
The Zerberus Language: Describing the
Functional Model of Dependable Real-Time

Systems

Christian Buckl, Alois Knoll, and Gerhard Schrott

TU München, 85748 Garching b. München, Germany
buckl@in.tum.de

http://www6.in.tum.de

Abstract. A growing number of safety-critical systems is controlled by
computer systems. Currently these systems are often built from scratch.
The Zerberus System assists the developer in the design and implemen-
tation process. Main features of the Zerberus System are generality, de-
pendability, real-time predictability, the ability to be certified and cost-
efficiency.

The main concept of the Zerberus System is the platform indepen-
dent specification of the functional model by the developer. The func-
tional model specifies the functional elements (tasks), the relation be-
tween these elements, the interaction of the system with the environ-
ment and the temporal constraints. On the base of the functional model
the Zerberus System automatically generates the fault-tolerance mecha-
nisms. Thus the task of the developer is restricted to the implementation
of the application-dependent code.

In this paper we present one major part of the Zerberus System: the
Zerberus Language that is used to specify the functional model of the
control applications.

1 Introduction

Many safety-critical control systems are automated by the use of computer sys-
tems. Although the main fault-tolerance mechanisms are known for a long time
[1,2] a general approach in the sense of reusing fault-tolerance mechanisms is
missing. Most systems are therefore built from scratch and the application func-
tionality is mixed with the fault-tolerance mechanisms. This leads to a time-
consuming and cost-intensive development process.

Within the Zerberus System a development process is suggested to the user
that attempts to reduce the development times and costs, while increasing the
reliability and safety of the software. The Zerberus System emphasizes five dif-
ferent features: generality (by supporting the development of computer systems
for various applications and domains, e.g. space, medical and traffic engineer-
ing), dependability (by providing fault-tolerance mechanisms to comply with the
safety and availability requirements), real-time capability (by enabling the sat-
isfaction of hard real-time constraints), the ability to be certified (by meeting

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 101–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 C. Buckl, A. Knoll, and G. Schrott

certification standards e.g. DO-178B [3], IEC 61508 [4] and assisting the certi-
fication process by the system’s architecture) and cost-efficiency (by supporting
commercial-of-the-shelf (COTS) hardware and by accelerating the development
process).

The main concept of the Zerberus System to achieve these features is to
separate the functional design of the application from the platform dependent
implementation and to provide a set of pre-implemented fault-tolerance mech-
anisms. This separation is realized by the specification of the functional model
of the application. This model specifies the functional elements, the relation
between the elements, the interaction of the system with the environment and
the temporal constraints. On the basis of the functional model the Zerberus
System is enabled to generate automatically the necessary fault-tolerance mech-
anisms. Thus the task of the developer can be minimized to the implementation
of the application-dependent code. The automatic code generation of the fault-
tolerance mechanisms is performed by using templates that are implemented
independent from a certain application. The templates are carefully designed
and coded and we intend to obtain a certification for these templates from the
German certification authority TÜV. By reusing certified templates for the fault-
tolerance mechanisms the development process can be accelerated and the error
rates in comparison to a repeated reimplementation of these mechanisms can be
reduced.

The fault-tolerance mechanisms that are currently supported are based on
structural redundancy. At least three redundant units are executed in parallel.
In the following we denote the redundant units as Zerberus units. The system
offers facilities for synchronization, voting, exclusion of erroneous units and rein-
tegration of repaired Zerberus units.

In this paper we focus on the Zerberus Language. This language is used for the
specification of the functional model by the developer. The language had to be
designed in a way that the fault-tolerance mechanisms could be realized based
on this model. Therefore the main goals for the language were the suitability
for replica determinism (to enable a comparison of the states of the redundant
Zerberus units for an error detection) and the existence of previously known
points in time for voting (to enable the implementation of distributed voting
and synchronization algorithms).

The paper is structured as follows: section. 2 discusses related work, sec-
tion. 3 introduces the development process proposed by the Zerberus System to
clarify the role of the Zerberus Language. In addition the requirements on the
language are elaborated. The main concepts of the Zerberus Language are then
described in section. 4 in an informal way, while the exact semantics are spec-
ified in section. 5. At the end of the paper the concrete syntax of the Zerberus
Language is pointed out for a concrete control program in section. 6 and the
work is summarized in section. 7.

The Zerberus Language 103

2 Related Work

Different research groups have observed the demand for a development process
for safety critical real-time systems. Most of these solutions are based on the
time-triggered paradigm [5]. The time-triggered approach guarantees one im-
portant aspect that is absolutely necessary for fault-tolerance mechanisms: de-
terminism.

One important representative for the time-triggered approach is TTP/C [6].
TTP/C, the Time-Triggered Protocol, is a TDMA protocol designed to handle
highly dependent real-time applications implemented in distributed networks.
The protocol offers clock synchronization, clique avoidance, deterministic mes-
sage sending and membership services [7]. The TTP/C protocol itself offers
nevertheless no built-in fault-tolerance mechanisms at application level. Several
other projects addressed this problem (MARS [8] or DECOS [9]). All these ap-
proaches have one major drawback in our opinion: the restriction to special hard-
ware (like TTP/C controllers), programming languages or operating systems.

