
Model-Based Specification of Timing Requirements

Christian Buckl
fortiss GmbH

Guerickestr. 25
Munich, Germany

buckl@fortiss.org

Irina Gaponova
Technische Universität

München
Boltzmannstr. 3

Garching, Germany
gaponova@in.tum.de

Michael Geisinger
fortiss GmbH

Guerickestr. 25
Munich, Germany

geisinger@fortiss.org

Alois Knoll
Technische Universität

München
Boltzmannstr. 3

Garching, Germany
knoll@in.tum.de

Edward A. Lee
University of California

at Berkeley
545Q Cory Hall

Berkeley, CA, USA
eal@eecs.berkeley.edu

ABSTRACT
In the past, model-based development focused mainly on
functional and structural aspects of the system to be devel-
oped. Recently, several approaches to include timing aspects
have been suggested. However, these approaches are typi-
cally applied in later development phases. Models specifying
the requirements with respect to timing without focusing on
a specific solution are missing. For example, few models sup-
port the specification of the allowed jitter of a system. In
this paper, we identify requirements on languages for mod-
eling the desired timing behavior of hard and soft real-time
systems by analyzing different application domains. Based
on these results, we evaluate existing approaches with re-
spect to their suitability and present a suitable approach.
Finally, this paper describes the application of the suggested
approach in the context of an example from the automation
domain.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Methodologies; Languages

General Terms
Design, Performance

Keywords
Model-Based Development, Real-Time Systems, Require-
ments Analysis

1. INTRODUCTION
Correct timing is essential for embedded systems. It is

necessary to clearly specify and formally verify timing re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

quirements before performing detailed system design. How-
ever, this issue has not been addressed adequately in model-
driven development processes. Many modeling languages
lack an integrated notion of timing [21]. Whether timing
requirements are satisfied is typically only checked during
testing at the end of development. One major reason is
that most model-driven approaches applied to embedded
systems in early design-phases lack a systematic and rig-
orous approach to specify and verify timing requirements
[19]. Domain-specific languages for real-time systems con-
sider timing, but are often used for the implementation phase
(e.g., automatic code generation) and not for requirements
analysis. Recently, a number of generic approaches have
emerged that include timing behavior (e.g., MARTE [20]).
However, these approaches focus predominantly on later de-
velopment phases or abstract from details such as allowed
jitter, which are essential for requirements analysis. Models
specifying timing requirements without focusing on a specific
solution (in the problem space) are missing. As a result, tim-
ing is typically specified only informally during requirements
analysis, potentially leading to incomplete or contradicting
requirements. A formal approach would help to avoid these
issues and resulting problems in later development phases.

The first main contribution of this paper is the identifi-
cation of requirements that are necessary to express timing
requirements for hard and soft real-time systems. The dis-
cussion is based on an analysis of different domains, such as
automotive, automation and multimedia and is explored in
Section 2. Existing approaches are evaluated with respect to
these requirements in Section 3. The second main contribu-
tion is the presentation of TReqS, a modeling language for
specifying timing requirements, in Section 4. To point out
the applicability and effectiveness of this approach, a con-
crete example from the automation domain is used in Sec-
tion 5 to discuss the implications of the suggested approach.
We can show that timing requirements of this use case can
be accurately and completely specified in our model. A com-
plete specification of the timing requirements ensures that
design decisions can be evaluated with respect to timing is-
sues at all phases of the development and not only during
testing. Furthermore, the suggested approach also offers a
quantitative metric on how well the timing requirements are

239

matched. This is especially useful in the context of soft real-
time systems with potentially contradictory requirements,
e.g., cost vs. timing. Section 6 concludes this paper and
discusses potential future work.

2. REQUIREMENTS
Within this section, requirements on a modeling language

to specify the required temporal behavior of embedded sys-
tems are identified. The results are used in the following
sections to evaluate existing modeling languages and to de-
rive a suitable modeling language.

2.1 Method to Derive the Requirements
We derive requirements by analyzing timing constraints

of applications from different domains. The analysis covers
hard real-time systems (the automotive, avionics and au-
tomation domains) and soft real-time systems (amongst oth-
ers the multimedia domain). Furthermore, different demon-
strator setups used by research groups in real-time systems
are evaluated (e.g., inverted pendulum, tunneling ball), since
these setups typically represent characteristic problems. Fi-
nally, existing modeling approaches are evaluated.

2.2 Requirements
One main criterion is that the approach to specify timing

requirements should not restrict the solution space for the
concrete system. The developer should focus on identify-
ing requirements of the system to build prior to exploring
possible solutions.

Requirement R1. The temporal behavior of the system
should be specified in problem space, that is to say it should
be described independently of a specific solution.

The goal of this paper is to define a modeling language to
specify timing requirements in early phases of the develop-
ment. Thus, the approach should abstract from concrete
solutions and especially the used IT platform (controllers,
networks). The approach should enable the specification
of timing requirements originating from the controlled en-
vironment that have to be satisfied by the HW/SW system
to perform the control task. Therefore, the model has to
abstract concrete execution times of individual components
and rather use logical time as a basis to describe the desired
timing behavior. To achieve this goal, the model should
be based on a model of computation that expresses exactly
what is required and no more so as to minimally restrict the
solution space. A time-triggered model of computation, for
example, would restrict the application areas and the way
of implementing the system. The choice of a concrete model
of computation to realize the application should take place
in later phases of the development process.

Requirement R2. Timing requirements must be specifi-
able in a composable and modular manner.

