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Abstract

This thesis presents a novel vision-based control system for industrial manipulators.

The system is composed of a 6 DOF manipulator coupled with a stereo vision system

using the eye-to-hand configuration. The robot is controlled using an uncalibrated

visual servoing (VS) approach that addresses the challenges of choosing proper image

features and designing a VS controller to enhance the tracking performance. The

primary contribution of this thesis is the development of a new 6D visual servoing

system and its integration into real-world scenarios. The proposed system consists

of 2 parts: a visual servoing system based on a novel stereo camera model employing

virtual orthogonal cameras to create a new virtual visual space, and a prioritized

multi-constraints control framework where multiple constraints from the robot’s

structure and the external environment need to be simultaneously controlled while

accomplishing the robot’s main task.

In this work, a 6D pixel pose vector is extracted in the new virtual visual space.

It represents the image positions as 6 linearly independent and orthogonal features,

which are used as inputs for visual servoing instead of the classical visual features.

The proposed new feature vector has good decoupling and linearizing properties,

leading to a full-rank image Jacobian which allows avoiding classical problems, such

as image space singularities and local minima. Moreover, simulation results with

an eye-to-hand robotic system confirm the improvement in controller stability and

motion performance with respect to classical visual servoing approaches. Further,

by integrating the VS system with environment and robot model constraints in real

world applications, we demonstrate that this work can be easily and safely integrated

into a variety of robotic systems involving human-robot interaction.





Zusammenfassung

Diese Arbeit präsentiert ein neuartiges und robustes System zur bildgestützten

Steuerung von industriellen Manipulatoren. Das System besteht aus einem Mani-

pulator mit 6 Freiheitsgraden und einem Stereo-Kamera-System in einer Auge-zu-

Hand-Konfiguration. Der Roboter wird durch einen unkalibrierten Visual Servoing

Ansatz gesteuert, der sich mit der Herausforderung befasst, geeignete Bildmerkmale

auszuwählen und die Performanz der Auswertung zu verbessern. Der primäre Bei-

trag dieser Arbeit ist die Entwicklung eines neuen 6-dimensionalen Visual Servoing

Systems und seiner Integration in anwendungsnahen Szenarien. Das vorgestellte

System besteht aus 2 Teilen: einem Visual Servoing System, welches auf einem neu-

artigen Stereo-Kamera-Modell basiert, das virtuell-orthogonale Kameras verwendet

um einen virtuellen Bildraum zu beschreiben, und einer priorisierenden Roboter-

steuerung, die während der Ausführung der Hauptaufgabe mehrere Nebenbedin-

gungen berücksichtigt, welche aus dem Aufbau des Roboters und seiner Umgebung

abgeleitet werden.

Anstelle von klassischen Bildmerkmalen wird in dieser Arbeit ein 6D-Lagevektor im

neuen virtuellen Bildraum extrahiert und als Merkmal für den Visual Servoing An-

satz genutzt. Jede Komponente des Lagevektors ist orthogonal und unabhängig und

weist gute Entkoppelungs- und Linearisierungseigenschaften auf. Dies führt zu einer

Bild-Jakobischen mit vollem Rang, die klassische Probleme, wie z.B. Singularitäten

im Bildraum oder lokale Minima, umgeht. Zudem zeigen Simulationsergebnisse mit

einem Auge-zu-Hand-Robotersystem, dass die Stabilität der Steuerung und die Be-

wegungsperformanz im Vergleich zu klassischen Visual Servoing Ansätzen verbessert

wird. Durch die Integration des Visual Servoing Systems, unter Berücksichtigung

von Umgebungs- und Robotereinschränkungen, wird gezeigt, dass die Ergebnisse

dieser Arbeit leicht in eine Vielzahl bestehender Robotersysteme und Anwendungen

übertragen werden können.
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Eberl and Ute Lomp for their support and co-operation in all administrative tasks.

In addition I would also like to thank them for creating a healthy and friendly work

environment.

Special thanks to my mentors, Dr. Suraj Nair and Dr. Emmanuel Dean with whom

I have been working on the research topics. A special thanks to Dr. Suraj Nair,

Nikhil Somani and Alexander Perzylo for proof reading the thesis. Finally, I would

like to thank my friends and family, especially my parents, for the constant support

and encouragement during the work on this thesis.





Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art of Visual Servoing 9

2.1 Visual Servoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Camera-robot Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Selection of Visual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Geometric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Photometric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Velocity Field Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Error Functions in Visual Servoing . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Cartesian Space Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Joint Space Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Interaction Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Visual Servoing Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Enhanced Visual Servoing Approaches . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Dynamic Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Problems in Visual Servoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Local Minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



CONTENTS

2.6.3 Feature Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Performance and Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Robot Modeling 27

3.1 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 3DOF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 6DOF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Inverse Position: A Geometric Approach . . . . . . . . . . . . . . . . . . . 32

3.2.2 Inverse Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Summary of Inverse Kinematics of StäubliTX90 . . . . . . . . . . . . . . 35
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Chapter 1

Introduction

In the quest for creating robust, precise and flexible robotic systems, significant efforts have

been dedicated in ongoing robotic research towards the optimal use of sensors. Sensor-based

approaches have proven especially useful in dealing with unstructured environments. Sensors

extract information about the robot’s interaction with the environment. This information can

be incorporated in the robot’s control loop to modify/adapt its behavior accordingly.

Several sensors have been developed over the past years to fit the requirements of diverse

tasks, which have improved the performance of robots to a large extent. The most common

sensors in robotics are force sensors, range finders, tactile sensors and vision sensors. Among

these, vision sensors (e.g. camera) are the most popular, since visual sensors mimic the human

sense of vision, and allow for contact-less measurement of the environment. This idea is moti-

vated by the observation that humans and animals use primarily their visual perception to be

able to interact with the environment.

