output ports from the Traffi-
cLight model. The refinements, however, have a different model of computation.
Their MoC is indicated by the director, labeled SR Director, which specifies a
synchronous/reactive MoC.

In Ptolemy II, states in state machines can have refinements, as in Traf-
ficLight, and hence are called modal models [15] to distinguish them from
classical state machines. This mirrors the hierarchy in Statecharts. The states
represent modes of operation, and in each mode, the behavior is given by the re-
finement. In Ptolemy II, the semantics are that when a modal model fires (which
in the SR MoC occurs on each tick of a global clock [6]), the refinement of the
current state is fired, then the guards on all outgoing transitions are evaluated.
If exactly one of those guards is true, then the transition is taken and the ac-
tions on the transition are executed. If more than one of the guards is true, then
unless the transitions are marked to tolerate nondeterminacy, an exception will
be thrown. If the transitions are so marked, then one of the enabled transitions
is chosen arbitrarily.

The Normal refinement itself contains two components. Since these will exe-
cute under the SR MoC, they are concurrent, corresponding to the “and states”
of Fig. 1. Unlike Fig. 1, the communication between these concurrent components
is explicit in the Ptolemy IT model. In the Statecharts model, two concurrent
state machines communicate if one issues an event that is used by the other
(e.g. to trigger a transition). The fact that communication is occurring must
be inferred by the reader by matching the names of the events. In Ptolemy II,
the names need not match; the communication is indicated instead by “wires”
connecting the concurrent components. (In Fig. 2 the names on the wires con-
necting CarLight to PedestrianLight in Normal match only to correspond with the
Statecharts model.)

There is an advantage to explicitly showing the connections between con-
current components, rather than relying on name matching. In particular, from
looking at Fig. 1, it is very hard to tell whether there is feedback between the
“and states.” That is, it is hard to tell whether one state issues an event e; in
response to event es, where es is issued in response to e;. The fact that there
is no such feedback is visible in the syntax in Fig. 2, but not in Fig. 1. Note
that both SCADE and Esterel-Studio also support such an explicit syntax [7].
In Fig. 2, we see that Normal.CarLight provides the Pgo and Pstop events to
Normal.PedestrianLight, and that otherwise, there is no communication between
these concurrent components.

Normal.CarLight and Normal.PedestrianLight are themselves modal models,
but where the states have empty refinements. These, therefore, are classical



(extended) finite state machines. The extension is that in addition to a finite
set of ordinary states (indicated by ellipses), the state machine can have local
variables that have a value. In particular, Normal.CarLight has a variable count,
shown at the lower left, which is used to measure the passage of time. Thus, unlike
Fig. 1, there is no special syntax for triggers that consider multiple consecutive
occurrences of an event. Instead, the variable count is updated in the actions on
the transitions and evaluated in the guards.

Examining Normal.CarLight, we see that transitions all have a guard, which
is an expression that when true triggers the transition. If the guard is true, as it
is on the transition between Cinit and Cred, then the transition will be taken on
the first tick of the SR clock. Transitions with guard Sec_isPresent are triggered
when the Sec input is present. This input is provided by the environment. Our
design assumes that it is provided once per second.

The actions associated with each transition are divided into two categories,
output actions and set actions. In the model of Fig. 2, there is no material
difference between these because the SR model has no feedback. When an SR
model has feedback, however, then at each tick of the SR clock there is an
iteration to a fixed point. Such an iteration requires that components be able to
assert output values without committing to state transitions. Since our example
has no feedback, we do not discuss this further. You can assume that when a
transition is triggered, both the output and set actions are executed.

In Normal.CarLight, you can see that output actions are used to turn lights
on and off, while set actions are used to control the value of the count variable.
You can also see that all guards are carefully defined to ensure that there is
no nondeterminacy in the model. It is a convenient feature of Ptolemy II that
modal models are checked (at run time) for nondeterminate behavior.*

At the top level (TrafficLight), when a transition is taken from Normal to Error
or vice versa, the refinement of the destination mode is re-initialized. Thus, the
state machines in Normal.CarLight, Normal.PedestrianLight, Error.CarLight, and
Error.PedestrianLight will always start in their initial state. In the Ptolemy II
syntax, this fact is indicated by the hollow arrowheads on the transitions in
TrafficLight.

The only additional syntax needed to read Fig. 2 is the final state in Er-
ror.PedestrianLight, which is shown with a double ellipse. This is similar to the
double circle in Fig. 1. In Ptolemy II, when this final state (labeled Done) is
entered, the enclosing modal model (labeled PedestrianLight in the Error model)
will henceforth be omitted from executions by the enclosing SR Director. That
is, on subsequent ticks of the SR clock, the PedestrianLight actor will not be fired
and its outputs will be deemed to be absent.