Our attempt was to design a development process that allows the usage
of commercial-off-the-shelf hardware and that has no constraints towards pro-
gramming languages and operating systems. This approach is shared with the
research project Giotto [10,11], from the University of California at Berkeley.
On the one hand, Giotto is based on the time-triggered approach, but on the
other hand it also uses results of the research on synchronous languages like
Esterel [12] or Lustre [13]. Like the synchronous languages Giotto introduces
an abstraction level that separates the software design process from the actual
hardware. By using the concept of FLET (Fixed Logical Execution Times), the
applications designed with Giotto are not only deterministic regarding the val-
ues of the results (like Esterel, Lustre), but also have a deterministic temporal
behavior. Thereto Giotto offers a language for the specification of the platform
independent functional model for distributed real-time applications. A platform
in the sense of Giotto (and in the sense of Zerberus) comprises the hardware, the
operating system and the programming language. The mapping of the platform
independent functional model to executable code is realized by a code generator.
Since Giotto was designed primarily for the use in distributed systems Giotto
has no built-in fault-tolerance.Within our project we developed the Zerberus
Language, which is based on Giotto, to describe the functional model of the
safety critical system.

Another tool intended for modeling and implementation of embedded sys-
tems is TIMES [14]. Within TIMES the developer models a system and the
abstract behavior of the environment. By using a simulator the user can vali-
date the dynamic behavior and verify the schedulability [15] of the system. A
code generator for the synthesis of C-code on a LegoOS platform is provided.
Like Giotto the tool TIMES was not intended for the use for dependable systems.

Several goals of the Zerberus System are also shared with Erlang [16,17].
Erlang is a programming language designed for programming real-time control
systems. The language offers many features that are more commonly associ-
ated with an operating system than a programming language like concurrent

104 C. Buckl, A. Knoll, and G. Schrott

process, scheduling or garbage collection. Fault-tolerance, fail-over, take-over is
built right into the platform and concurrent processing is one of its strengths.
In contrast to the Zerberus System, Erlang was designed only for soft real-time
systems. Another difference is the programming extent: while Erlang is used for
implementing the whole application, the Zerberus Language is only used for the
specification of the functional model. For the implementation of the pure appli-
cation code the developer can use a common, familiar programming language
like C.

3 Development Process

The Zerberus System suggests different steps in the development process for de-
pendable systems. In each step the system assists the developer to accelerate the
process (for example by automatic code generation) and to improve the results
by tool support or by providing guidelines. The individual steps to produce ex-
ecutable code are illustrated in fig. 1 and are described below. Since for most of
the safety-critical systems a certification by an authority is required this problem
is also addressed.

The description of the individual steps is focused on the requirements towards
the Zerberus Language.

Step 1:
Design of the

functional model

Step 2:
Selection of fault-

tolerance
mechanisms

Zerberus
File

Fault-
Tolerance

Mechanism

Step 5: Code Generation

Step 4:
Selection of

Zerberus
Runtime
System

Step 3:
Implementation of

application
dependent code

Application
code

Executable
Code

Step 6:
Certification

Fig. 1. Development process

The Zerberus Language 105

3.1 Specification of the Functional Model

Within this step the user has to specify the functional elements of the appli-
cation, their relationship towards each other and to the environment as well as
the temporal constraints. The specification is realized by the use of the Zerberus
Language. Since the specification of the functional model should be indepen-
dent of a specific platform, the Zerberus Language has to be designed in a way
to support this independency. A platform in the context of the Zerberus Sys-
tem is understood as the hardware, the operating system and the programming
language.

The Zerberus Language was designed very simple and intuitive to avoid an
error source and a long-lasting learning process. The language is not based on a
certain programming language or operating system to comply with the generality
requirement of the Zerberus approach.

3.2 Analysis of the Requirements on the Dependability

Currently the Zerberus System offers active structural redundancy as fault-
tolerance mechanism. At least three Zerberus units compute the application in
parallel. At specified points in time the units perform a distributed voting and
synchronization algorithm. Erroneous units are excluded from the computation
and can perform error recovery algorithms. Since error recovery algorithms are
in most times application dependent the current run-time systems offer only a
restart of the system or a reboot. In addition the developer can specify further
fault reactions and recovery algorithms. After a successful completion, protocols
allow the reintegration into the running system.

Since a replication of identical units allows no toleration of design errors,
the system also supports diversity of hardware and software. While hardware
diversity leads to no or only few additional costs as a result support of COTS
hardware, N-Version programming is often not considered due to the extra effort
necessary for the implementation of the individual versions.

As a result of these considerations several requirements are posed to the Zer-
berus Language. First of all the language must support the replica determinism:
during the system execution it must be possible to compare the states of the
individual Zerberus units for error detection. Especially due to the support of
N-Version programming this is not a trivial requirement.

Another requirement that arises due to the voting is the existence of deter-
ministic points in time when the voting should be performed. The existence of
deterministic points in time is on the one hand the main requirement to allow
the implementation of a distributed voting algorithm, on the other hand it also
allows the implementation of a distributed clock synchronization algorithm.

The voting in the Zerberus system is performed in two rounds to additionally
support the usage of a non-reliable communication network and is based on the
voting algorithms as suggested by Klaus Echtle [18]. The voting messages are
also used for the synchronization algorithm [19,20,21]: by means of the expected
and the actual arrival time of the voting messages a logical global clock can be

106 C. Buckl, A. Knoll, and G. Schrott

computed. The initial clock synchronization at start up is based on the algorithm
implemented in the TTP/C [6] protocol.

To support the re-integration of a previously excluded Zerberus unit, the
system must offer facilities for state synchronization. Since the algorithms are
realized automatically by the system a derivation of the state of the individual
units must be possible out of the functional model.

