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Abstract— This paper presents a novel approach for reac-
tive obstacle avoidance for static and dynamic objects using
monocular image sequences. A sparse motion field is calculated
by tracking point features using the Kanade-Lucas-Tomasi
method. The rotational component of this sparse optical flow
due to ego motion of the camera is compensated using motion
parameters estimated directly from the images. A robust
method for detection of static and dynamic objects in the
scene is applied to identify collision candidates. The approach
operates entirely in the image space of a monocular camera
and does not require any extrinsic information about the
configuration of the sensor or speed of the camera. The system
prioritizes the detected collision candidates by their time to
collision. Additionally, the spatial distribution of the candidates
is calculated for non-degenerated conditions.

We present the mathematical framework and the experi-
mental validation of the suggested approach on simulated and
real-world data.

I. INTRODUCTION
An elementary task in autonomous vehicles from small

flying robots to large robot cars [1] is collision avoidance.
This task requires a fast response time and robustness in
detection even in cases where calibration of the system
changed due to external factors like vibrations. Because of
these requirements, this task usually does not rely on data
abstraction but tries to couple the response directly to a
sensor input like, e.g., a bumper response. It is desirable
to detect collision ahead of time using the existing sensors
on the system. The sensors can be subdivided in active and
passive sensors. Active sensors rely on active illumination
of the scene and are usually able to detect directly the
3D position and motion parameters of obstacles. The active
illumination results in a higher power consumption of the
sensor, limited sensing range, and a possible cross-talk
between multiple sensors operating in the same environment.
Examples of such active sensors in automotive area are radar
and lidar systems [2], [3]. On the other hand, passive sensors
rely on the ambient light of the scene. They require some
additional processing of the sensed light to recover the 3D
information. A typical sensor system in this domain is a
binocular camera system [4], in which the information of two
cameras is combined to 3D data using extrinsic calibration
parameters of the system. This additional step makes the
system usually more computationally expensive and sensitive
to possible changes in the calibration.
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Fig. 1. Optical flow in monocular image sequences is used to detect and
avoid obstacles on the RoMo vehicle.

Brooks introduced a task based hierarchical scheme for
autonomous robots in [5] in 1986. The sensor information
can be coupled to the actuators at different abstaction levels.
While for planning tasks an abstraction of the raw sensor
information to three-dimensional information with object la-
bels is desireable, the collision task at hand needs to react fast
and work reliable even under difficult conditions. We decided
to derive the collision information directly from the raw
sensor data. We address the problem of the robustness and
complexity of passive approaches by computing the collision
data directly from the image data of a monocular sequence.
This significantly reduces the dependency on the failure-
prone extrinsic calibration of the system, which may result
wrong collision estimates. The proposed system (Fig. 1) is
used on the robot car RoMo from the German Aerospace
Center.

Algorithms interpreting visual motion for obstacle avoid-
ance are definitely settled at the lowest level of the autonomy
scheme as sensor data leads directly to actions. A comparison
of different methods for measuring the time to contact can
be found in [6]. All algorithms have in common that a single
camera is the only required sensor.

Optical flow is the motion of image points over succeeding
images. Popular gradient based techniques were introduced
by Lucas and Kanade [7] and Horn and Schunck [8] in 1981.
A first comparison and performance evaluation of those
early optical flow techniques can be found in [9]. In recent
years there have been a number of improvements to the
known optical flow algorithm in order to deal with problems
like the preservation of discontinuities [10], occlusions [11],
and respecting motion boundaries [12]. For an increased
robustness in urban areas the fusion of the optical flow from
a standard camera with the flow from an infrared camera is
suggested in [13]. An alternative to dense optical flow are
feature based techniques. They need less computational time

2013 IEEE Intelligent Vehicles Symposium (IV)
June 23-26, 2013, Gold Coast, Australia

978-1-4673-2754-1/13/$31.00 ©2013 IEEE 1052



and have no aperture problem [14].
Nelson proposed a method in [15] and verified it with

basic obstacle detection tests to make use of the flow
field divergence for obstacle avoidance. Since then, different
techniques have been developed to interpret the optical flow
to provide collision free movements of autonomous mobile
robots on a low-level.