Using a vision-based control system, a robot can perceive and react in complex and unpre-

dictable surroundings. Many different approaches, adaptations and improvements for vision-

based control have been developed over decades of research. The accuracy of the conventional

’look-then-move’ approaches depend directly on the accuracy of the visual sensor and the robot

manipulator. An alternative for increasing the accuracy of these sub-systems is to use a visual-

feedback control loop which increases overall the accuracy of the system. Machine vision can

provide closed-loop position control for a robot end-effector − this is referred to as visual ser-

voing (VS).

Visual servoing is a technique for robot control, where visual feedback is used to close the

robot control loop in order to increase the system accuracy. It is the fusion of results from

many elemental areas including computer vision, kinematics and dynamics, control theory and
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Visual Servoing Control Law

Error       of Image Jacobian

Inverse Jacobian

Update robot Joint Positions

Image Features

Figure 1.1: Vision-based control law.

optimization techniques. It can be used in many different domains, such as industrial, health-

care, service, space, etc. Visual servoing is an effective tool for handling the unstructured

environments that are common for field and service robots. It also provides the potential to

relax the mechanical accuracy and stiffness requirements for robot mechanisms and hence reduce

their cost. The deficiencies of the mechanism would be compensated for by a vision sensor and

feedback so as to achieve the desired accuracy.

A robotic task in visual servoing is specified in terms of image features extracted from a

target object and their use for controlling the robot/camera motion through the scene (Fig. 1.1).

Therefore, there is a large collection of research concerning the robustness with respect to

selected features, structure of the employed control scheme, existence of errors and uncertainty

in robot or camera calibration, and errors and uncertainty in input signals and in the object

model. A vision sensor provides a large spectrum of potential visual features. It is possible to

design visual servoing using both 2D features, such as the coordinates of points on the image,

and 3D features, e.g. Cartesian pose. Based on the combinations of the choice of feature

selection and control scheme, different behaviors can be obtained by the robot system. This

wide range of possibilities is the reason behind the major difficulty in visual servoing, that is,

to optimally build, select and design the visual data needed and the control scheme used for

obtaining a suitable behavior of the system.

Using vision in robot control makes it possible to solve different problems based on the

sensory visual data without any contact with the environment. However, some issues should be

considered when vision sensors are used within robot system. These issues include designing

maximal decoupled visual features, keeping features in the camera field of view at all times, and

occlusion avoidance. The link between the visual features and the robot degrees of freedom,

i.e., the interaction matrix (from vision to action), should ensure avoidance of singularities and

local minima. The robot controller should ensure reliable convergence, global stability and

robustness towards different types of noise.
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Figure 1.2: Thesis scope: problem domains and contributions.

1.1 Motivations

Visual servoing is a technology relevant for nearly all robotic systems that perform positioning

and interaction tasks, and can be used for a wide variety of applications and on different robotic

platforms, including industrial manipulators, mobile robots, medical robots, and humanoid

robots (see Fig. 1.2). It involves working with different spaces in order to acquire the input

signal, and transform a motion from one space to another in order to perform the required

tasks. Visual servoing is a classical research problem in robotics, and encounters different sorts

of problems: local minima, image singularities and loss of features from the camera field of view,
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etc. (Fig. 1.2). The most effective methods for tackling these issues involve selecting the feature

sets or modeling better suited control schemes. This motivates the research in extracting new

image features and modeling new visual servoing control schemes.

In order to use such visual servoing approaches in realistic applications, especially those in-

volving human-robot interaction, the system must incorporate additional constraints/requirements

arising from the robot or its environment. These requirements can be modeled using constraint-

based approaches, also known as constrained problems. The most frequently used method

to define a reactive control task is to apply artificial attractive or repulsive potential fields

and to use their gradients as control inputs τ . There are also approaches that model such

tasks/restrictions in terms of their geometric properties. The control inputs from each task/constraint

can also be combined using null-space projections. These types of problems form the motivation

for the presented work.

1.2 Contributions

Image measurements are either used directly in the control loop or used for relative pose esti-

mation of a workpiece with respect to a camera. The number of degrees of freedom (DOF) to

be controlled by the employed control scheme determines the minimum number of independent

features required. Therefore, it is desirable to choose features which are maximally decoupled,

and at the same time facilitate a linear relation to the controlled degrees of freedom. Our

contributions are algorithms and models for selecting such visual features for visual servoing

system in oder to control robot.

The first and main contribution of this thesis is that we design six independent and orthog-

onal visual features, such that the corresponding interaction matrix (image Jacobian) has a

maximal decoupled structure, without any image singularities. These new features improve the

robustness and the stability of the system. Also, when redundant image point coordinates are

used, the resulting coupled features might potentially lead to unstable or erratic robot motions.

Hence, we propose the use of six independent image features to control 6D pose of the robot

end-effector, in order to avoid such problems.

The second major contribution of this work is a control framework for industrial robots,

that is necessary for integration of our visual servoing approaches in real-world applications

involving human-robot interaction. In this framework, multiple tasks (expressed as constraints,

e.g. desired operational positions and/or contact forces) with different priorities, along with

limitations arising from the environment (e.g. obstacle avoidance) and robot model (e.g. joint
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limits), can be simultaneously controlled. The tasks/constraints are modeled using geomet-

ric constraints or artificial potential fields. The combination of different constraints can be

performed via direct composition of torques or using null-space projections.