Finally, in order to achieve a reduction of the implementation effort for N-
Version programming the code that has to be implemented by the developer
should be restricted to the pure application dependent code.

3.3 Implementation of Application Dependent Code

In this step the developer has to implement code for the application. As already
implied in the previous section this code is restricted to the pure application
dependent functionality of the main parts which were identified within the design
process of the formal model. By this restriction, the implementation effort can
be reduced to a minimum.

The implementation step is platform dependent. This implies that for every
platform used, the code has to be reimplemented by the developer.

3.4 Selection of Run-Time Systems

Run-time systems realize the execution of the application on the individual plat-
form and provide the fault-tolerance mechanisms. Several run-time systems are
provided by the Zerberus System, but to guarantee the generality of our ap-
proach the developer can also design his own run-time system, e.g. if the desired
platform is not supported. To avoid a repeated implementation of such run-time
systems, Zerberus offers a way to code such run-time systems application inde-
pendent. By the use of other means, the Zerberus tags, locations in the code
that have to be replaced with application dependent data can be marked. The
replacement takes place in the code generating process.

To enable the simultaneous use of run-time systems implemented by the
developer and of run-time systems provided by Zerberus in a N-Version pro-
gramming system all protocols for the fault-tolerance mechanisms are provided.
Thus the design effort for a new run-time system is also minimized.

3.5 Code Generation

The transformation of the functional model, the application dependent code and
the selected fault-tolerance mechanisms into executable code is performed au-
tomatically by the Zerberus code generator. The whole code generation process
is depicted in fig.2. Both the functional model and the run-time systems are
parsed by the code generator and syntactic and semantic checks are performed.
Afterwards the code generator replaces the Zerberus tags by application data
and produces executable code.

The Zerberus Language 107

Application Data

ZF-Parser

Zerberus
File

Zerberus File
Runtime

Files

RTF-
Parser

AD-
Checker

RTF-
Checker

Code-
Generator

Application
dependent

code

Executable
Code

Fault-
tolerance
mecha-
nisms

Fig. 2. Code generation process

3.6 Certification of the Zerberus System

The certification of an application developed with the Zerberus System can be
split up into three distinct parts:

1. Certification of the Zerberus System approach
2. Certification of the Zerberus run-time system
3. Certification of the application-dependent code

Certification of the Zerberus System Approach. In a first step the Zerberus Sys-
tem approach has to be certified. This certification includes the Zerberus Sys-
tems concept (including voting, synchronization, integration algorithms), the
Zerberus Language, the code generator and the Zerberus Tags. All tools are
currently available as prototypes. For a successful certification these tools have
to be re-engineered according to the standards proposed by the certification
authorities (RTCA,FDA,TÜV).

Certification of the Zerberus Run-Time Systems. In the second step the certi-
fication of the run-time systems is performed. This includes tests of the suc-
cessful implementation of the proposed algorithms, the successful execution of
functional models and the conformance with the proposed standards of the cer-
tification authorities. Currently two prototype implementation for VxWorks 5.5
and the programming languages C and C++ are available.

108 C. Buckl, A. Knoll, and G. Schrott

Certification of the Application Dependent Code. For the certification of an ap-
plication developed with the Zerberus System only a certification of the func-
tional model, the code implemented by the user and the compliance with the
Zerberus run-time system should be necessary. To achieve this minimization a
strong partitioning among the different integrated modules must be ensured.
This separation is another requirement towards the Zerberus Language.

For a successful certification the system must of course apply to the certi-
fication standards. These standards differ from the fields of application [22]. In
general this means that the system must be re-engineered for each such stan-
dard. In case a certification is achieved the system can be reused for applications
of the same domain without a repeated certification of the steps one and two.
We intend to achieve such a certification by the German certification authority
TÜV for the medical domain.

4 Informal Description of the Zerberus Language

In the previous section the requirements on the Zerberus Language were dis-
cussed in the context of the different development process steps. In this section
the Zerberus Language is described informally and it is shown that the require-
ments can be satisfied by the Zerberus Language. The language was influenced
by the language Giotto introduced in Berkeley [10]. Giotto was changed and
extended in a way that the resulting Zerberus Language was suited for the use
for fault-tolerant applications.

The main attribute to support voting, synchronization and integration al-
gorithms is replica determinism. This is a non-trivial issue since different plat-
forms can be used to achieve fault-tolerance. This includes the simultaneous use
of different hardware, operating systems, programming languages and control
algorithms in one control system. To achieve replica determinism nevertheless
the Zerberus Language is based upon the time-triggered paradigm [5]. Similar to
the approach in [23] replica determinism can be achieved by using the knowledge
about the execution times. In the context of control applications the execution
times can be related to the frequency of control cycles.

Basing the voting, synchronization and integration algorithms on the fre-
quency of control cycles has different positive outcomes: by specified frequencies
of control cycles in the functional model there exist on the one hand determin-
istic points in time, when the synchronization and voting algorithms can take
place. On the other hand the execution and scheduling of the different processes
can be carried out in different ways on the Zerberus units between these points.

The existence of deterministic points in time allow the application of distrib-
uted voting and synchronization algorithms. In this way a single point of failure
can be avoided.

To achieve the claimed simplicity of the language, the Zerberus Language
consists of only seven different object types: ports, actors, sensors, guards, modes
and modechanges. In this section the different object types are explained infor-
mally.