We can gain some insight by comparing the syntaxes of figures 1 and 2.
In particular, we see that Fig. 2 is larger (more verbose). However, it is also

4 Since guards and transitions involve arbitrary operations on variables, the question
of whether a modal model is determinate is undecidable in general. However, it is
feasible to perform static checks at least for a decidable subset, e.g. by interfacing
the modeling tool to a theorem prover [20].



more explicit about key information, such as whether there is communication
between concurrent components. Moreover, it is much more literally hierarchical,
and thus, at each level of the hierarchy, the diagram presents a simple abstracted
view of the system. Such an explicitly hierarchical syntax may scale more easily
to large models. Moreover, we will show below that it facilitates sharing of model
components across distinct models. Note that although the model in Fig. 1 uses
a single sheet, Statechart tools typically allow to spread different hierarchy levels
across several sheets as well, i.e., both of the parallel macro states could have
been placed into separate sheets.

We consider these as different, equivalent views of a model. Ideally, the mod-
eler could freely choose among these. It is quite conceivable to have the modeling
tool synthesize such views automatically, by transforming them into each other
or by synthesizing them from a separate source. In fact, the Statechart in Fig. 1
has been synthesized from an equivalent, textual Esterel description [30], and it
seems feasible to alternatively synthesize the model in Fig. 2.

5 Modeling the Environment

The top levels in figures 1 and 2 present incomplete models. In particular, they
both rely on external inputs to have any behavior at all. In the Statecharts model,
if we were to provide a model of the environment that provides these signals,
it would have to conform with the Statecharts semantics. Thus, we would be
restricted to SR for concurrency and FSMs for state machines. Neither of these
is rich enough to correctly model the environment for this problem.

In Ptolemy II, we are not constrained to SR for the concurrency model. In
fact, many concurrent MoCs have been implemented in Ptolemy II, and many
can be combined hierarchically with SR. For our purposes here, the most natural
MoC for modeling the environment is discrete events (DE), implemented by the
DE Director in Ptolemy II.

In the DE MoC, actors communicate by sending each other time-stamped
events. The DE Director fires actors in time-stamp order. The semantics of
DE is shown in [27] to be a generalization of the SR semantics. Because it
is a generalization, the hierarchical combination of the two MoCs is clean and
rigorously defined. Very simply, if a DE actor is fired in response to time stamped
events, and that DE actor internally contains an SR model, then the SR model
executes one “tick” of its clock.

A simple model of the environment for our traffic light example is shown in
Fig. 3. The TrafficLight actor is the modal model shown in Fig. 2. It has three
inputs, Sec, Error, and Ok. It will fire when any of these three inputs contains
the oldest (least time stamp) event in the system. The Sec input is driven by a
Clock actor, which produces an event once per second. The Error input is driven
by a PoissonClock actor, which produces events according to a Poisson process.
A parameter of that actor specifies the mean interarrival time of those events.
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Fig. 3. A DE model of the traffic light environment in Ptolemy II.

In our simple environment model, the Ok input receives an event five seconds
after the error event occurs. This models a fixed (and unrealistic) repair time.
But it is easy to see how more interesting models could be constructed.

The outputs of the TrafficLight actor are wired to instances of the SetVariable
actor. These instances record the values in variables shown at the top of the
diagram, Pred, Pgrn, Cred, Cyel, and Cgrn. The reason for doing this is that we
can exploit a feature of Ptolemy II and create an interactive animation of the
execution of this model. In particular, the circles on the right of the diagram
have colors that set by expressions that depend on these variables. For example,
the top-most circle has its fill color defined by the expression

(Pred == 1) 7 {1.0, 0.0, 0.0, 1.0}
: {1.0, 1.0, 1.0, 1.0}

This means that if the variable Pred has value 1, the color is red, and otherwise
the color is white.> Thus, when executing the model, the circles change colors
just as the lights in a traffic light would.

6 The Deployment Model

The model of Fig. 2 describes the functionality of the traffic light without par-
ticular concern for how it is implemented. Suppose that to implement this, two
microcontrollers are used, one for the car light and one for the pedestrian light.
Suppose further that these two microcontrollers communicate with one another
via a wireless radio link. A model that describes this architecture is called a
deployment model.

Such a model is shown in figures 4 and 5. The top level of this model uses
the WirelessDirector, a generalization of the DE Director that supports wireless
communication models [4]. Semantically, the Wireless MoC is identical to DE.
Syntactically, communication between actors is indicated not by wires but by
identifying a wireless channel model (labeled RadioChannel in the figure) that

5 Colors are defined by an array R, G, B, A, specifying red, green, blue, and alpha
values. When these values are 1.0, the corresponding color is fully present. When
the alpha value is 1.0, the color is opaque.
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Fig. 4. Wireless deployment, showing the car light model.
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Fig. 5. Wireless deployment, showing the pedestrian light model.

mediates the communication. In principle, the RadioChannel actor can model
arbitrary properties of the radio link, including reliability, interference, and se-
curity properties. In the model we built, it models only the limited range of the
radio communication.