1.3 Thesis Outline

Chapter 2
State of the art 

in visual servoing

Chapter 1
Introduction

Chapter 3
Robot Modeling

Chapter 4
Camera models for 
occlusion avoidance

Chapter 5
6D Image-based 
visual servoing

Chapter 6
Comparision of 
visual servoing

Chapter 7
Experiments 

and Applications

Chapter 9
Conclusion

Chapter 8
Prioritized 

Multi-task Control

Figure 1.3: Thesis structure.

The thesis is written in two parts after the introductory chapter (see Fig. 1.3). The first part

focuses on the design of new image features for visual servoing, (described in chapters 2 through

6). It presents a method to determine the analytical form of the interaction matrix related to

these new image features, which is used to design a new 6D visual servoing. The merits of the

proposed method vis-à-vis other classical schemes are validated in simulation. The second part

of this thesis (chapters 7 and 8) focuses on the control framework to model the environment

and task constraints that are necessary to safely integrate the proposed visual servoing into

a human-robot interaction scenario. Finally, a summary of this work, the conclusions and

directions for future work are presented in chapter 9. The details of the subsequent chapters

are listed below.
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• Chapter 2: State of the art of Visual Servoing. In this chapter, state of the art of

visual servoing in terms of the used visual features, control schemes and problems that

could appear is presented.

• Chapter 3: Robot Modeling. The kinematics and dynamics model of the industrial

manipulator StäubliTX90 are presented in this chapter, which will be used in this thesis.

• Chapter 4: Camera Models for Occlusion Avoidance. In this chapter, two different

solutions are provided for the visual occlusion problem in PBVS (e.g. out of camera field

of view, visual occlusion by environments). Two different camera models are presented

in these solutions to obtain the 3D Cartesian position for the objects. The properties

of both camera models are validated on a real industrial robot. The proposed camera

models are integrated in a human-robot interaction scenario with dynamics environment

constraints using virtual impedance control [1].

• Chapter 5: 6D Visual Servoing (6DVS). This chapter focuses on novel image features

for VS, where a 6D pixel pose vector is extracted from the visual information provided

by two uncalibrated stereo cameras. This 6D pose vector represents the image positions

as six orthogonal and independent signals, which are used as inputs for visual servoing

instead of the classical visual features. A 6×6 image Jacobian is generated by using these

new visual features, which allows to avoid local minima and image singularities, which

are common problems in IBVS. Then a new visual servoing scheme, 6DVS, with better

performance and properties is proposed. This chapter is the main contribution of the

thesis, and its content is also presented in our publications [2, 3, 4].

• Chapter 6: Comparison. In this chapter, we compare the proposed 6D visual servoing

(6DVS) with classical visual servoing methods (IBVS, PBVS and HYVS). Several stan-

dard tests are used to evaluate and compare the approaches in terms of steady state errors,

transient systems performance, robustness to uncertainties and decoupling of controlled

signals. The results of the evaluation prove the novel properties and better performance

of the proposed 6DVS with respect to conventional VS approaches. The evaluation results

are published in the paper [5].

• Chapter 7: Experiments and real Applications. In this chapter, experiments are

performed to evaluate the proposed scheme on a standard industrial robot in a realistic

human-robot interaction (HRI) scenario. In real experiments, a framework integrating
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the proposed 6DVS with environment constraints [3, 4] is introduced for addressing safety

issues of interaction tasks. Several constraints such as avoidance of robot singularities and

collisions are integrated in this framework.

• Chapter 8: Constrained Problems. In this chapter, a prioritized, multi-task control

framework is presented, that can realize force-based tasks in systems for industrial robots.

In this framework, multiple tasks and constraints can be simultaneously controlled, and

different priorities for tasks are accomplished through null-space projections [6]. Finally

the proposed framework is evaluated for several typical industrial robotics applications

like grasping, welding, erasing and peg-in-hole.
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Chapter 2

State of the art of Visual
Servoing

2.1 Visual Servoing

Visual servoing (VS) or vision-guided servoing refers to the use of vision in the low-level feedback

loop of a robotic controller. Fast image processing is employed to provide reactive control

behavior [7, 8, 9, 10, 11]. The task of visual servoing for robotic manipulators is to control

the pose of the robot’s end-effector relative to either a world coordinate frame or an object

being manipulated, using real-time visual features extracted from the image [12, 13]. The error

function (or task function) in visual servoing is defined as an error of the current visual features

and the desired features [12, 13]. The aim of all vision-based control schemes is to regulate

this error e(t) and drive it to zero. Single or multiple cameras can be used to obtain visual

information from a target in order to control a robot [14, 7, 13, 9, 15].

According to the features (s) used as feedback in minimizing the positioning error, VS is

classified into Position-based Visual Servoing, Image-based Visual Servoing [16, 7, 9, 10, 11] and

Hybrid Visual Servoing (e.g. 2-1/2D VS [17]). In Position-based servoing (PBVS or 3D VS),

features are extracted from the image and used in conjunction with a geometric model of the

target and the known camera model to estimate the relative 3D Cartesian pose of the target

with respect to the camera. Feedback is computed by reducing errors in the estimated pose

space [18, 19]. In image-based visual servoing (IBVS or 2D VS), the error is directly computed

in terms of features expressed in image space [7, 20, 12]. Two aspects have the most significant

impact on the behavior of any visual servoing scheme: the selection of visual features used as

input of the control law, and the designed form of the control scheme. On one hand, the same

feature set gives different behavior when employed in different control schemes and on the other
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hand, the same control law gives different behavior when used with different feature sets [21].

The behavior obtained with combinations of these choices is often not as desired: selecting a

specific feature set or a specific control scheme may lead to some stability and convergence

problems. In the remainder of this chapter, a review in visual servoing is presented by focusing

on such modeling issues.