The Zerberus Language 109

4.1 Port

All communication in the Zerberus System is performed via ports. A port is a
unique space in memory with a predetermined size and a specified representation.
Port types are the only element of the Zerberus Language, that refer directly
to a specific platform. To guarantee the platform independence the port types
are platform independent, but are based on the fundamental types of the most
common programming languages.

The values of the ports represent the state of the Zerberus units. There-
fore a comparison of the different Zerberus units can be based on the values of
these ports. It is required that there are no spaces in memory to store internal
states besides the ports. Thus the state synchronization can also be based on
the values of the ports during the reintegration of a Zerberus unit. The platform
independent specification of the size and the representation of the port values
is the foundation to enable the use of N-Version programming using different
programming languages and operating systems.

In the following the attributes of ports are described. Ports are persistent,
that means a port keeps its value over time until the port is updated. The update
access has to be performed deterministically: it is not allowed that more than one
write access is performed at a certain point in time. This condition is checked
by the code generator while parsing the functional model and in addition at
run-time (necessary due to the possible usage of guards, see section.4.6).

Replica non-determinism can also be the result of small clock differences
(since the synchronization algorithm can only guarantee a deviation of the local
clock from the global clock smaller than ε) or of N-Version programming. Due
to these effects the correct port values are typically situated in a small interval.
To support this fact the comparison of ports can also be based on an interval
decision. This can be done by declaring a voting function for the port that has
to be implemented by the developer. In case no voting function is specified the
voting of the port values is based on the bit-by-bit comparison.

The voting on the value of a specific port takes place at least every time an
output is performed based on this port value. For a faster detection of errors the
developer can also specify shorter voting intervals.

4.2 Task

The separation of the pure functionality of the application and the run-time
system including the fault-tolerance mechanisms is realized by tasks. Tasks are
periodically called functions and realize the actual control system functionality.
The simultaneous execution of different tasks is allowed, but to achieve deter-
minism in the execution the tasks have to be independent of each other and
synchronization points are not allowed. Thus the implementation of the task
functions is simplified and accelerated since they represent only sequential pro-
grams and the requirement of the strict partitioning of the integrated modules
to reduce the certification effort is satisfied.

The communication of the tasks between each other and with the environ-
ment is exclusively performed via ports. The access of tasks on ports occurs in a

110 C. Buckl, A. Knoll, and G. Schrott

time-triggered manner. At the beginning of every invocation the task reads the
values of the input ports, at the end of the invocation the results are written into
the output ports of the task. Here the begin and the end refers to the invocation
period as specified in the functional model. The port access is realized by the
Zerberus run-time system and is performed in logical zero time.

The actual execution of the task on the CPU is scheduled by the Zerberus
run-time system and is transparent to the developer. Nevertheless the developer
has to guarantee that the worst-case execution times (WCETs) of the tasks allow
a completion of the tasks satisfying the temporal restrictions as specified in the
functional model.

4.3 Sensor and Actor

Sensors and actors realize the communication of the application with the en-
vironment and should not be mistaken for the hardware devices. Sensors are
functions that are executed to read values from the environment and to write
these values into ports, actors are functions to read values from the port and
write these values to the environment.

The execution of the sensor and actor functions is also performed time-
triggered. The execution frequency has to be specified by the developer. The
sensor execution takes thereby place at the begin of each interval, the actor exe-
cution at the end of each interval. Both executions are regarded as instantaneous.
To legitimate this assumptions the functions must represent short sequential code
without synchronization points and blockages. For example in case of a network
device the sensor functions may check the arrival of a message and copy the
message into a port but a blockage until the receive event of a new message is
not allowed.

4.4 Mode

Applications can have different operation modes. To support this feature the
Zerberus Language introduces modes. A mode is a set of tasks, sensors and
actors that is currently active on the Zerberus units. In addition, a mode cycle
duration is assigned to every mode. Within each mode cycle the tasks, sensors
and actors are executed according to their frequency as specified in the mode
declaration.

mode m
{

task= t1 1,t2 2;
actor= a 2;
sensor= s 1;
duration= 50000000 ns;

}

Fig. 3. Mode declaration

The Zerberus Language 111

t t+25 ms t+50 ms

Sensor s

Actor a

Task t1

Task t2

(a) Formal execution model

t t+25 ms t+50 ms

Sensor s

Actor a

Task t1

Task t2

Run-time
system

(b) Actual execution

Fig. 4. Execution model for mode m

Figure 3 shows the declaration of an example mode m in the Zerberus Lan-
guage. m contains two tasks t1 with frequency 1 and t2 with frequency 2, a
sensor s with frequency 1 and an actor with frequency 2. The duration of one
mode cycle is set to 50 ms.

The formal execution model is depicted in figure 4(a) under the assumption
that the mode cycle starts at time t. At time t the function of sensor s is executed
and the tasks t1 and t2 are started. At time t+25ms the task t2 is stopped and
the actor function is executed. Afterwards the task t2 is started for a second
time. At the end of the mode cycle at t+50ms both tasks are stopped and the
actor a is executed a second time. The execution of the sensor and actor functions
appear instantaneous in the execution model.

Figure 4(b) shows a possible actual execution of the mode cycle on the ma-
chine. In addition to the task execution also the time required for the actor and
sensor function execution, as well as the time consumed for run-time system
execution have to be considered. The run-time system realizes the scheduling of
the tasks, the port accesses and the voting and synchronization with the other
Zerberus units.

The scheduler used in the example of fig. 4(b) uses a Earliest-Deadline-First
strategy for the task execution. Sensors and actors are executed within the run-
time system context.