There exist multiple approaches how to calculate the depth
information from the optical flow. The results are similar
to stereo vision, but with the use of only one camera.
The scheme described in [16] determines the direction of
movement based on a depth histogram. In [17], a depth map
generated by optical flow is compared to maps from sonar
and laser data. The depths from motion algorithm perform
slightly worse than the lidar results. In [18] the idea of
estimating obstacles from the current flow field by a neural
network is proposed.

Early real time approaches were balancing peripheral
flows, while perceiving centrally located obstacles by cal-
culating the time to contact for image motions around the
center. A mobile robot in [19] was able to move in a static
environment collision free for up to 20 minutes with an
average speed of 30 cm/s. Simple strategies were necessary
due to very limited computational power. Some approaches
use a higher resolution at the center region than at peripheral
regions [20][21]. Hence, the input data is reduced without the
loss of necessary information.

Our approach is developed for ground based vehicles
equipped with standard PCs. Hence, more information from
the optical flow can be extracted to execute new reactive
strategies.

Typical problems when using optical flow for collision
avoidance are for example camera rotations between succes-
sive frames [19], large objects like walls, and dynamic obsta-
cles. One possible solution for the rotation compensation is
the use of an additional sensor like an inertial measurement
unit [22]. The method proposed in this paper eliminates the
rotation of the camera by a Zinf ego-motion estimation [23].
Large objects do not have to be treated specially by our
segmentation and we explicitly consider moving obstacles
comparing their measured flow to the flow expected from
ego-motion.

A remaining shortcoming of the optical flow is the re-
quirement of a minimum motion. The signal to noise ratio
gets useless at slow motions. The combination of the optical
flow with stereo vision [24] solves this problem. While a
binocular system due to its limited distance between the
cameras is not able to reconstruct correctly information at
larger distances, it is a perfect system to navigate in parking
scenarios. At higher speeds, when larger sensing distance
is required, optical flow approaches can seemlessly provide
the necessary information. This requires a pair of calibrated
cameras. Very good results in detecting obstacles and their
respective speeds can be achieved in this way [4].

The remainder of this paper is organized as follows: In
Section 2, the calculation of the used optical flow and
the representation of the gained information is described.

Section 3 shows the calculation of the time to collision and
proposes a reactive strategy based on that data. First results
derived from simulation and testing are reported in Section 4.
We conclude in Section 5 with a summary of the achieved
results and sketch our future work in that field.

II. CLUSTERING OF OBJECT CANDIDATES IN THE
OPTICAL FLOW

Fig. 2. The green lines in the image show the combined motion of the points
in the image due to rotation and translation of the camera, the blue lines is
the resulting image motion, after the rotation of the camera is compensated
in the vector field.

Calculation of a dense optical flow results in a large
computational effort as the relative motion of every pixel
in the image is estimated. This calculation is based on
uniqueness of the pixel neighborhood in a local area that
allows a correct estimation of its image motion. The flow
determination in parts of the image with weak or no trackable
features is not unique and results often in errors. Therefore,
we focus on sparse optical flow in this work. Only points
with multiple gradient directions in the local area are tracked
by the Kanade-Lucas-Tomasi method [25]. We are interested
in invariant points representing object boundaries or texture
on the surfaces. Shadow casts are also useful candidates
since they are static in the time span of the measurement.
The possibility of omitting poorly textured objects exists, but
most of the objects in the real world have sufficient contrasts.
The resulting motion in the image position is a result of a
rotation and translation of the camera relative to the imaged
surface (Fig. 2).

After the flow vectors are calculated a rotation compensa-
tion is executed. The flow vectors should point now to the
epipole E, which is the direction of the camera’s motion (see
Figure 2 and 3). Image points of objects that are located in
the real world near to the camera have longer vectors than
distant points. In case of dynamic scenes, we observe multi-
ple relative camera to surface motions with different epipoles.
Static obstacles are characterized by vectors pointing to the
epipole of the background but having a larger magnitude than
expected. An object above the ground is closer to the camera
than the ground plane itself and therefore creates a longer
flow vector.

In order to outline regions with similar attributes a clus-
tering can be run on the flow field [26]. In this work regions
of distorted vectors are clustered by a local search. An
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Fig. 3. The intersection point E of the translational optical flow defines
the direction of the camera motion.

object is characterized by vectors with a common intersection
respectively the object’s epipole Eo. A description of the
calculation can be found in [23]. The difference here is that
the epipole determination is executed iteratively until the
clustering of the entire vector field is finished.