Requirements are typically specified by use cases describing
the externally observable behavior of the system. Based on
these use cases, the system and its core functions can be de-
fined to specify the intended functionality. To describe tim-
ing requirements in a composable and modular manner, it is
useful to separate functionality and timing. This approach
can be motivated by the fact that functions and timing re-
quirements are not directly correlated: the same function

may have different timing requirements in different appli-
cations. A composable description of the functionality is
supported by actor-oriented design [1, 18]. Note that the
decomposition of the system into functions is only done at
a very coarse level in the requirements analysis phase to
describe the basic functionality of the system [6]. Timing
requirements can be mapped to this system description by
specifying constraints on the temporal interaction between
functional components of the system, as well as between
these components and the environment. In the following,
we will use the term event for any of these interactions.

Requirement R3. The developer must be able to specify
the characteristics of all initial events triggering computa-
tions of the system.

We assume that initial events, such as periodic clocks or
interrupt sources, trigger the computation of a system. To
determine the load under which the system should still op-
erate, it is necessary to specify properties of these initial
events. Events may be aperiodic, periodic or occurring ac-
cording to a certain pattern. For aperiodic events for exam-
ple, the probability of events and the minimum/maximum
distance between two succeeding events may be specified,
while for periodic events, the rate and the jitter/deviation
of the occurrence of these events are relevant.

Requirement R4. It must be possible to state timing re-
quirements related to the accuracy of sensor data.

Real-time applications need accurate sensor data for their
calculation. They might require either precise information
on when observed events occur or a minimal sampling rate to
obtain precise measurements. An example for the first case
is monitoring the rotation of a crankshaft in engine control.
To obtain a precision of 0.1◦ in case of a maximal rotation of
6000 rpm, a temporal accuracy of about 3µs is required [16].
An example for the second case is the detection of events in
a surveillance network. The minimal sampling rate depends
on the time period for which an object can be observed.

Requirement R5. It must be possible to relate the point
in time when operations are to be executed with respect to
the point in time of the initial event.

To model end-to-end latency requirements, it is necessary
to model the desired point in time when certain operations
should be executed. An example is a welding robot that has
to perform several actions in a timed sequence.

However, every system can only match the desired timing
with bounded accuracy. Hence, it must be possible to state
the allowed jitter for the according operation:

Requirement R6. It must be possible to specify the al-
lowed jitter of a system with respect to the desired temporal
behavior.

Defining the allowed jitter makes it possible to distinguish
between soft and hard real-time systems. While the bound-
aries between acceptable timing and non-acceptable tim-
ing are usually quite tight for hard real-time systems, soft
real-time systems can typically tolerate much larger jitter
intervals. Since the acceptable jitter is very application-
dependent, it is not possible to make any application inde-
pendent assumptions. A very good example for huge differ-
ences is the multimedia domain. While the human’s sense

240

of hearing has a temporal accuracy of about 5µs, the eye’s
resolution of perception is limited to 40 ms. Therefore, an
audio application with distributed loudspeakers has to ful-
fill much harder jitter constraints to achieve a correct spatial
resolution than a 3D video application.

In some cases, the requirements on the temporal behav-
ior of the system depend on the state of the system or the
environment. It must be possible to specify such dynamic
real-time systems.

Requirement R7. It must be possible to specify real-time
systems whose timing depends on the inner state or the en-
vironment.

This requirement can be motivated by an example from the
automation domain. Let us consider a conveyor belt that
can operate at different velocities. Robots are picking up
objects on the belt based on light barriers. If the light barrier
is mounted within a certain distance d from the place to
pick up the object and the velocity of the conveyor belt is
v (assuming no changes of the velocity between detection
and pick up), the time when the robot should pick up the
object is t = d/v. Hence, it must be possible to specify this
timing requirement as a dynamic delay in the model. To
estimate the worst- and best-case requirement, it must be
possible to specify the minimal and maximal time delay for
this operation.

The final requirement is related to the fact that it might be
necessary to find an optimal overall solution when different
requirements contradict each other.

Requirement R8. It must be possible to specify a metric
to evaluate how well a concrete implementation matches the
requirements.

While in hard real-time systems, the requirements are very
often strict (meaning all requirements must be met), soft
real-time systems might be described by loose requirements.
In this case, a developer’s task is to optimize the system with
respect to these requirements. Besides timing requirements,
the developer has to take into account constraints such as
costs for this optimization process.

R8 does not only affect jitter as described in the context
of R6, but also the latency. A good example with relaxed
requirements on the end-to-end delay, but stricter require-
ments on the jitter is video streaming. It is possible to
buffer video frames if a longer latency is acceptable, how-
ever the jitter requirements have to be matched to ensure a
continuous video stream. Nevertheless, users will not accept
too long end-to-end delays, especially in the context of live
broadcast. Hence, a metric must be used to describe that
the satisfaction of the user will decrease with an increasing
latency.

3. RELATED WORK
This section discusses modeling languages used for spec-

ification of real-time systems in different domains. These
languages are on the one hand evaluated with respect to
the identified requirements and on the other hand used to
derive a concept for timing requirements specification. The
section starts with an overview of relevant models of compu-
tation, e.g., described in the context of the Ptolemy project
[11]. Subsequently, the concepts in FOCUS, MARTE, and
AUTOSAR are discussed.

3.1 Models of Computation (MoC)

3.1.1 PTIDES
Programming Temporally Integrated Distributed Embed-

ded Systems (PTIDES) [22] is a programming model for
distributed embedded systems based on a global, consistent
notion of time. PTIDES provides a very good basis for defin-
ing an approach to model timing requirements.