4.5 Modechange

To enable the switch between different operation modes modechanges can be
used. A modechange is a function implemented by the developer that evaluates
if a mode should be switched or not. The developer has to specify the target
mode and a non-empty set of source modes within the modechange declaration.
The evaluation of the function, which is based on the values of the assigned
ports, takes always place at the end of the source mode cycles.

Mode switches must be deterministic, this means that for every achievable
configuration (port values and modes) at most one assigned modechange can
reach a positive evaluation for a modechange. This condition is checked in the
Zerberus System at run-time.

112 C. Buckl, A. Knoll, and G. Schrott

4.6 Guard

Guards are another possibility to change the behavior of a Zerberus program.
Guards are similar to modechanges functions based on port values, but while
modechanges should be used for different operation modes, guards can be used
to control individual tasks. Thereto the guard is assigned to a certain tasks. At
the begin of every invocation of this task, the guard function is evaluated and
only in case of a positive evaluation the according task is started. The main
advantage of guards over modechanges is therefore their flexibility. A guard can
be used also within a mode cycle and not only at the end of the mode cycle.

5 Formal Description of the Zerberus Language

The concrete language specification is given in [24]. In this chapter we describe
the language in a more abstract way. A Zerberus program computes on the
base of some inputs by the environment the output to the environment. In the
following we refer to Input for the values of the environment inputs and Output
for the values of the output to the environment.

A Zerberus program consists of:

1. A set of port declarations: A port declaration (p, type, init, comp) consists of
a port name p, a type type, an initial value init ∈ type and a compare mode
comp. The set of allowed types are the basic types of common programming
languages (abstracted to achieve platform independence) and arrays of fixed
size of these types. Every port declaration must also contain an initial value
to achieve a common start configuration for all units.

The developer can specify how a port is treated within the voting algo-
rithm. These possibilities range from the denial of comparisons, a bit-by-bit
comparison to an user-defined comparison (typically an interval test). The
denial of comparisons is only valid if the port is not read by an actor.

Port names must be uniquely declared: that means if (p, ∗, ∗, ∗) and
(p′, ∗, ∗, ∗) are distinct port declarations, then p �= p′.

We refer to the set of declared ports by Ports, to the initial value of a
port p by init[p] and to the values of a set of ports P ⊆ Ports by V als[P].

2. A set of actor declarations: An actor declaration (a, f, P) consists of an actor
name a, an actor function name f and a set P ⊆ Ports of input ports. Actor
names must be uniquely declared: that means if (a, ∗, ∗) and (a′, ∗, ∗, ∗) are
distinct port declarations, then a �= a′.

The developer has to implement an actor function with the name f for
each platform used. The function must be of the form f : V als[P] → Output
and is executed every time the actor is invoked synchronously within the
system’s context. We write Actors for the set of declared actors and fa for
the function of an actor a.

3. A set of sensor declarations: A sensor declaration (s, f, P) consists of a sensor
name s, a sensor function name f and a set P ⊆ Ports of output ports.
Sensor names must be uniquely declared.

The Zerberus Language 113

The developer has to implement a sensor function with the name f for
each platform used. This function must be of the form f : Input → V als[P].
The sensor function is executed every time the sensor is invoked synchro-
nously within the system’s context. We refer to Sensors for the set of de-
clared sensors, to fs for the function of a sensor s and to ress[p] for the
results regarding port p ∈ P of the sensor function.

4. A set of guard declarations: A guard declaration (g, f, P) consists of a guard
name g, a guard function name f and a set P ⊆ Ports of evaluation ports.
Guard names must be uniquely declared.

The developer has to implement a guard function with the name f for
each platform used. This function must be of the form f : V als[P] → B.
Guard functions are invoked every time the assigned task should be started.
The execution of the guard function takes place synchronously within the
systems context. We write Guards for the set of declared guards, fg for the
function of a guard g, p[g] for P and resg(V als[P]) for the results of one
function invocation based on the current values of the assigned ports.

5. A set of task declarations: A task declaration (t, f, g, In, Out, Inout) consists
of the task name t, the task function name f , optionally a guard g ∈ Guards
and a set of Ports In ∪ Out ∪ Inout ⊆ Ports. Task names must be uniquely
declared.

The set of assigned ports is subdivided into three classes: In, Out and
Inout. These classes refer to the access type of the task to the port. Every
port used in the task must belong to exactly one class.

The developer has to implement the task function with the name f for
each platform used. The function must be of the form f : V als[In∪Inout] →
V als[Out ∪ Inout] and is performed every time the task is invoked by the
system. The execution takes place asynchronously to the system’s context.

We write Tasks for the set of declared tasks, rest[p] for the results of the
current function invocation of task t concerning one assigned output port
p ∈ In ∪ Out and ft for the function of a task t.

6. A set of mode declarations: A mode declaration (m, start, T, A, S, d) con-
sists of a mode name m, a boolean value start, task assignments T , actor
assignments A, sensor assignments S and a duration d. Mode names must
be uniquely declared.

Within the application exactly one mode must be declared as start mode
mstart, that means start = true. The system will start the operation in this
mode.

A task assignments (t, freq) consists of a task t ∈ Tasks and a related
frequency freq ∈ N. The frequency determines the number of the task invo-
cations within one mode cycle (except if a related guard evaluates false). In
the following we will refer to the frequency freq of a task t in mode m by
freq(t, m). The sensor and actor assignments are similar.