The distinction if an object is dynamic and on a collision
course can be made from the relative position of the epipole
as will be explained in the next section. A bounding box
is laid around the feature points of a cluster. If the epipole
of that cluster lies inside the bounding box, a collision is
imminent.

At least 8 vectors are necessary to calculate a rotation of
an object using the standard 8-point algorithm based on the
decomposition of the Essential Matrix, but only two vectors
are sufficient to determine a relative translation of the object.
For objects having less than 8 corresponding points, we
neglect the rotation (which cannot be estimated correctly for
such small objects anyway) and calculate just the translation
parameters.

A special case occurs if the obstacle is moving in the same
direction as the camera so that the epipole of the obstacle
Eo and the global epipole E are not distinguishable from
each other. Flow vectors belonging to the dynamic obstacle
can only be specified by their length.

By utilizing the epipole based clustering it is now possible
to calculate the time to collisions for the different obsta-
cles. In contrast to former methods [6] [17], we make no
assumptions regarding the motion or depth. In some cases,
it is also possible to determine the three-dimensional motion
vector (from one camera) by utilizing structure from motion
principles.

III. ESTIMATION OF THE TIME TO COLLISION

After objects are extracted from the optical flow and their
epipoles are determined, the respective time to collision
for every object is calculated. Here we distinguish between
objects with an arbitrary trajectory and a special case where

an object has a crossing trajectory. A general discussion of
the detection limits of moving objects using correspondences
over succeeding frames can be found in [27].

A. Objects with a crossing trajectory

If the epipole of an optical flow object is not in a defined
region around the global epipole, the time to collision can
be calculated concurrently with additional information about
the depths in the scene. For a colliding object, its epipole
is seen under a constant angle α in all images. An analogy
from sailing is used here. If a point on the other ship is seen
under a constant angle, a collision is imminent. Figure 4
illustrates this situation, whereas α is the constant angle
to the Epipole Eo of a dynamic obstacle. The real motion
direction ~̃vo cannot be observed directly, as only the motion
direction parallel to the image plane ~̃vxo is observable. Using
the geometric principle of the constant angle α the following
formula can be derived:

~vxo = tanα · ~vc (1)

~vc

~vxo

α

α

α

~̃no ~nxo

Eo

C
x

z

y

Fig. 4. Epipole seen under a constant angle

~vxo is the horizontal motion between two sequential images
and ~vc is the velocity of the camera respectively of the
vehicle.
If the vehicle’s speed is unknown, we can set ~vc = 1.
This artifical unit represents ’camera speed’. In that case, all
speeds and, therefore, all distances will be known relatively
up to a scale. This is valid because we calculate the velocity
profiles for just 2 image frames and do not propagate the
information over the sequence.

Since the camera and the colliding obstacle are both
moving, a relative motion ~vo is observed by the camera:

~T = ~vo = −~vc + ~̃vo (2)

Considering the camera as stationary, the epipole will ap-
proach the camera with ~vo along a vector with the same
direction as Eo. The length λ is the distance to the object
in the world (Fig. 5). The magnitude of ~T is the distance
covered between two sequential images and hence:

∆λ = |~T |

The angle α between the optical center of the camera and the
line of epipoles can be estimated from the image projection
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Fig. 5. Epipole seen under a constant angle

of the epipole. Hence, the following equation can be solved
directly:

∆λ =
~vxo

sinα
(3)

At this point, the absolute distance λ to the epipole Eo is
unknown yet. This information can be derived by applying
a structure from motion approach to points of the moving
object in a distance from the epipole. The movement of all
features is known from the optical flow. Their position in at
least two sequential scenes can be used to estimate the λ.
The translation ~T 1

2 of a feature from point P1 to point P2 is
known from (2), as we assume rigid bodies. The direction
vectors ~n1 and ~n2 can be extracted from the projections in
respective images. Combining this information, the structure
from motion equation (4) can be solved to get the distance
λ1,2 to a point in images 1 and 2.(

λ1

λ2

)
=

(
~n2 − ~n1

)+ · ~T 1
2 (4)

The + stands for the Moore–Penrose pseudoinverse.
This equation degenerates for the epipole, as Eo remains sta-
tionary in the image plane and n1 and n2 are identical.Hence,
the distance to the collision point can not be calculated
directly. In order to get a more robust result the depth of
all features of a cluster should be calculated and averaged to
receive λ. This is a good estimation but the quality decreases
the nearer an object gets.
The time to collision can now be calculated as follows:

TTC =
λ

∆λ
·∆t (5)

If the time between two images is known, TTC is expressible
in seconds. If the frame-rate is unknown, ∆ can be set to 1
and TTC is denoted in frames. The described method has the
neat advantage that it provides additional depth information
of the scene. The time to collision of all crossing objects
is calculated concurrently with information about their
distances. Those values can be meters if the camera speed
is known, otherwise they are expressed up to scale.