The implementation of distributed systems with PTIDES
is based on a common notion of time known to some preci-
sion. PTIDES uses Discrete Event (DE) semantics, which
means that actors interact by timestamped events. The DE
model of computation is very general and hence a good basis
for describing many kinds of real-time systems. In general,
a strict temporally ordered execution of events at each actor
is applied, however this temporal ordering can be relaxed
in PTIDES for stateless actors. PTIDES uses two notions
of time: model/logical time and real/physical time. Sensor
events get a timestamp in logical time, which is related to
the physical point in time when the event triggers the sensor.
The accuracy of the timestamp cannot be specified, but de-
pends amongst others on the specific hardware used (2R4).
The frequency of sensor events can be specified to enable
analysis (�R3). Actors can increment the logical time by
a specified amount, but separate delay actors are supported
as well (�R2). In addition, dynamic delays are available
(�R7). PTIDES supports two kinds of actuators: those
that take actions immediately upon receiving an event (time
stamp corresponds to deadline), and those that use the time
stamp of the received event to take action at that time (time
stamp corresponds to deadline �R5). Jitter or a metric are
not considered (2R6, R8). Another issue is the interpre-
tation of network components within a distributed system
as output actors. This simplifies analysis/implementation
as only the computation on the individual nodes must be
considered. However, this means that end-to-end delays for
a computation within a distributed system have to be di-
vided into several delays to satisfy the timing constraints
of the network components. For distributing these delays,
the developer needs explicit information, such as worst-case
execution times (2R1).

3.1.2 Giotto
Giotto [12] provides a programming abstraction for hard

real-time applications which exhibit time periodic and multi-
modal behavior, e.g., embedded control systems. Similar to
PTIDES, the model is based on a concept of logical time and
supports timing annotations independent of the platform
and the functionality (�R2). The relation to physical time
is guaranteed at the interaction points between actors and
hence can be interpreted as desired timing (�R5). However,
the Giotto approach does not satisfy all requirements. Due
to its time triggered nature, it is generally not suitable for
event-triggered systems (2R1). Furthermore, it does not
address any metrics and allows neither dynamic delays nor
the specification of jitter (2R6–R8).

3.1.3 Synchronous Languages
Synchronous languages are based on a synchrony hypoth-

esis which assumes that the interval between two consequent
input events is strictly greater than the response time. The
time scale is presented in terms of ticks. Inputs are read
and outputs are generated instantaneously in each tick. The

241

precision of the time scale is limited to the minimal interval
between two input events (tick length), which has to be large
enough to ensure the synchrony assumption (2R4). Jitter
and dynamic delays are not addressed (2R6, R7). The very
strict model of computation simplifies the analysis of real-
time systems, but restricts the solution space (2R1).

3.1.4 Timed Automata and Petri Nets
Automata are a widely used and well known formalism for

specification of reactive systems. They present operational
semantics and are used for describing the behavior of a sys-
tem. Since timed automata [2, 15, 3] were introduced, the
paradigm of automata has been successfully used for describ-
ing timing semantics of systems. Timed automata present
systems as a set of states, an initial state, a set of clocks, ac-
tions (state transitions), a set of ages and a set of invariants
assigned to the states. Parallel composition of automata is
supported, e.g. by using signals as synchronization mecha-
nism. Timed Automata are often used with temporal logic
annotations, e.g., branching-time temporal logic [4], because
this technique supports usage of model checking tools for for-
mal verification of safety/liveness/reachability properties.

Petri Nets are based on an extension of automata theory
such that the concept of concurrently occurring events can
be expressed. One of their extensions, Time Petri Nets, is
used for specifying timing semantics [13]. Cassez and Roux
show how a special kind of Time Petri Nets, i.e., where time
is associated with transitions, can be translated to Timed
Automata [9].

Timed automata are usually used for analyzing system be-
havior rather than for specification. This is the root cause
why no distinction is made between desired timing and al-
lowed jitter (2R5, R6). Instead of specifying the desired
timing and allowed jitter for state transitions, only time in-
tervals are used for timing specifications. Dynamic delays
can only be specified based on states. Therefore, only dis-
crete dynamic delays can be modeled (2R7). Finally, Timed
Automata do not support the specification of a metric to
evaluate the degree of satisfaction of a system with respect
to its timing requirements (2R8).

3.2 FOCUS
FOCUS [7] is a framework for formal specification and

development of distributed interactive systems. Systems are
represented by component networks. Similar to synchronous
systems, the individual components interact via time dis-
crete data streams. The communication is instantaneous,
directed, reliable and data preserving. Every component is
specified as a function that describes a mapping of the input
stream to a set of possible output streams. A separation
of functionality and timing is not intended, but could be
achieved by distinguishing between components with zero
delay (functions) and components with no effects in the
value domain of the data streams (timing) (�R2). Tem-
poral non-determinism can be specified by allowing several
possible output streams.

The possibility to use arbitrarily small time intervals as a
basis for data streams and the support of non-determinism
enable the specification in problem space (�R1). Similar to
timed automata, the approach does not distinguish between
desired timing and jitter (2R5, R6). The environment and
related requirements, dynamic delays and a metric are not
considered (2R3, R4, R7, R8).

3.3 MARTE
Modeling and Analysis of Real-Time and Embedded Sys-

tems (MARTE) [20] introduces a domain view for time mod-
eling and defines standard UML elements to express de-
fined timing concepts of real-time and embedded systems.
MARTE has very elaborate concepts for timing specication.
It provides logical as well as chronometric clocks (related
to physical time). Moreover, not only a single time base,
but also multiple time bases can be used. However, impor-
tant aspects such as jitter, dynamic delays, or required ac-
curacy of sensor data are not supported as modeling entities
(2R4, R6, R7), but have to be specified using the Clock Con-
straint Specification Language (CCSL) described in Annex
C of the specification. Hence, developers have to manually
specify concepts such as jitter, which introduces complexity
and leads to a lack of common semantics with respect to
these aspects. In addition, metrics are not covered (2R8).