The duration (s, ns) consists of the number of seconds s ∈ N and the
number of nanoseconds ns ∈ N (to confirm with the POSIX standard) and
determines the duration of one mode cycle.

We write Modes for the set of declared modes.

114 C. Buckl, A. Knoll, and G. Schrott

7. A set of modechange declarations: A modechange declaration (mc, f, P,
Source, target) consists of the modechange name mc, a modechange function
name f , a set P ⊆ Ports of evaluation ports, a set of source modes Source ⊆
Modes and a target mode target ∈ Modes. Modechange names must be
uniquely declared.

The developer has to implement a modechange function with the name f
for each platform used. The function must be of the form f : V als[P] → B.
A modechange is evaluated always at the end of a mode m ∈ Source. If the
function result is true the new mode executed by the system will be target.
We write Modechanges for the set of declared modechanges, fmc for the
function of a modechange mc, p[mc] for P and resmc(V als[P]) for the results
of one function invocation.

In the following the semantics of the Zerberus Language are described. The
realization of the fault-tolerance mechanisms is mentioned but the focus lies on
the functional semantics.

The voting algorithm has three results: the state of the system ressys ∈ B,
the state of the own unit resunit ∈ B and the acting unit id act ∈ N. The result
of the synchronization is the temporal correction value ∆cor. In addition we
assume that the developer has decided to use the port values for voting only in
case they are used for an actor output.

For simplicity reasons possible occurrences of errors during the application
execution are ignored. These errors can be time violations or simultaneous write
attempts on one port. In all such cases the normal execution is aborted at once
and fault reaction algorithms are executed.

A program configuration C = (id, s sys, s unit, m, δ, v, σactive,, τ) consists
of the unique Zerberus unit ID id, states of the system s sys and of the own
unit s unit, a current mode m ∈ Modes, a mode unit δ ∈ N, a valuation v ∈
V als[Ports] for all ports, a set of active tasks σactive ⊆ Tasks and a time
stamp τ ∈ Q. The set of active tasks σactive contains all tasks that are logically
running, whether or not they are physically running by expending CPU time.
The mode unit δ represents the current internal point of the mode cycle. The
number of internal points within one mode cycle of mode m is determined by the
least common multiple ω[m] of the frequencies of the tasks, actors and sensors
assigned to m.

At start-up each Zerberus unit has to determine if the system is currently run-
ning or if an initial synchronization procedure must be started. This is realized
by a function of the run-time system that observes the network. An operating
system can be recognized by voting and synchronization messages.

In case the system is already running another run-time system function is
executed that allows to obtain the states of the other Zerberus units. One require-
ment for a state synchronization is that the system is currently at the beginning
of one mode cycle (δ = 0). In this case no tasks are active on the other units and
an integration can be successful. Another requirement is that the majority of
Zerberus units agrees in their states. If both requirements are met the configu-
ration is updated to the state of the majority and the integration was successful.

The Zerberus Language 115

If on the other hand the system is not running an initial synchronization
procedure is started. The goal of this procedure is to obtain a global time
base. In case of a successful synchronization the initial configuration is set to
Cinit = (id, true, true, mstart, 0, vinit, ∅, τi) where τi is the result of the initial
synchronization and vinit[p] = init[p].

The internal points represent the points in time, when the synchronization
and voting algorithms are executed. At each internal point the following steps
are performed by the run-time system on the basis of the current configuration
C = (id, s sys, s unit, m, δ, v, σactive,, τ):

1. Copying of task results: Let σcompleted be the set of tasks t ∈ Tasks that
are completed. A task t is completed if t ∈ σactive and if δ is an integer
multiple of ω[m]/freq(t, m) at configuration C. For all ports p ∈ Ports: if
p ∈ inout[t]∪out[t] of a task t ∈ σcompleted then define vstop[p] = rest[p], else
vstop[p] = v[p]. Let Cstop be the new configuration that agrees with vstop in
the values of ports and with the set of active tasks σstop = σactive\σcompleted

and otherwise agrees with C.
2. Voting and synchronization: Let aexecute be the set of actors to be executed.

An actor a is executed if δ is an integer multiple of ω[m]/freq(a, m) at config-
uration Cstop. Let pvote be the set of all ports read by the actors a ∈ aexecute.
The voting and synchronization algorithms are then invoked with the para-
meters vstop[pvote], the mode m and the mode unit δ. Let ressystem, resunit

and act be the results of the voting algorithms and ∆cor be the result of the
synchronization algorithm. If ((ressystem ∧ resunit) = false) ∨ |(∆cor| > ε)
then the normal system execution is aborted and error reaction and recovery
algorithms are invoked. Otherwise let Cvote be the new configuration that
agrees with s sysvote = ressystem, s unitvote = resunit, actvote = resact and
τcor = τ + ∆cor and otherwise agrees with Cstop.

3. Execution of actors: Let aexecute be the set of actors to be executed. For
all actors a ∈ aexecute the actor function fa is executed if id = actvote. If
id �= actvote the unit only controls the correct output (performed by another
unit). In case errors are detected by the system error recovery algorithms are
executed. The execution of the actor functions takes places synchronously
within the run-time system execution that means that the run-time sys-
tem waits for the completion of the actor function. Let Cactor be the new
configuration that agrees with Cvote.

4. Evaluation of modechanges: If δ = 0 modechanges have to be evaluated. The
set of modechanges mcevalthat needs to be considered consists of all mod-
echanges mc with m ∈ source(mc). For each modechange mc ∈ mceval

the corresponding function is evaluated and if fmc(vstop[p[mc]]) = true
then m′ = target(mc). The developer has to guarantee that at most one
modechange evaluates true at a time. The run-time systems checks this
condition and creates an internal error in case of a violation of this rule.
In the latter case the system execution is stopped and fault reactions are
started.