2.2 Camera-robot Configurations

In visual servoing, there are two main configurations for combining the camera(s) and robot.

The vision sensor can either be mounted on the robot (eye-in-hand configuration) or observing

it (eye-to-hand configuration) [9, 11, 15]. For the same robot motion, the motion produced in

the image will be opposite from one configuration to the other, see Fig. 2.1.

Image plane
v- v

Oe Oc

v

Ob

v

Oc

Oe

(b)(a)

Ob
Target

Target

Figure 2.1: Top: (a) Eye-in-hand system, (b) Eye-to-hand system. Bottom: Opposite image
motion produced by the same robot motion.

The first eye-in-hand configuration (see Fig. 2.1 (a)), has the camera is mounted on the

robot’s end-effector. Hence, there exists a known, often constant transformation T ce between

the camera frame Oc and the end-effector frame Oe [22]. The pose of the target relative to the

camera frame Oc is represented by Xt
c and the pose of the end-effector with respect to robot

base frame Ob is Xe
b .

In the second eye-to-hand configuration, one or several cameras are placed in the workspace
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to monitor a target, end-effector or both (see Fig. 2.1 (b)). In this configuration, the trans-

formation matrix T cb between the camera frame Oc and the robot base frame Ob is constant

and is computed once. The transformation between camera frame and robot end-effector frame

need to be computed at each iteration using transformations between different frames. In this

case, the camera image of the target is independent of the robot motion and the poses of the

target with respect to camera frame Oc and robot base frame Ob are represented as Xt
c and

Xt
b, respectively.

For either choice of configuration, camera calibration must be performed in order to have

the set of camera intrinsic parameters. For the eye-in-had case, this amounts to determining

T ce . For the fixed camera case, calibration is used to determine T cb . The former configuration

is commonly used in visual servoing since it allows keeping target(s) in the field of view (e.g.,

when a grasping task requires ensured monitoring of the object and a grasping tool attached

to the end effector [23]). Hybrid configurations can be constructed where eye-to-hand and eye-

in-hand configurations are simultaneously used [24]. Within the scope of the work presented in

this thesis, we focus on the eye-to-hand camera-robot configuration.

2.3 Selection of Visual Features

Visual servoing explicitly relies on the choice of the visual features s, that is the key point of this

approach. Visual features observed by the vision sensors define the inputs to the control scheme

in visual servoing. Vision sensors can be conventional 2D cameras (as often used in visual ser-

voing), 2D ultrasound cameras [25] or omni-directional cameras that find motivation in robotics

applications to avoid visibility problems due to the restricted field of view of conventional 2D

camera [26, 27]. A vision sensor provides numerous of potential visual features. However, if no

planning strategy is developed, the use of some visual features as input of the control scheme

may lead to stability problems if the displacement that the robot has to achieve is very large

[28]. Therefore, selection of good visual features is a crucial aspect of visual servoing as it is

necessary for achieving optimal speed, accuracy, and reliability of image measurements. Conse-

quently, it affects performance and robustness of visual servoing [29, 30, 28]. For this reason, we

need to design ideal visual features for visual servoing, which should satisfactory the following

criteria: local and-as far as possible-global stability of the system, robustness to calibration and

modeling errors, non-singularity, local mimima avoidance, satisfactory trajectory of the system

and of the features in the image, and, finally, a maximal decoupled and linear link (the ultimate

goal) between the visual features and the degrees of freedom (DOFs) taken into account.
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2.3.1 Geometric Features

Imaging measurements from vision sensor are either used directly in the control loop or used

for relative pose estimation of a workpiece with respect to a camera. The most common visual

features are the geometric features (e.g. points, segments, straight lines or spheres). Geometric

features are defined to describe the geometrical contents of an image (2D visual features) or to

relate a frame attached to a robot system with a frame attached to an object in a scene (3D

visual features). Both 2D and 3D visual features can be used simultaneously in a hybrid form.

2D Visual Features

2D visual features are normally extracted in 2D image as points, lines, ellipses, region of interest

or contours [29, 12, 31, 30, 32]. These features are defined from image measurements. In case

of image points, Cartesian coordinates are generally used but it may be also possible to use

their polar and cylindrical coordinates [33].

Besides, image moments and moment invariants can also be used in visual servoing [34, 35,

36, 37, 38, 39, 40]. Using image moments, the improvements with respect to classical visual

servoing seem to be significant, since it allows a generic representation that is not only able to

handle simple geometrical primitives, but also complex objects with unknown shapes. In [35] it

discusses the use of image moments to formulate the visual Jacobian. This formulation allows

for decoupling of the DOF based on type of moments chosen. It is shown in [37] that moment

invariants can be used to design a decoupled 2D visual servoing scheme.

3D Visual Features

3D Visual features can also be selected in 3D Cartesian space such as pose or coordinates of

3D points [41, 19, 42]. Usually, object model and image measurements are used to compute or

to estimate the relative pose between object and camera frames in the Cartesian space. In [43],

the 3D coordinates of the points of the object are used as the feature vector. A priori knowledge

about the camera calibration parameters is required. In PBVS, orientation in pose vector can

be represented by the total format, roll-pitch-yaw or axis-angle formats [44] or quaternions [45].

Hybrid Visual Features

Several combinations between visual feature types can also be considered: e.g., a mixture of

both kinds of 2D and 3D features is presented in [17, 46, 43, 47] and Polar and Cartesian

parameterizations of image points coordinates as presented in [48].
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Redundant Features

Utilizing redundant features can improve the performance of visual servoing control and in-

crease the positioning accuracy by improving the corresponding minimum singular value of the

extended image Jacobian [49]. However, processing a large feature set can sometimes be com-

putationally expensive (or even infeasible). Therefore, the focus must be on the selection of an

information-intensive and reliable set that possesses a minimum number of features.