B. Objects with an arbitrary trajectory

The method described above only holds for obstacles on a
crossing collision course. It can be seen in (3) that the TTC

of an object moving in the same direction as the camera
cannot be calculated.
Figure 6 depicts an obstacle moving towards the camera.
This is again a relative motion as in Figure 5. The epipole
Eo is always seen under a constant angle since it moves
along a single ray. Other feature points, e.g. in distance h to
Eo, change their angles over different images.
Figure 7 examines this scene from a different perspective.
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Fig. 6. Relative obstacle-point motion
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Fig. 7. TTC calculation by observing the distance P̄E

The following relations are obtained from similar triangles
relations in Fig. 7:

a

n
=
h

λ
(6)

b

n
=

h

λ−∆λ
(7)

The projection of the distance h from a feature P to the
epipole E is called a for the distance λ to object. After the
object moved by the distance ∆λ, h is mapped to b, whereas
n is the distance from the camera center to the projection of
the epipole. Both equations can be combined to (8) with the
nice effect that n and h cancel out. Hence, the equation does
not require neither knowledge of intrinsic camera parameters
nor any metric information.

λ

∆λ
=

b

b− a
(8)

If the frame-rate is known then TTC = λ
∆λ · ∆t can be

expressed in seconds.
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This approach is similar to the method proposed in [6], but
due to the clustering of the flow vectors no size and shape
estimation of the objects is necessary.
Compared to the method for crossing obstacles the epipole-
distance-approach has the advantages of a simple calcula-
tion and general validity, but lacks information about the
distances to the obstacles.

The knowledge of the TTC of all obstacles and their
respective motion directions ~no could be used as base for a
reactive obstacle avoidance strategy for ground-based mobile
robots.

IV. EXPERIMENTAL RESULTS

The collision detection system was verified on a Pentium
i5 computer system running Linux OS. The system was used
with two types of features as input data for the collision
detection. It was able to run with 30fps using a Kanade-
Lukas-Tracker (KLT) for ego-motion estimation and 8fps
using SURF features to establish correspondences between
images of the monocular sequence.

A. Evaluation of the Collision Detection

First, we test how different collision scenarios are repre-
sented in the sparse optical flow data. We simulated in Fig. 8
three situations, where the possible collision candidate is too
slow (green), colliding (red), or too fast in the intersection
scenario. We see that for each of the cases there exists
a point, where the flow vectors of each of the obstacles
intersect. It is important to observe that for the case that
the camera reaches the collision point faster than the vehicle
(green case), the intersection point (epipole) of the object
is outside of the object boundaries on the same side as
the the motion epipole of the background (in this case,
the motion of the camera is along the optical axis and the
motion epipole of the background is the image center). The
intuitive explanation is that the epipole is the position of
the camera in the plane parallel to the image plane, when
it reaches the plane containing the corresponding physical
point on the colliding object. For the case that the object
reaches the intersection point first (blue case) the epipole
is outside of the object on the opposite side to the motion
epipole of the camera. The camera will pass the plane of
the object trajectory ”behind” the object. The crucial case is
the red configuration, where the optical flow vectors of the
object intersect within the surface of the object. In that case,
the camera will collide with the surface of the object. The
collision happens if the optical flow vectors point outwards
from the epipole and intersect within the object. All three
cases start at the same object-to-camera position end expand
from there.

A result of our rotation compensation on the optical flow
field is depicted in Fig. 2. The sparse optical flow being a
result from a KLT tracker here (green lines) is compensated
for rotation in this image. The resulting flow vectors (blue)
intersect all in one point as predicted in Fig. 3.