116 C. Buckl, A. Knoll, and G. Schrott

If no modechange evaluates true, then m′ = m. Let Cmodechange be the
new configuration that agrees in m′ as new operating mode and otherwise
with Cactor.

5. Execution of sensors: Let sexecute be the set of sensors s to be executed. A
sensor is executed if δ is an integer multiple of ω[m′]/freq[s, m′]. Let psensor

be the set of ports that are written by a sensor s ∈ sexecute. For each port
p ∈ Ports: if p ∈ psensor vsensor [p] = ress[p], else vsensor [p] = vstop[p]. Let
Csensor be the new configuration that agrees with vsensor in the values of
the ports and otherwise with Cmodechange.

6. Invocation of tasks: Let tstart be the set of tasks t to be started. A task
t is started if δ is an integer multiple of ω[m]/freq[t, m′]. In addition if
the task has a guard the evaluation must be positive: resg(vsensor [p[g]]) =
true. For every task t ∈ tstart the function ft is invoked with the specified
parameters based on the values vsensor . Let Cstart be the new configuration
that agrees with the set of active tasks σstart = σstop ∪ tstart and otherwise
with Csensor .

7. Advance time: If δ = ω[m] − 1 then δ′ = 0 otherwise δ′ = δ + 1. Let
τ ′ = τcor + d[m′]/ω[m]. The next time the program is invoked with step 1
is at time τ ′. Let Csucc be the new configuration that agrees with δ′ and τ ′

and otherwise with Cstart.

6 Case Study

For demonstration we have implemented a system to balance a rod under the
control of switched solenoids, see figure 5. For a stable control sample rates in
the range of few milliseconds are necessary. As device an AD/DA-board was
used to connect the experimental setup with the three computer units. The
computers were equipped with AMD Athlon processors and they were connected
by switched ethernet. As real-time operating system we used VxWorks and as
programming language C.

Fig. 5. Balanced rod

The Zerberus Language 117

/* Code for the rod control*/

/*ports*/
port input
{

type=INT16;
compareTIME=NEVER;
initialValue=0;

}

port param
{

type=INT16[2];
compareTIME=NEVER;
initialValue=0;

}

port output
{

type=INT16;
compareTIME=compare();
initialValue=0;

}

/*actors and sensors*/
sensor sens
{

function=read();
out=input;

}

actor act
{

function=write();
in=output;

}

/*tasks*/
task control
{

function: contron();
in= input;
inout=param;
out=output;

}

mode control_cycle
{

startmode;
task: control 1;
sensor: sens 1;
actor: act 1;
duration: 1000000 ns;

}

Fig. 6. Functional model

The implementation of the control program was done by two students. It
took two weeks to implement the PID controller on a single computer. The
conversion of the code to the Zerberus System and the addition of the fault-
tolerance mechanisms could be realized within two hours using the code for
the single-machine version. The code that had to be implemented for the fault-
tolerant controller was less than 100 lines of code.

For describing the functional model of the control application 30 lines of code
in the Zerberus Language were needed. The code is depicted in figure 6. Three
ports had to be declared: one port for the systems input (the deviation of the
current position from the desired position), an array of two integer values for the
differential and integral part and one port for the result. Only the port for the
result was used for the voting algorithm. Also the rest of the functional model
was very simple: a sensor was used to read the current position of the rod, a

118 C. Buckl, A. Knoll, and G. Schrott

task was needed for the control computation and an actor was used for writing
the output to the environment.

In addition to the functional model four functions were needed for the control
program:

– read(): The sensor function was used to read the current value from the
AD/DA-board.

– control(): This function implemented the PID controller. As input the func-
tion uses the current position of the rod. The function computes the neces-
sary control output for stabilizing the rod at the desired position. To achieve
this goal the function uses two further ports to obtain also the differential
part and the integral part of the controller.

– compare(): The function compare() is used within the execution of the voting
algorithm of the run-time system. Due to synchronization differences and to
sensor imprecision a binary compare of the result of the control() function
was not possible. Therefore the two students implemented an interval deci-
sions: two results were assumed to be correct if the difference between both
values was less than 0.1 V (allowed voltage range was -10..10 V).

– write(): The actor function was used to write the value of the port output
to the AD/DA-board.

The code for these functions consisted of less that 70 lines of code.
The addition of the fault-tolerance mechanisms (voting, synchronization, in-

tegration), the communication between tasks, sensors and actors, as well as the
scheduling was realized by the system. The sample rate for this control example
was 1000 Hz.

This example proves the applicableness for small control applications. How-
ever we are currently working on two pilot projects with the industry. The goals
of these projects are on the one hand to point out the feasibility, but on the other
hand also to adopt industrial standards in the Zerberus System to increase the
acceptance rate in the industry.

7 Conclusions and Future Research

In this paper we have introduced the Zerberus Language. This language enables
the developer to design the functional model of the control application. The
design of the language was guided by the different requirements on the language
and the development system.

To achieve a general applicability the constraints by the language should be
minimized. This was realized by the independency from a certain platform and
by the time-triggered approach which is suitable for most control systems.