2.3.2 Photometric Features

Contrary to most of related works in this domain where geometric visual features are usually

used, photometric features computed from pixel intensities have been to used in visual servoing

recently. The utilization of the photometric features does not rely on complex image processing

such as feature extraction, matching, and tracking. Moreover, it is not very sensitive to partial

occlusions and to coarse approximations of the depths required to compute the interaction

matrix. This approach is realized by considering the whole image as a feature set from which

the control input signal is defined [50, 51]. The input to the controller can belong to the

eigenspace or kernel of an image pixel or can also be defined as the set of all image pixels itself.

In [50], image intensity is not used directly but an eigenspace decomposition is performed

first to reduce the dimensionality of image data. The control is then performed in the eigenspace

and not directly with the image intensity. Moreover, this way to proceed requires the off-line

computation of this eigenspace and the projection of the image on this subspace for each new

frame. An interesting approach, which also consider the pixels intensity, has been recently

proposed in [52]. This approach is based on the use of kernel methods that lead to a high

decoupled control law. It is also possible to use the luminance of all the pixels in the image as

visual feature set [53, 54, 55].

2.3.3 Velocity Field Features

The velocity field in the image is chosen as visual features in [56], and the relation between the

variations of velocity field features and the camera velocity is modeled. This approach is used

for positioning a camera parallel to a plane and following a trajectory. The camera motions are

controlled so that the current velocity field in the image becomes equal to motion field in the

desired configuration. In [57], the application of the velocity field control is applied to visual

servoing of a robot manipulator under fixed camera configuration. The desired velocity field vd

is defined in the image space, which defines a tangent vector that represents the desired image
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feature velocity ẋ at every point of the image space. The velocity field error e is defined as

the difference between the desired velocity field vd(x) and the image feature velocity ẋ. The

velocity field is also used in [58] for controlling wheeled nonholonomic mobile robots by a fixed

camera.

2.4 Error Functions in Visual Servoing

Classically, to achieve a visual servoing task, a set of visual features has to be selected from the

image allowing to control the desired degrees of freedom. A control law has also to be designed

so that these visual features s reach a desired value sd, leading to a correct realization of the

task. The control principle is thus to regulate the error vector s − sd to zero. To build this

control law, the knowledge of the interaction matrix Ls is usually required.

2.4.1 Cartesian Space Control

As described in the visual servoing control tutorial [10], all visual servoing tasks can be expressed

as the regulation to zero of an error e(t) which is defined by

e(t) = s(m(r(t)), a)− sd. (2.1)

The vector m(r(t)) is a set of image measurements (e.g. the image coordinates of interest points,

or the area, the center of gravity and other geometric characteristics of an object). These image

measurements depend on the pose r(t) between the camera and the environment. They are

used to compute a vector s(m(r(t)), a) of visual features, in which a is a set of parameters

that represent potential additional knowledge about the system (e.g. coarse camera intrinsic

parameters or 3D model of objects). The vector sd contains the desired value of the features,

which can be either constant in the case of a fixed goal, or varying if the task consists in

following a specified trajectory.

The design of the control scheme can be quite simple, the most straightforward approach is

to design a velocity controller. For eye-in-hand systems, this matrix links the time variation of

s to the camera instantaneous velocity v is given by:

ṡ = Ls vco +
∂s

∂t
(2.2)

where ∂s
∂t is the variation of s due to the object own motion, Ls ∈ Rk×n is the visual features

interaction matrix that represents the differential relationship between the features s and the

camera frame [9, 59], vco = vc − vo is the relative instantaneous velocity between the camera
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frame Oc and the object frame Oo, vc is the instantaneous camera velocity and vo is the

instantaneous object velocity. When the object is motionless, ∂s∂t = 0 and vco = vc, then we get:

ṡ = Ls vc. (2.3)

2.4.2 Joint Space Control

According to the robot velocity kinematics, the relation between ṡ and the velocity of the joint

variables q̇ can be obtained as follows [59, 60]:

ṡ = Ls Ve
c · Jq q̇ +

∂s

∂t
(2.4)

where Jq is the Jacobian of the robot expressed in the end effector frame Oe and V ec is the

transformation matrix to map the velocities expressed in robot end-effector frame Oe to the

camera frame Oc, defined by [59]:

Ve
c =

[
Rec sk(tec)R

e
c

0 Rec

]
(2.5)

in which sk(∗) is the skew-symmetric matrix and T ec = [Rec, t
e
c] is the transformation between

the end-effector frame and the camera frame. The matrix Ve
c remains constant for eye-in-hand

configurations, while it has to be estimated at each iteration for eye-to-hand configurations.

If the object is not moving, ∂s
∂t = 0, from (2.17) we get:

ṡ = Js q̇ (2.6)

where Js = Ls Ve
c Jq is the Jacobian of the visual feature, known as Visual Jacobian.

2.4.3 Interaction Matrix

A lot of works have concerned the modeling of the visual features and the determination of the

analytical form of the interaction matrix Ls. To give just an example, in the case of an image

point with normalized Cartesian coordinates x = (x, y) and whose 3D corresponding point has

depth Z, the perspective projection model [61, 62] is shown in Fig. 2.2.