At the top level, the CarLight and PedestrianLight actors have icons con-
structed by the model engineer that contain circles that change color in response



to changes in the values of their parameters. The output port of the CarLight
actor communicates wirelessly via the RadioChannel actor to the single input
port of the PedestrianLight actor.

Inside the CarLight actor we see a model of the hardware of the car light.
It includes a Clock actor that provides one clock tick per second, and a Pois-
sonClock actor that models hardware faults. We observe that in this model,
hardware faults need to be modeled at the local level, inside the CarLight model,
whereas in Fig. 2 they are modeled at the systemwide level. Although this seemed
reasonable when we constructed the functional model, because of the choice of
deployment, where the car light and the pedestrian light are on distinct hard-
ware platforms, that original choice proves awkward. There is no global normal
and error state; each component has to separately decide whether it is in the
normal or error state. Maintaining coherence of these decisions turns out to be
an important aspect of the design, absent from the functional model. In fact,
in our model, if the car light fails, it sends a failure message to the pedestrian
light, which then turns off. However, if the pedestrian light fails, the car light
continues operating normally. This is not a desirable property of the system.

A designer faces two choices: she could refactor the functional model in Fig. 2
to put the normal and error states lower in the hierarchy, or she could interpret
the original design as an abstraction and create a new model for the deployment.
Here we do the latter. Consequently the two models share less of the design than
they could. Our decision, however, was to share as much as possible without
modifying the original design. This reflects the practicalities of system design on
a large team, where changing designs is not always possible.

The original Statecharts model that we worked with was a European design,
and consequently turned on red and yellow lights simultaneously before switching
to green. What if we wanted to change the design to the American system, where
we move directly from red to green? Is there any way this change could be made
in one place and apply to both the functional model and the deployment model?

Our model uses instances of two actor-oriented classes [26] to accomplish
this objective. The CarLight and PedestrianLight actors in figures 4 and 5 are
instances of the same model definitions labeled in the Fig. Normal.CarLight and
Normal.PedestrianLight. If any change is made to the internals of these actors,
the change is reflected in all instances. Thus, to change from the European to
the American system, the change only needs to be made in one place. It will
apply to both the functional and the deployment model.

7 Design for Verifiability

Models for safety critical systems must be verified. In our traffic light example,
we may want to prove the impossibility for the car light and the pedestrian light
to be green simultaneously. The functional and deployment models given above
are not immediately suitable for formal verification.

The standard approach at this point would be to construct by hand a third
model suitable for verification. This would be an FSM model against which



a temporal logic specification could be checked via model checking [12]. Our
approach is to synthesize from the functional model Kripke structures specifying
the behavior of the system, and checking them against a CTL specification of a
safety property. For our traffic light, the following formula is suitable:

! EF (CarLightNormal.state = Cgrn
& PedestrianLightNormal.state = Pgreen)

This can be read, “there does not exist a future where the car light and the
pedestrian light are both green.” We automatically generate an SMV model of
the traffic light, combine it with the above (manually specified) safety property,
and use NuSMYV [11] to prove that the property is satisfied. The synthesis of the
SMYV model leverages the code generation infrastructure in Ptolemy II [33].

Our models include FSMs, suggesting that translation to SMV would be rel-
atively straightforward. Examination of Fig. 2 reveals a number of challenges,
however. First, we have built the models using particular concurrent MoCs the
semantics of which must be accurately represented in an SMV model. Specifi-
cally, the SR and DE semantics and their interaction with FSMs must be care-
fully reflected in the SMV model, to the extent possible, and abstracted when
they cannot be exactly reflected. Second, any two FSM modeling tools will in-
evitably have subtle semantic differences. Some can have profound consequences
for verification, such as the support for so-called “history transitions” in hierar-
chical FSMs. Third, the FSMs in Fig. 2 are actually extended F'SMs, since they
include operations on the count variable. We apply abstract interpretation to en-
code values of such inner variables into atomic propositions. We use techniques
inspired by region automata [1] to generate a compact variable domain.

An outline of the .smv model, including the CTL safety property, is given in
Fig. 6. This model is automatically generated from the model in the “normal”
state of Fig. 2 using code generation techniques, and hence is automatically
maintained along with the functional model.