3.4 AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) [5]

is an open industry standard for automotive E/E architec-
tures developed by automotive manufacturers and suppli-
ers. The current AUTOSAR release 4.0 introduces timing
extensions developed in the TIMMO project [14]. The basic
entities in the extension are events (�R1). Events can be
semantically connected to event chains; however the causal
relationship between triggering events and follow-up events
cannot be described in AUTOSAR. The exact timing of
events and event chains as well as their concurrency can
be described using the Timing Augmented Description Lan-
guage (TADL). TADL comprises language constructs for de-
scribing constraints for events (e.g., periodic, sporadic) and
event chains (�R3). Delay constraints (i.e., age), reaction
and timing constraints can be described as well (�R5). Fur-
thermore, input and output synchronization constraints for
input or output events are available.

The basic concepts of the AUTOSAR timing extensions
are very useful for specification of timing requirements. How-
ever, some requirements are not satisfied. It is not possible
to specify jitter or dynamic delays (2R6, R7). Furthermore,
no means for specifying a metric with respect to the satis-
faction of timing requirements is available (2R8).

3.5 Summary
Table 1 summarizes the evaluation results. While some

requirements are addressed quite well, others are not cov-
ered at all. The main reason is that most of the approaches
are used for later phases in the development process. Re-
quirements that are still valid in these phases are commonly
addressed. The requirements that are usually not addressed
are modeling of sensor data accuracy (R4), allowed jitter
(R6) and definition of a metric (R8).

The most promising approach is to combine and extend
PTIDES and AUTOSAR based on event-based specification
of systems. In the following, we will present a solution that
covers all stated requirements.

4. TIMING REQUIREMENTS
SPECIFICATION (TREQS)

Based on the identified requirements and relevant con-
cepts from related work, this section presents TReqS, an
approach for Timing Requirements Specification.

242

Table 1: Evaluation Results

R1 R2 R3 R4 R5 R6 R7 R8
Problem

Composability
Initial

Accuracy
Desired

Jitter
Dynamic

Metric
Space Events Time Delay

PTIDES no yes yes no
desired time

no yes no
or deadline

Giotto no yes no no yes no limited no

Synchronous
no yes no no implicit no no no

Languages
Timed

yes yes no no
mixed mixed

limited no
Automata with R6 with R5

FOCUS yes possible no no
mixed mixed

no no
with R6 with R5

MARTE yes yes yes no yes
possible (CCSL), possible (CCSL),

no
but complex but complex

AUTOSAR yes yes yes no yes no no no

4.1 Time
Just like PTIDES, TReqS uses two different notions of

time, namely physical time and logical time.
Physical time relates to the time notion of external ob-

servers and hence is the basis for timing requirements on
the system to build. Timing requirements can be classi-
fied whether they relate to relative or absolute timing. In
case of absolute timing, the system must share a time
base with the environment, for example by using time infor-
mation from GPS signals. Systems with relative timing
requirements must internally synchronize clocks so that the
system behaves as if a single clock would be available. The
absolute value of this clock is not relevant, however.

The concept of logical time is used to describe the de-
sired timing of operations. All events between functions are
equipped with timestamps describing the logical time for the
interaction. The logical time can be incremented by specific
model elements to describe the desired timing behavior.

The developer can relate logical time and physical time
whenever necessary. Accuracy requirements on initial events
determine the minimal accuracy of timestamps (logical time)
with respect to physical time that must be achieved. In ad-
dition, the developer can specify when events are processed
by actors. This is achieved by stating the allowed jitter and
thus binding the logical time of the event to physical time.

4.2 Model of Computation
As discussed in Section 3, two models of computation seem

to be especially relevant to model systems in a generic way:
actor-oriented design [1, 18] with event-based communica-
tion and state machines. Since the two most promising ap-
proaches PTIDES and AUTOSAR use both event-based ex-
ecution, TReqS is based similarly on Discrete Event (DE)
semantics [17, 8] with the exception that we do support both
in- and out-of-order execution (�R1).

Actors are the active model elements in TReqS. They can
have an arbitrary number of associated input and output
ports, indicated by small boxes at their periphery. Input
ports are shown on the left side, while output ports are on
the right.

In the DE model, actors – with their input and output
ports interconnected by order-preserving channels – com-

municate via events over these channels. An event is a
timed token e = (x, t), where x is the token (payload)
and t is the timestamp1. The value t specifies the point
in (model/logical) time at which the event has occurred re-
spectively should take effect. Note that when two events
occur at the same (logical) time, their timestamps will be
the same. The DE model of execution relies on the execu-
tion of events in a timed fashion: no event can be executed
at a specific actor if an event with an earlier timestamp may
still arrive at this actor. In our approach, we relax the DE
semantics with respect to this aspect: both in-order (using
merge actors) and out-of-order execution is supported.

An actor is executed when events are available2 at its in-
put ports, which are then consumed by the actor. The actor
then returns an arbitrary number of events on its output
ports. Ports are the only way for an actor to exchange events
with its environment. Actors may have an internal state.

Although execution of an actor takes time in a concrete
implementation, an actor does not consume any time in the
TReqS model. The same assumption applies for channels:
events are delivered instantaneously over a channel (i.e., de-
livery takes no time from the modeling point of view). Time
behavior is specified explicitly using the methods introduced
in the next section.

4.3 Primitive Model Elements
TReqS extends the DE model with various primitives to

allow intuitive specification of timing requirements in prob-
lem space. We also slightly modify the semantics of the
timestamp of an event: timestamps represent desired tim-
ing, which is our understanding of the favored processing
time of an event. We will show that our approach is flexible
enough to model hard as well as soft real-time systems. It
allows the specification of tolerable jitter and the formula-
tion of a metric for soft real-time systems. In the following,
the different types of actors are discussed.

1The timestamp is just a modeling artifact and may not need
to be present in a concrete implementation of the system.
2The point in time when events are available depends on
physical/logical time and allowed jitter of the event, see Sec-
tion 4.3. An actor consumes always the event with the ear-
liest timestamp, if several events are available at the actor.