In this model, the center of projection is considered at the origin of the camera frame Oc

and the image plane is at Z = f , where f is the camera focal length. By considering a 3D

point with coordinates X = [X,Y, Z]T in the camera frame and using a perspective projection

model [63], the point X is projected on a 2D point x of coordinates (x, y) on the image plane

such that: [
x
y

]
=

[
X/Z
Y/Z

]
=

[
(u− cx)/fα
(v − cy)/f

]
(2.7)

15



2. STATE OF THE ART OF VISUAL SERVOING
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Figure 2.2: Pin hole camera model.

where s = [u, v] is the image point coordinates in pixel unit, c = [cx, cy] is the coordinates of the

principle point, f is the focal length of the camera lens and α is the ratio of pixel dimension.

Interaction Matrix of Image Feature Points (2D)

As for the interaction matrix Ls of an image feature point it can be obtained as following. By

taking the time derivative of (2.7) we get:

[
ẋ
ẏ

]
=

[
Ẋ
Z − XŻ

Z2

Ẏ
Z − Y Ż

Z2

]
=

[
1
Z 0 − X

Z2

0 1
Z − Y

Z2

]

Ẋ

Ẏ

Ż


 (2.8)

In the eye-in-hand configuration, if the spatial velocity of the camera is given by vc =

(υ, ω) where υ = [υx, υy, υz]
T and ω = [ωx, ωy, ωz]

T are the instantaneous linear and angular

velocities of the origin of the camera frame both expressed in Oc, then the velocity of the 3D

point X related to the camera velocity is defined using the fundamental kinematic equation

Ẋ = −v − ω ×X such that:


Ẋ

Ẏ

Ż


 =



−vx − ωyZ + ωzY
−vy − ωzX + ωxZ
−vz − ωxY + ωyX


 (2.9)

=



−1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0



[
υ
ω

]
(2.10)

=
[
−I3 sk(X)

] [υ
ω

]
(2.11)

where sk(∗) is the skew-symmetric matrix.
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By injecting the values of Ẋ, Ẏ and Ż from (2.10) in (2.8) and grouping for v, and ω we

get the classical result [7]:

[
ẋ
ẏ

]
=

[−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z (1 + y2) −xy −x

] [
v
ω

]
(2.12)

ẋ = Lx vc (2.13)

where Lx is the interaction matrix related to x. If there is a set of k feature points x =

(x1, . . . , xk), the interaction matrix Lx of the set x is obtained by stacking Lxi for all xi ∈ x to

get:

Lx =



Lx1

...
Lxk


 (2.14)

If the system has eye-to-hand configuration, then

Ẋ = v + ω ×X =
[
I3 −sk(X)

] [v
ω

]
(2.15)

Hence, the interaction matrix Lx in equation (2.12) is

Lx =

[
1
Z 0 − x

Z −xy (1 + x2) −y
0 1

Z − y
Z −(1 + y2) xy x

]
(2.16)

If it uses the pixel image point s = [u, v] as the features, according to (2.7), equations (2.12),

(2.13) can be rewritten as

[
u̇
v̇

]
=

[
f
Z 0 − u

Z −uvf
f2+u2

f −v
0 f

Z − v
Z − f2+v2

f
uv
f u

] [
v
ω

]
(2.17)

ṡ = Ls vc. (2.18)

2.5 Visual Servoing Control Schemes

Visual servoing control schemes mainly differ in the way that visual features s are designed.

The control law [12, 19, 9, 28, 64, 65, 10, 11] affects the behavior of the system. In the control

design phase, a number of properties should be considered such as local and global stability,

robust behavior with respect to measurement and modeling errors, local or global exponential

decrease, order of convergence, absence of local minima and singularities, obtaining suitable

robot trajectory, and finally the degree of decoupling between the visual information and the

controlled degrees of freedom.
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2.5.1 Classical Approaches

The two most classical approaches are named image-based visual servoing (IBVS), in which s

consists of a set of 2D parameters that are directly expressed in the image [7, 12], and position-

based visual servoing (PBVS), in which s consists of a set of 3D parameters related to the pose

between the camera and the target [7, 19].

2.5.1.1 Position-based Visual Servoing

In Position-based visual servoing (PBVS), features are extracted from the image and used to

estimate the pose of the target with respect to camera. Feedback is computed by reducing

errors in estimated pose space. In that case, the 3D parameters have to be estimated from the

image measurements either through a pose estimation process using the knowledge of the 3D

target model, or through a partial pose estimation process using the properties of the epipolar

geometry between the current and the desired images, or finally through a triangulation process

if a stereo vision system is considered [9, 19, 18, 66, 67, 42]. PBVS is known to have global

asymptotic stability, i.e., the ability of a controller to stabilize the pose of the camera from any

initial condition if 3D estimation is perfect. From the analytical proof, it is evident that this is

true if the pose is perfect and impossible otherwise. When accurate 3D estimation is employed,

decoupling rotation and translation is obtained. Errors in calibration propagate to errors in the

3D world, so accurate 3D estimation is essential to ensure robustness of PBVS [68].

No mechanism in PBVS ensures keeping the features visible within the camera field of

view (FOV) when the translation is defined in the desired fixed end effector frame [19]. In

comparison, if the translation is expressed in the camera frame, the trajectory in the image

plane is improved under large camera rotation motion and features can be kept in the image

plane for small rotations [42]. Several control schemes have been proposed to overcome the

latter problem (for example 2.5 D visual servoing presented in [69], or nonlinear approach using

a new 3D translation features in the control loop [70, 71]). In PBVS, the task function to be

regulated is usually defined as the error between current and desired poses. The pose can also

be selected as the pose of the camera or the end effector with respect to the object or any other

reference frame in the world space.