The clustering and the evaluation of the time to collision
is based entirely on image information without any addi-

vC = 3ms

ROboMObil

vo = 3ms

vo = 1ms
vo = 2ms

Obstacle

Motion of the Epipoles

Epipole3 Epipole1

Epipole2

Obstacle Feature Point

Fig. 8. Simulation of the feature motion for three intersecting trajectories.

tional information about calibration parameters or motion
of the camera. This allows to evaluate arbitrary monocular
sequences (even from the Internet) for collisions if the
motion of the camera was a pure translation in this sequence.
We tested the system on sequences of collision movies.
A segmentation result for an exemplary collision scene is
depicted in Fig. 9.

Fig. 9. Clusters in the collision scene grouped based on common
intersection point (epipole)

We see an urban intersection scene where just a collision
between the white and the blue car happened. The system
segmented 5 independent motion components with detectable
changes compared to the background. It can be seen in Fig. 9
that only the white car in front of the own vehicle has an
epipole within the point cluster defining the vector field. The
detected vector field is magnified in Fig. 10.

We can see in Fig. 10 that the flow defined from red to
green circles in the image is moving away from the computed
epipole (the red ”x” in the image). This is the required
indication for a collision for the case that the epipole is
within the cluster of points from which it was calculated.

We see that the explosion field in Fig. 10 along the
vehicle has a with the distance increasing length. Here we
used SURF [28] features for feature matching. Some of the
features were not matched correctly. These outliers can be
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Fig. 10. Magnified distribution of optical flow vectors on a collision
candidate.

Fig. 11. Easy detection of independent motion clusters.

filtered based on the distance of their supporting line to the
estimated epipole. From the motion of the features (distance
between the red and the green circle) and its distance to
the epipole, we have estimated the TTC to 15 steps. We
calculated the vectors between every 6th image to obtain
longer vectors. This means that after 90 frames our camera
would collide with the object in the intersection.

Fig. 11 depicts a detection of independent motion clusters
in the scene represented by the three cars in front of the
camera. The camera attached to a vehicle was moving
towards the center line at this point.

Fig. 12. Closeup depicting the direction of the clustered flow vectors
(motion red to green).

We see in Fig. 12 that although the motion components in
optical flow (especially for the left most car) are significant,
no danger for the own vehicle exists. All the epipoles are
outside of the clustered points and the obstacles move way
from the motion epipole of the own car which is around
the 4th car in the scene in the center of the image. This
simple processing provides an easy way to deal with complex
dynamic scenes, where many possible collisions may occur.
Just objects with epipoles within the cluster have to be

prioritized for planning based on their TTC value. The
objects with shorter times represent a higher danger in the
scene.

B. Evaluation of Time to Collision Estimation - TTC

We have already shown in case of Fig. 10 how the TTC
estimation works. For the case that the epipole is withing the
cluster, we need to estimate the ratio of the change in the
radial length ∆λ to the absolute distance to the epipole λ to
estimate the time. We validate the estimation of the time-to-
collision based on (8) on all features in Fig. 8. All of them
result in an identical plot depicted in Fig. 13.

Fig. 13. Estimates of time-to-collision using (8) for any of the features (red
case) in Fig. 8. We plotted the expected number of frames until collision
along the y-axis and the frame index along x.

It is an interesting special case that if we follow another
vehicle and travel into exactly the same direction and are
able to track on optical flow, the denominator of (8) will go
to zero indicating an infinite time until collision.

V. CONCLUSIONS AND FUTURE WORK

This paper has introduced a novel approach for the
prediction of collision candidates by interpreting objects
derived from optical flow. Dynamic obstacles are explicitly
considered. Neither assumptions about the movement of
dynamic objects are made nor their shape and size has
to be estimated. For crossing objects the motion vector is
calculated not in the two-dimensional image space but in
three-dimensional Cartesian coordinates. This is possible
by utilizing structure from motion methods. Additionally,
the computational effort is limited through clustering
disturbed regions in the optical flow field. Uncertainties
and possible error sources are mutually eliminated over
different processing steps. Only information derived from
images is used. An intrinsic calibration for the camera is
only necessary for estimating rotations.
An open issue is the clustering of objects that move in the
same direction as the camera. A solution may be to analyze
the length of flow vectors pointing to the global epipole.

The next step will be the implementation and evaluation of
the reactive collision scheme on our robotic electric vehicle
ROMO [1]. Additionally, the integration in a complex
scheme for autonomous mobile robots as introduced by
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Brooks [5] is an open topic. Since the proposed algorithm is
settled on the lowest level of such an autonomy architecture,
it will have to run concurrently and supportively with higher
path planning algorithms.
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