243

3,2,1,...

(a) Clock (b) Alarm

(c) Countdown (d) External event

Figure 1: Selection of source actor types

4.3.1 Source Actors
Source actors may produce timed tokens at arbitrary

points in time, which is not allowed for actors in general.
They have at least one output port and may have input
ports. When a source actor fires an event e = (x, t), t is
set to the current physical time τ . Since the timestamp
cannot be absolutely accurate [16], the required accuracy ε
can be specified by the developer for each source actor based
on the timing requirements of the application by stating an
interval [εe, εl] with εe ≤ 0 and 0 ≤ εl (�R4). To satisfy
the accuracy requirement, the system must guarantee that if
the triggering event occurs at physical time τ , the following
equation holds: τ+εe ≤ t ≤ τ+εl. The interval will usually
be symmetric (−εe = εl).

In addition, the developer can state whether the time-
stamp can refer to relative time or must be related to abso-
lute time. In the latter case, the system requires externally
synchronized clocks, e.g., GPS-based clocks.

It is important to note that very often applications do not
have specific requirements on the accuracy of source actors,
but instead have requirements on the end-to-end delay, over-
all jitter or synchronization accuracy in case of distributed
sensor sources. In this case, the developer does not need to
specify the accuracy of the source actor, but specifies tim-
ing requirements according to their root cause. This tech-
nique can result in different accuracy requirements for a sin-
gle source actor. In this case, the system must satisfy the
most stringent one.

Event sources are annotated with statistical information
about how often and with which probability they output
events depending on their input, e.g., periodic/aperiodic,
deterministic/spontaneous (�R3). Requirements on source
actors, such as minimal sampling rate, can be specified as
well (�R4).

Typical examples for source actors are shown in Figure 1:

(a) The clock actor emits events at a configurable, fixed
frequency.

(b) The alarm actor can be configured to emit events at
given points in time.

(c) When it receives an event on its ’enable’ input port, the
countdown actor emits an event after a configurable
time interval c has passed if it does not receive an event
on its ’disable’ input port during that time interval.

(d) External events may originate from various sources
(e.g., interrupts, sensors).

According to our definition of logical time, t is the desired
time to process the event. This can be easily motivated by

(a) Static delay (b) Dynamic delay

Figure 2: Delay actor types

the fact that many applications would profit from an imme-
diate control reaction to an event. Hence, the desired time to
process the event is t, the time at which the event occurred.
Since not in every case the desired time for performing the
reaction to the initial event triggering the computation is
the timestamp of the initial event, our approach allows in-
crementing the logical timestamp.

4.3.2 Delay Actors
Delay actors (compare Figure 2) ignore the token x of a

received event, but can read and modify its timestamp t
(�R2). Their purpose is to increment the timestamp of a
received event by a value d ≥ 0 and output an event with
the incremented timestamp. This makes it possible to shift
the desired processing time of an event to some time in the
future (hence making the model feasible in real world) and
to specify requirements on end-to-end delays (�R5).

If d is a constant, then the actor is called a fixed delay
actor. d may also be adjustable, in which case we call the
actor a dynamic delay actor (�R7). In the latter case,
d is configured via a dedicated input port. Whenever an
event e = (x, t) is received on that input port, x with x ≥ 0
is interpreted as the new delay value and t as the desired
time at which the new delay value becomes valid. To make
the model analyzable, the developer must state the minimal
and maximal delay of the delay actor.

Note that the timestamp per se does not have an impact
on the point in time when events are processed by actors.
This guarantees maximum freedom concerning the imple-
mentation. The desired time/timestamp is only considered
when the developer binds the logical time to physical time.
As no physical system can operate with infinite precision,
binding the logical time to physical time is done by specify-
ing the jitter which is tolerable for the application.

4.3.3 Jitter Intervals
A jitter interval [jmin, jmax] can be associated with chan-

nels to specify the maximal deviation from desired timing
(�R6). The value 0 must be included in all jitter intervals,
because it corresponds exactly to desired timing (i.e., no
jitter). Hence jmin ≤ 0 ≤ jmax.

If the jitter interval is specified for the end of a channel,
the event e = (x, t) must be processed by the actor at a point
in time τ related to physical time satisfying the condition
t + jmin ≤ τ ≤ t + jmax. If the according actor represents
an actuator, the event must be processed in a way that τ is
the point in time when the output becomes observable by
the environment. If no jitter intervals are specified, e can be
processed immediately by the actor.

A jitter interval at the beginning of a channel (typically a
source actor) specifies timing requirements on the precision
of the timestamp of events originating from that actor.

Note that even if jitter intervals specify deferred process-
ing of an event, they have different semantics than delays,

244

P (τ)

τ

P (τ)

τ

P (τ)

τ

Pmax

(a) (b) (c)

Figure 3: Time/penalty functions; (a) hard real-time
system with fixed deadline; (b) hard real-time system with
bounded jitter; (c) soft real-time system

since delays refer to desired timing and jitter refers to tol-
erated deviation. Thus, if a model only uses jitter intervals,
but no delay actors, this means that the application should
be executed as quickly as possible, but with a bounded max-
imum latency (specified by the jitter interval on the last
channel). Using delay actors however introduces causal con-
straints on the end-to-end delay between the time of an ini-
tial event and the visibility of its effect in the environment.
If combined with jitter intervals, the tolerated deviation in
the end-to-end delay can be expressed.

4.3.4 Time/Penalty Functions
In most cases, the specification of a jitter interval with

hard bounds is only an abstraction of the real requirement.
Especially in soft real-time systems, the quality of a system
decreases gradually if the jitter increases. Thus, it is useful
to specify a metric for the quality of a system (including
bounds for tolerable jitter) instead of specifying jitter in-
tervals. To specify this metric, we use a concept similar
to Time-Utility-Functions as suggested in Jensen’s research
group [10]: time/penalty functions.