Pose Estimation

Pose estimation is the key issue in position-based visual servoing, since small amount of image

noise could lead to large errors in the pose estimation. The pose can be obtained from an
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image of the object, the 3D CAD model of the object, or an estimation of the camera intrinsic

parameters. When the pose is correctly estimated, this class of visual servoing is known to

provide adequate system motion in the Cartesian space either in the moving camera frame or

in a fixed frame [42]. The pose can be estimated using image points [72, 73, 74, 75, 76], using

point and line correspondence [77], using point to region correspondence [78], using curves [79],

or using other different geometrical features as in virtual visual servoing [80]. For obtaining

more accurate pose estimation, different filters are often used to estimate its translational and

rotational parameters, as shown in [81, 44, 82, 83, 84] and recently in [85].

Partial Pose Estimation

Camera translation and camera rotation can be estimated through the Essential matrix [86, 87,

88]. However, when the target is planar or when the motion performed by the camera between

the desired and the current pose is a pure rotation, essential matrix cannot be estimated and

it is more appealing to estimate the pose using a homography matrix [89].

2.5.1.2 Image-based Visual Servoing

In IBVS, error signal is defined on the basis of image features directly, without any supplemen-

tary estimation step. Different from PBVS, IBVS does not need to estimate the pose at each

iteration which helps to provide a robust positioning control against calibration and modeling

errors.

IBVS is characterized by several advantages. Firstly, direct control of the feature motion

in the image plane allows the implementation of strategies aimed at keeping the target always

in the field of cameras view, with approximately straight lines trajectories for image feature

point [28, 90]. Another advantage of IBVS is that the positioning accuracy is insensitive to

camera and target modeling errors [91, 9, 92, 93]. It is essentially a model-free method, without

explicit requirement of the target model in practical applications and convergence is generally

robust w.r.t. disturbances and uncertainties in the camera/robot model [94]. IBVS systems are

usually preferred to position-based systems since they are usually less sensitive to image noise.

However, some knowledge of the transformation between the sensor and the robot frame [22] is

still required.

IBVS is however subject to some shortcomings. Firstly, it is hard to predict the trajectory of

the end effector and the robot may reach its joint limits. Secondly, the end-effector translational

and rotational motions are not directly controlled, and the usual coupling existing between
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these motions makes it difficult to plan a pure rotational or a pure translational motion [28].

Also, since the system is usually highly coupled, the analytical domain of system stability is

impossible to determine in the presence of camera modeling errors. Furthermore, usual IBVS

is only locally asymptotically stable and may fail in the presence of large desired displacement

[28, 95], which necessitates a path planning step to split a large displacement into smaller local

movements [93]. Finally, potential failure occurs when IBVS is subject to image singularities

or local minima [28].

Depth Estimation

In IBVS, providing some information about the depth of the object in the camera frame is

usually necessary for the computations required to obtain the interaction matrix. Since the sta-

bility region for the error in depth estimation is not very large [96], it is necessary to accurately

estimate the depth. For static objects, this estimation of the depth value can be obtained from

the measurement of the current values of the feature points x and y and their image motion ẋ

and ẏ [97, 98]. The depth parameters of planar and volumetric parametric primitives like points,

lines, cylinders, spheres, etc. can be also obtained [99]. Another depth estimation method for

static points without the explicit need for image motion estimation can be found in [100]. In

[101], a laser pointer is used and the depth estimation can be achieved through a triangulation

method.

Image Jacobian

The image interaction matrix (image Jacobian matrix), which is related to the image features,

can be computed using direct depth information (depth-dependent Jacobian) [102, 103], or by

approximation via on-line estimation of depth of the features (depth-estimation Jacobian) [10,

104, 105, 106], or using depth-independent image Jacobian matrix [107, 108, 109]. Additionally,

many papers directly estimate on-line the complete image Jacobian in different ways [110, 111,

112, 113]. However, all these methods use redundant image point coordinates to define (as a

general rule) a non-square image Jacobian, which leads to well-known problems such as the

image singularities. In [35, 37, 38], using the image moments as features in visual servoing

renders the corresponding image Jacobian matrix with a maximally decoupled structure, where

the inherent problem-singularity of the interaction matrix is solved and the performance of

IBVS is improved. However, this proposed approach is limited to planar symmetric objects.
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2.5.2 Enhanced Visual Servoing Approaches

In order to overcome drawbacks of visual servoing control schemes, different modeling ap-

proaches have been considered such as sliding approaches [114], partitioning approaches [115,

90, 116, 117, 118], trajectory planning approaches [93, 119, 120], origin-shift in cylindrical coor-

dinates [33], varying-feature-set approaches [121, 122, 123], and hybrid and switching approaches

which will be discussed in a dedicated subsection 2.5.2.1.

2.5.2.1 Hybrid and Switching Strategies in Visual Servoing

To combine the advantages of both image-based (2D) and position-based (3D) visual servoing,

numerous approaches have been proposed to model control schemes based on the utilization

of hybrid and switching strategies. In addition to providing accurate control signal, research

on hybrid visual servoing has focused on addressing issues like feature visibility, local minima

avoidance, faster convergence, short camera path, continuous control signal, etc. Many of the

hybrid methods address the above mentioned issues by integrating the 2D and 3D information

in the feature space [116, 17, 43] or in the action space [124, 125, 126]. Switching approaches

between PBVS and IBVS are used to utilize the strength of each one when the other is in a

weaker configuration [125, 127, 128]. Hybrid and switching approaches are also used together

by integrating PBVS and IBVS in a switching hybrid scheme [129, 124, 130, 131]. Finally,

planning step-switching using laser spot is presented in [101].