For the use with fault-tolerance mechanisms and especially with active re-
dundancy the language must provide features for replica determinism. By the
time-triggered approach this requirement is satisfied. In addition determinis-
tic points in time for the execution of voting algorithms are available and also a
synchronization of the different units can be achieved. The state synchronization

The Zerberus Language 119

during the reintegration phase is enabled by separating the inner state (ports)
from the functionality (tasks).

One main aspect of supporting the acceleration of the certification process
is the strict separation of the different integrated modules. This separation is
realized by the task concept of the Zerberus Language. In case operating systems
are used that support memory protection, it can be guaranteed that the run-time
system is not influenced by the tasks except in the predefined way.

The Zerberus Language is therefore suited for the use within the Zerberus
System. A code generator is available to support the transformation of the func-
tional models designed in the Zerberus Language into executable code. Within
one small case study we demonstrated the usage of the Zerberus System.

To point out the applicableness within industrial projects we are currently
working on two pilot projects with the industry. Within these projects we also
plan to adopt the recommended development process and the tools to industrial
standards. In addition we want to support further fault-tolerance mechanisms
despite active structural redundancy. Therefore we intend to introduce another
language to specify points within the execution when fault-tolerance mechanisms
should be executed (events) and exception handlers to address the occurrence of
failures. The goal is to provide a set of standard fault-tolerance mechanisms to
the user. To assist the developer in choosing adequate mechanisms, guidelines
will be developed.

Another research area will be an advanced support of the user in the certifi-
cation process. Document output automated by the used tools and the compli-
ance of tools and run-time systems with the relevant development standards are
planned. Within one project for a medical control system in cooperation with
the German certification authority TÜV we want to exemplify our approach.

References

1. Pradhan, D.K.: Fault-Tolerant Computer System Design. Prentice Hall (1996)
2. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer-Verlag

New York, Inc., Secaucus, NJ, USA (1990)
3. RTCA DO-178B: Software considerations in airborne systems and equipment cer-

tification (1992)
4. International Electrotechnical Commission: IEC 61508: Functional safety of elec-

trical/electronic/programmable electronic safety-related systems. (1998)
5. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the IEEE

91 (2003) 112 – 126
6. TTTech Computertechnik AG: Time Triggered Protocol TTP/C High-Level Spec-

ification Document. (2003)
7. Kopetz, H., G.Grnsteidl, J.Reisinger: Fault-tolerant membership service in a syn-

chronous distributed real-time system. In: Dependable Computing for Critical
Applications. (1991) 411–429

8. Kopetz, H., Fohler, G., Grünsteidl, G., Kantz, H., Pospischil, G., Puschner, P.,
Reisinger, J., Schlatterbeck, R., Schütz, W., Vrchoticky, A., Zainlinger, R.: The
distributed, fault-tolerant real-time operating system mars. IEEE Operating Sys-
tems Newsletter 6 (1992)

120 C. Buckl, A. Knoll, and G. Schrott

9. Website DECOS: (http://www.decos.at/)
10. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language

for embedded programming. Proceedings of the First International Workshop on
Embedded Software (EMSOFT) (2001) 166 – 184

11. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Embedded control systems devel-
opment with giotto. Proceedings of the International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES) (2001) 64 – 72

12. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152

13. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language
for real-time programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, ACM Press (1987)
178–188

14. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times - A Tool
for Modelling and Implementation of Embedded Systems. In: Joint European
Conferences on Theory and Practice of Software, ETAPS 2002. Lecture Notes in
Computer Science, Springer-Verlag (2002)

15. Krcal, P., Yi, W.: Decidable and Undecidable Problems in Schedulability Analysis
Using Timed Automata. In: Joint European Conferences on Theory and Practice
of Software, ETAPS 2004. Lecture Notes in Computer Science, Springer-Verlag
(2004)

16. Armstrong, J.: Erlang — a Survey of the Language and its Industrial Applications.
In: INAP’96 — The 9th Exhibitions and Symposium on Industrial Applications of
Prolog, Hino, Tokyo, Japan (1996) 16–18

17. Armstrong, J.: The development of erlang. In: ICFP ’97: Proceedings of the second
ACM SIGPLAN international conference on Functional programming, New York,
NY, USA, ACM Press (1997) 196–203

18. Echtle, K.: Fehlertoleranzverfahren. Springer Verlag (1990)
19. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults.

J. ACM 32 (1985) 52–78
20. Lundelius, J., Lynch, N.A.: A new fault-tolerant algorithm for clock synchroniza-

tion. In: Symposium on Principles of Distributed Computing. (1984) 75–88
21. Schmid, U., Schossmaier, K.: Interval-based clock synchronization. Real-Time

Systems 12 (1997) 173–228
22. Saglietti, F.: Licensing reliable embedded software for safety-critical applications.

Real-Time Systems 28 (2004) 217–236
23. Poledna, S., Burns, A., Wellings, A., Barrett, P.: Replica determinism and flexible

scheduling in hard real-time dependable systems. IEEE Transactions on Computers
49 (2000) 100–110

24. Buckl, C.: Zerberus Language Specification Version 1.0. Technical Report TUM-
I0501, TU München (2005)

	Introduction
	Related Work
	Development Process
	Specification of the Functional Model
	Analysis of the Requirements on the Dependability
	Implementation of Application Dependent Code
	Selection of Run-Time Systems
	Code Generation
	Certification of the Zerberus System

	Informal Description of the Zerberus Language
	Port
	Task
	Sensor and Actor
	Mode
	Modechange
	Guard

	Formal Description of the Zerberus Language
	Case Study
	Conclusions and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