A time/penalty function P (τ) can be used instead of spec-
ifying a jitter interval [jmin, jmax] to specify time constraints
on the processing of event e = (x, t). For hard real-time
systems, it has the following properties:

∀τ : P (τ) ≥ 0 ∧ P (τ) =


0 τ = 0

Pmax τ − t ≤ jmin

Pmax τ − t ≥ jmax

(1)

where Pmax is the penalty limit. The exact value does not
matter in a concrete implementation, but we can assume
it to be a very large number (Pmax ≈ ∞). For soft real-
time systems, the time/penalty function may not reach the
penalty limit (if jmin ≈ −∞ and jmax ≈ ∞). The developer
may specify any function that matches (1). A set of standard
time/penalty functions is illustrated in Figure 3.

Time/penalty functions directly deliver a metric to eval-
uate the satisfaction of constraints for a specific implemen-
tation (�R8). The goal of the developer is to minimize the
penalty during system implementation. Since different re-
quirements might be contradicting (e.g., the usage of more
expensive hardware might reduce the jitter), the metric can
be used to find an adequate solution.

It is important to note that Time/Penalty functions may
not only be used to specify jitter, but also in the context of
delays and accuracy of source actors. An example is the live
broadcast application mentioned in the context of R8.

4.3.5 Processing Actors
Processing actors (Figure 4 (a)) cannot produce spon-

taneous events. They can only produce output events as

(a) Processing actor (b) Merge actor

Figure 4: Other actor types

a reaction to input events and may have an internal state.
They are not able to modify the timestamp t of a received
event, but are allowed to read it3. When they output an
event, the timestamp of that event is set to the timestamp
of the input event that caused the output event to be gener-
ated. Hence, processing actors do not consume logical time.

Processing actors are used to represent the functionality of
the system. By separating functional behavior (processing
actors) and timing behavior (delay actors), the approach
is compositional in the sense that adding/refining functions
does not change the timing behavior and adding delay actors
does not change the functionality (except from timing).

4.3.6 Merge Actors
As mentioned in the beginning of this chapter, our ap-

proach relaxes the DE semantics with respect to in-order
execution of events. Since some applications rely on this
in-order execution, an according actor is introduced. The
merge actor is responsible for joining events on its input
ports onto a single output port (compare Figure 4 (b)). Sim-
ilarly, it can also operate on parallel channels. In both cases,
the merge actor only forwards messages, when these are safe
to process, meaning that no message with an earlier time
stamp will be forwarded afterwards. Since the timestamp
of distributed events cannot be measured absolutely accu-
rate [16], the developer has to specify the required ordering
accuracy tα. Specifying the accuracy at the merge actor
rather than at the source actor has the advantage that the
requirement can be stated where the root cause lies. The de-
veloper can specify the accuracy constraint directly at the
merge actor if the root cause is related to synchronization.

Without loss of generality, we discuss the functionality
of the merge actor using an example with two events e1 =
(x1, t1) and e2 = (x2, t2) emerging from source actors with
a physical timestamp τ1, τ2. If the merge actor releases the
two events in the order e1, e2, then the following equation
holds: τ1 ≤ τ2 + tα.

4.3.7 Composite Actors
Networks of source, processing, delay (and composite) ac-

tors can be hierarchically composed into so-called composite
actors. This mechanism is purely of structural nature to en-
hance readability and does not introduce additional seman-
tics. Note that since composed actors may contain event
sources, they may also generate spontaneous events.

4.4 Application of TReqS
A requirements model based on the suggested approach

TReqS can be used to determine whether a system is a cor-
rect implementation and to compare different implementa-
tions.

3Only for specific processing sensors: If such an actor is
used in the system, the timestamp has to be present in the
implementation.

245

vs1

o

s2

l

w

d

x1 x2 x3
p1 p2 p3 p4

Figure 5: Schematic of conveyor belt (not to scale)

Definition 1. A scenario is a fingerprint of a specific
execution run of a system. It contains a sequence of inputs
events with associated points in time when they happen as
well as a description of all execution times induced by the
actors on all events.

Relevant scenarios can be derived from the constraints spec-
ified in context of source actors. Scenarios can be weighted
according to their probability to appear. Based on a con-
crete scenario, it is possible to evaluate a concrete imple-
mentation:

Definition 2. The overall penalty for a scenario is the
sum of all jitter/penalty functions for all events at the point
when the respective event arrived.

A correct implementation must on the one hand assure
that no jitter/latency constraint is violated and that on the
other hand the overall penalty does not exceed a limit L
potentially defined by the requirements analyst:

Definition 3. A system is a correct implementation,
if for all possible scenarios of this system and all events, the
penalty for each respective event is less than Pmax and the
overall penalty for each scenario is less than L.

Based on the metric, implementations can be compared.
To compare two implementations with respect to a scenario
S, we define an operator <S :

Definition 4. A correct implementation A is more ac-
curate than a correct implementation B for a scenario S,
formally A <S B, if the overall penalty of A is smaller than
the one of B for that scenario.

Based on this definition and the set of possible scenarios,
two systems implementing the same requirements model can
be compared:

Definition 5. A correct implementation A is more ac-
curate than a correct implementation B, if the sum of the
overall penalty of all scenarios based on the assumptions re-
garding events weighted with the probability of the respective
scenario is less for A than the respective value for B.