NuSMV verifies that our safety property is satisfied by this model, but this
exercise reveals a pitfall of multimodeling. The upper CarLight component in the
refactored deployment model of Fig. 4 is not the same as the one that we verified
in Fig. 2. In fact, the deployment model does not satisfy the safety property.
Even though we used actor-oriented classes to share definitions across models,
we did not (and could not) apply the safety check to the portion of the model
that is shared. The models require further refactoring (and some further design)
to ensure that safety conditions verified on one model also apply to another.
We consider it an open challenge to provide model engineering techniques that
mitigate such pitfalls.

8 Conclusion

Analogous to software engineering as a discipline, we focus on problems that arise
in model engineering. We show that distinct models constructed in different ways
can be usefully combined to form new models (hierarchical multimodeling), and



that distinct models constructed for different purposes can share key parts of
the design (multiview modeling).

Specifically, we have shown that the Statecharts model of computation can
alternatively be conceptualized as a hierarchical combination of finite state ma-
chines and a synchronous/reactive concurrency model, instead of as a single
monolithic MoC. Furthermore, we have demonstrated the benefit of augmenting
the Statecharts model—in its original monolithic form or as a hierarchical com-
bination of MoCs—with other MoCs, such as discrete events, enabling modeling
of other parts of the system. We illustrate this by converting a Statecharts model
of a traffic light controller into a Ptolemy II model, and then augmenting the
model with a model of its environment.

We have further given a deployment model, which defines an implementation
using wireless communication between two hardware processors. This model can
be used, for example, to refine the design for robustness and safety in the face of
impairments on the wireless channel. Qur deployment model, however, reveals
that the original functional model implicitly imposed constraints on the system
that make this particular deployment difficult to achieve. In particular, its top-
level state machine splits the entire system into a normal mode and an error
mode. But with two processors communicating wirelessly, achieving this global
mode transition reliably would be very difficult. We had to refactor the model
to put this split lower in the hierarchy.

Despite the refactoring, our deployment model was able to share critical
pieces of functionality with the original model. In particular, the logic governing
the mode transitions of the two lights (car and pedestrian) is defined in an
actor-oriented class, and both the functional model and the deployment model
use instances of those classes. Thus, if we change this logic in the class definition
(e.g. to change from the European style of lights to the American), then the
change automatically appears in both models.

Finally, we show that a third model constructed for the sole purpose of veri-
fication can be synthesized using code generation techniques from the functional
model. This model can be used prove a safety property using model checking.
However, since the deployment model fails to satisfy the same safety property,
this exercise could result in false confidence in the model. How to mitigate this
risk remains an open challenge.

We have considered multiple models of the same system to separate functional
aspects from deployment and verification. The designer should be able to specify
different aspects of the same system independently, to allow a clean separation
of concerns while keeping a model consistent. However, multi-view modeling can
be applied at different levels and in very different ways. For example, it can refer
to the animation of a model during a simulation, or to the alternation between
graphical and textual representations, or indeed also to the alternation between a
monolithic Statechart model and an explicitly hierarchical syntax, as discussed
in this paper. At this point, it is still largely up to the modeler to construct
different views of the same system. How best to harness a modeling system to
assist the user with this task still seems to be a largely open problem.
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MODULE CarLightNormal( Sec_isPresent )

VAR
state : {Cyel,Credyel,Cred,Cinit,Cgrn};
count : { 1s,0,1,2,gt };

ASSIGN
init(state)
next (state)

case
state=Cinit & count=ls :{ Cred };

Cinit;

Sec_isPresent & state=Cred
& count=ls :{ Cred };

1 : state;
esac;
init (count)
next (count)
case
state=Cinit & count=1s :{ 0 };

0;

Sec_isPresent & state=Cred
& count=ls :{ 1ls };

1 : count;
esac;
DEFINE
Pstop_isPresent := ( Sec_isPresent
& state=Cred & count=2 ) ;
Cred_isPresent :=
Cgrn_isPresent :=
Pgo_isPresent :=
Cyel_isPresent :=
MODULE PedestrianLightNormal (Pstop_isPresent,Pgo_isPresent)

VAR
state : {Pinit,Pgreen,Pred};
ASSIGN
init(state) := Pinit;
next(state) :=
case
state=Pinit :{ Pred };
Pgo_isPresent & state=Pred :{ Pgreen };
Pstop_isPresent & state=Pgreen :{ Pgreen };
1 : state;
esac;
DEFINE

Pred_isPresent
Pgrn_isPresent
MODULE main
VAR
CarLightNormal: CarLightNormal( 1);
PedestrianLightNormal: PedestrianLightNormal(
CarLightNormal.Pstop_isPresent,
CarLightNormal.Pgo_isPresent );

SPEC
! EF (CarLightNormal.state = Cgrn
& PedestrianLightNormal.state = Pgreen)

Fig. 6. The SMV model generated from the “normal” state refinement in Fig. 2.