5. USE CASE
In the following, we will illustrate the suggested modeling

approach with an example from the automation domain.
The setup consists of a model of an industrial production

system, which was built from Festo components. Amongst
other components, the system features a unidirectional con-
veyor belt over which work pieces are delivered (compare
Figures 5 and 6) and put into a processing station. Two

(a) Normal position (b) Pushed position

Figure 6: Detailed view of control lever

optical sensors are used to detect work pieces o on the con-
veyor belt. For simplification reasons, we assume that only
one work piece is transported on the conveyor belt at a time
in contrast to the usual pipeline mode. A specification doc-
ument contains the following textual requirements for the
system:

• START: Sensor s1 is mounted at the beginning of the
conveyor belt to detect work pieces that are placed
onto the belt by a mobile robot at position p1. The belt
should be started as soon as a work piece is detected
by s1.

• STOP+LEVER: Sensor s2 is mounted at position p2
near the end of the conveyor belt just in front of a
lever l at position p3 that can move a work piece into
a processing station. If s2 detects a work piece, the
conveyor belt should stop as soon as the work piece
is in front of the lever and the lever should push the
work piece into the pickup position.

• ERROR DETECTION: When a work piece is not de-
tected by s2 within a reasonable amount of time after
it was detected by s1, the belt should be stopped and
the user should be notified. This is necessary to pre-
vent the work piece from falling off the conveyor belt
at position p4.

Although the informally defined functionality seems trivial,
this specification contains only very coarse (implicit) infor-
mation about the required timing. To analyze the system
more accurately with respect to timing, additional informa-
tion has to be specified:

• The speed of the conveyor belt is v = 6.0± 0.25 cm/s.
⇒ vmin = 5.75 cm/s, vmax = 6.25 cm/s

• The distance x1 between p1 and p2 is 37 cm.

• The distance x2 between p2 (intersection point of light
barrier and center axis of conveyor belt) and p3 is 1 cm.

• The diameter of a work piece is d = 4 cm.

• The width of the pickup position is w = 4.2 cm.

• The distance x3 between p3 and the end of the con-
veyor belt p4 is 30 cm.

• The accuracy of the robot placing work pieces at posi-
tion p1 is a = 0.1 cm in both directions along the axis
of the conveyor belt.

A concrete requirements model based on this information
and the suggested approach is discussed in the following.

246

3,2,1,...

Lever
control

Sensor s1

Sensor s2

errorenable

disable

c = 6.45s

d = 0.167s

start

stop stop
belt

start
belt

started

stopped

started

stopped

Conveyor
belt

control

/s

P()

-0.01 0.009

P()

4.27 /s

P()

Figure 7: Use case from the automation domain

5.1 Sensor Accuracy
To detect work pieces properly, the sampling rate of sen-

sor s2 must be vmax/d = 1.57 Hz. For s1 no specific accuracy
is required due to the assumption that the conveyor belt is
not in operation when the work piece is placed on the belt.
Note that for specifying timing and jitter, the point in time
of the physical event is used as a basis. In the context of
light barriers with fixed sampling rates, this point in time
would be the moment when an object reaches the barrier.
Since a fixed sampling rate implies only limited accuracy,
this accuracy must be automatically considered when cal-
culating the maximal jitter/latency bounds of a concrete
system. In other words: using a sensor with lower sampling
rate puts higher requirements on the jitter/latency of the
rest of the system. In the special case of this application, we
will see that end-to-end latency requirements will demand
a higher accuracy of s2 than stated above. Using the point
in physical time as a basis for the event occurrence has the
advantage that for specifying the timing requirements only
the end-to-end requirements have to be taken into account.
During the implementation process, the developers have to
ensure that the individual latency/jitter of the selected com-
ponents does not contradict the requirements stated in the
specification phase.

5.2 Function START
Specification of timing requirements for function START

is trivial. The desired timing for starting the conveyor belt
after detecting a work piece at p1 is an immediate start.
Hence no delay operator is used for specifying this function.
To make the requirement feasible, the allowed jitter has to
be specified by using a time/penalty function. In the case of
the function START, a linear function is most appropriate,
since no concrete deadline is available. This means that
penalty continually increases for increased end-to-end delay
between s1 and the conveyor belt.

5.3 Function STOP+LEVER
To specify the timing requirements for this function, the

earliest, optimal, and the latest point in time to stop the con-
veyor belt must be calculated. The optimal point in time

to stop the belt is topt = x2/vavg = 0.167 s after the work
piece reaches light barrier s2. Since on both sides a margin
of m = w−d

2
= 0.1 cm exists between the work piece and the

boundary of the pickup position, the earliest point in time
can be set to tearly = (x2−m)/vmin = 0.157 s = topt−0.01 s,
the latest point in time to tlate = (x2 +m)/vmax = 0.176 s =
topt + 0.009 s. Based on these calculations, an appropriate
delay operator (0.167 s) and an according time/penalty func-
tion can be described. The command to start the lever has
similar characteristics as the START function.

5.4 Function ERROR_DETECTION
Timing requirements of function ERROR DETECTION

can be modeled using a countdown actor. The countdown
is loaded with a value related to the earliest point in time
terr to detect the error and is activated by the start event of
the conveyor belt. terr is derived from the following equation:
terr = (x1+a)/vmin = 6.45 s. The countdown actor is deacti-
vated and reset by an event from sensor s2. If the countdown
expires due to a missing event from sensor s2, the signal is
sent to the error output of the composite actor and to the
conveyor belt control actor to stop the belt. The maximal al-
lowed jitter jerr,max at the belt can be derived from the latest
point in time to stop the belt before the work piece might fall
down: jerr,max = [(x1 + x2 + x3 − a)/vmax]− terr = 4, 27 s.

The complete application is depicted in Figure 7. The
conveyor belt control is a composite actor consisting of one
actuator and one sensor for starting and stopping, respec-
tively. The sensors signal the point in time when the belt
starts/stops moving.

5.5 Summary
Our experiences with the new modeling approach show

that timing requirements are covered in much more detail
than with traditional approaches. In particular, the exis-
tence of different actors (e.g., delays) and attributes (jitter,
minimal sampling rate) and the formal approach force/moti-
vate the developers to clearly specify all timing constraints.
The developer benefits in later phases, since the probabil-
ity of missing requirements with respect to timing is mini-
mized. Furthermore, possible contradicting/overlapping re-
quirements might be found more easily using our approach:

247

in the discussed example, the original plan was to push the
work piece into the pickup position without stopping the
conveyor belt. During specification we discovered that this
requirement was not feasible in the current hardware setup.
An example for overlapping requirements is the accuracy of
s2: the minimal sampling rate of 1.57 Hz, necessary to de-
tect the work pieces properly contributes potential jitter of
0.637 s to all computations triggered by s2. Hence a higher
sampling rate is required to satisfy the jitter requirements
of function STOP+LEVER.

6. CONCLUSION
We presented an approach for model-based specification

of timing requirements. Based on a systematic analysis of
several applications in different domains representing both
hard and soft real-time systems, eight basic requirements
were identified that must be fulfilled by an approach that
can be used during requirement analysis to specify the in-
tended timing of systems. Subsequently, we evaluated ex-
isting approaches with respect to these requirements. In
summary, several important aspects such as the possibil-
ity to specify the allowed jitter at actuators or the required
temporal accuracy of sensors are not covered by existing ap-
proaches. In addition, no metrics are available to evaluate
quantitatively how well a concrete implementation fulfills
the requirements. As a consequence, we suggested the ap-
proach TReqS, based on the concepts of PTIDES and AU-
TOSAR, to overcome these issues. The proposed modeling
language was evaluated in the context of an example from
the automation domain. The main result is a frontloading of
the effort: additional effort is spent to create complete and
non-contradicting requirements. We expect that developers
benefit from this additional effort in the requirements phase
during later phases of development.

As future work, we want to apply the approach in com-
plex use cases together with industry to prove the expected
benefits. Furthermore, we are already working on a semi-
automatic mapping of the models based on TReqS to other
models, e.g., PTIDES, to further speed up the development
process. Finally, we are intending to combine the suggested
approach with timed state machines.

7. REFERENCES
[1] G. A. Agha. Actors: A Model of Concurrent

Computation in Distributed Systems. MIT Press,
Cambridge, MA, 1986.

[2] R. Alur. Timed automata. In CAV’99, pages 8–22.
Springer Verlag, volume 1633 of LNCS, 1999.

[3] T. Amnell, G. Behrmann, J. Bengtsson, P. R.
D’Argenio, A. David, A. Fehnker, T. Hune,
B. Jeannet, K. G. Larsen, M. O. Möller, P. Pettersson,
C. Weise, and W. Yi. UPPAAL – now, next, and
future. In Proceedings of Modelling and Verification of
Parallel Processes (MOVEP’2k), Nantes, France,
pages 99–124, 2000.

[4] J. M. Atlee and J. Gannon. Analysing timing
requirements. In Proceedings of the 1993 ACM
SIGSOFT international symposium on Software
testing and analysis, pages 117–127, 1993.

[5] AUTOSAR Administration. Release 4.0. 2009.
http://www.autosar.org/.

[6] M. Broy. Two sides of structuring multi-functional
software systems: Function hierarchy and component
architecture. In SERA ’07: Proceedings of the 5th
ACIS International Conference on Software
Engineering Research, Management & Applications,
pages 3–12, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] M. Broy and K. Stoelen. Specification and
Development of Interactive Systems. Springer, 2001.

[8] C. G. Cassandras. Discrete event systems: modelling
and performance analysis. Aksen Associates Inc.
Publishers, Homewood, IL and Boston, MA, 1993.

[9] F. Cassez and O.-H. Roux. From time petri nets to
timed automata. Elsevier Science, pages 1–20, 2004.

[10] R. K. Clark. Scheduling Dependent Real-Time
Activities. Dissertation, Carnegie Mellon University,
1990.

[11] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity – the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, Jan. 2003.

[12] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time-triggered language for embedded programming.
Proceedings of the IEEE, 91:84–99, Jan. 2003.

[13] J. James E. Coolahan. Specification of Timing
Requirements for Real-time Systems Using Timed
Petri Nets. Dissertation, University of Maryland,
University of Maryland, USA, 1985.

[14] R. Johansson and M. Graphics. Deliverable D6 –
TADL: Timing augmented description language
version 2. In TIMMO documentation, pages 1–105,
2009. http://www.timmo.org/.

[15] D. K. Kaynar, N. Lynch, R. Segala, and
F. Vaandrager. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time
systems. In IEEE RTSS 2003, pages 1–12, 2003.

[16] H. Kopetz. Real-Time Systems – Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 1997.

[17] E. A. Lee. Modeling concurrent real-time processes
using discrete events. In Annals of Software
Engineering, volume 7, pages 25–45, 1999.

[18] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin.
Actor-oriented design of embedded hardware and
software systems. Journal of Circuits, Systems, and
Computers, 12(3):231–260, 2003.

[19] H. K. Lee, W. J. Lee, H. S. Chae, and Y. R. Kwon.
Specification and analysis of timing requirements for
real-time systems in the CBD approach. Real-Time
Systems, 36(1-2):135–158, 2007.

[20] OMG MARTE Group. A UML profile for MARTE:
Modeling and analysis of real-time embedded systems,
beta 2 (convenience document with change bars). In
OMG MARTE documentation, pages 1–676, 2008.

[21] J. A. Stankovic. Misconceptions about real-time
computing: A serious problem for next-generation
systems. Computer, 21(10):10–19, 1988.

[22] Y. Zhao, E. A. Lee, and J. Liu. A programming model
for time-synchronized distributed real-time systems. In
Real-Time and Embedded Technology and Applications
Symposium (RTAS), Bellevue, WA, USA, 2007. IEEE.

248