2-1/2D Visual Servoing

The 2-1/2D visual servoing approach developed in [17, 89, 132, 133, 134, 116, 135] combines

visual features expressed in 2D image and 3D Cartesian spaces. This hybrid controller tries

to take advantage of both approaches by decoupling the rotation motion from its translational

part considering one visible image point during the servoing process. This decoupling makes

it possible to design two task functions: eυ for the translation and eω for the rotation which

improves the system behavior in the 3D space. A very interesting aspect in 2-1/2 D visual

servoing is that, thanks to projective reconstruction, the knowledge of the 3D structure of the

considered targets is no more necessary. However, the use of projection reconstruction implies

that the corresponding control laws are more sensitive to image noise than classical image-based

visual servoing. In this method, the task function is expressed in both Cartesian space and in

the image space. The homography matrix that relates image points in the current and desired

views is decomposed to extract the required rotation motion.
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Switches Approaches

An algorithm which switches between image-based and position-based vision control algorithms

is presented by Gans and Hutchinson [125, 127, 128]. In this hybrid switching method, the IBVS

and PBVS run independently. Another principle of switching is presented by Chesi et al. [126].

It switches between elementary camera motions, mainly rotation and translation extracted by

decomposing the homography matrix between the current and desired views. In these two

switching methods, the control signal suffers from discontinuity when features approach the

image border. They need large amount of time for convergence. Hafez and Jawahar [124]

present a smooth linear combination of different visual servoing algorithms. The combining

weights are computed using an error function of the weakness of the concern algorithm. Another

hybrid method based on potential fields [93] is proposed for path planning in the image space.

This method introduces the visibility and robot joint limits constraints into the design of the

desired trajectories.

2.5.3 Dynamic Control Schemes

In the context of control schemes, kinematic-based controls cannot yield high performance

and guarantee stability because the nonlinear forces in robot dynamics are neglected. This

problem, known as Dynamic Visual Servoing, was studied in [136] for the eye-in-hand setup

and for the fixed-camera configuration in [137]. Their methods work well when the camera

intrinsic and extrinsic parameters are known. In order to avoid tedious and costly camera

calibration, various authors [138, 139, 140, 141, 142] proposed to employ an adaptive algorithm

to estimate the unknown camera parameters on-line. However, these methods are applicable to

planar manipulators only. The problem of 3D uncalibrated visual servoing with robot dynamics

has been tackled with new adaptive controllers [108, 143].

2.6 Problems in Visual Servoing

Selecting a suitable set of visual features and designing good control schemes should be taken

into account for avoiding system failures. Most frequently encountered problems in visual

servoing such as local minima, singularity and visibility problems are directly influenced by this

choice, and can be enhanced by a better selection.
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2.6.1 Local Minima

By definition, a local minimum is reached since the camera velocity is zero while the final

cameras position is far away from its desired one. Local minima are defined such that v = 0

and s 6= sd (or ṡ 6= 0). This is equivalent to:

s− sd 6= φ ∈ Ker(L+
s ) (2.19)

This results in convergence to a final pose that is different from the desired one.

If s is composed by three image points and Ls is full rank 6, then Ker(L+
s ) = 0, which

implies that there is none local minima. However, it is well known that the same image of

three points can be seen from four different camera poses [144]. In other words, there exist four

camera poses (that is four global minima) such that s = sd. A unique pose can theoretically

be obtained by using at least four points. However, in that case, dim(Ls) = 8 × 6, implying

that dim Ker(L+
s ) = 2. Using four points, the control law tries to enforces 8 constraints on

the image trajectory while the system has only six degrees of freedom. In that case, due to

the existence of unrealizable motions in the image that may be computed by the control law,

a local minimum may be reached [28]. At the local minimum position, the error s − sd in the

image do not completely vanish (residual error is approximately one pixel on each u and v

coordinate). Introducing noise in the image measurement leads to the same results, which can

also be obtained in real experiments.

Several control strategies have been used to avoid local minima in visual servoing. For

example, in [129] and [128], a hybrid motion control strategy that explicitly considers the local

minima problem is presented, while in [93] a path planning strategy is developed.

2.6.2 Singularity

It is well known that the image Jacobian (interaction matrix) may become singular during the

visual servoing, if image points are chosen as visual features s. Let us consider that four points

are used and the camera motion from its initial to desired poses is a pure rotation of 180o around

its optical axis. This 3D motion leads to an image motion corresponding to a symmetry around

the principal point, and the interaction matrix is singular [28]. For the considered motion,

the choice of image points coordinates is really inadequate. The singularity can be avoided

when the same initial position is used, and a perfect camera trajectory (a pure rotation motion

around the optical axis of the camera) can be achieved if straight lines are used in s instead of

points. Indeed, the cylindrical parameters (ρ, θ) describe the position in the image of a straight
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line [12].

Additional singularity configurations in IBVS have been described in the literature, such as:

singularity of three points, singularity of a circle and singularity of the norm. The singularities

in IBVS can be avoided in several ways for different situations. Usually, these singular configu-

rations are avoided trivially by selecting features such that their interaction matrix is always of

full rank. A secondary objective can be designed to try to avoid the singular configurations by

the redundancy framework [145, 146]. Moreover, a classical approach in robotics is to use the

damped-least-squares inverse [147, 148, 149, 150] instead of the Moore-Penrose pseudo inverse

to reduce the effect of the singularity in terms of robustness. Finally, a regularization technique

has recently been introduced in [151]. It also allows reducing the effect of the singularity, but

with the price of decreasing the convergence speed, which is inefficient if the task consists of

tracking a moving target.

2.6.3 Feature Visibility

Using classical 2D and 3D visual servoing and assuming a bad calibration and a large initial

camera displacement, the target may leave the camera field of view [17, 152]. In general, there

is no guarantee on the positioning accuracy of the system unless control points on both the

end-effector and the target can be observed. Hence, it is desirable to have servoing controls able

to always keep features in the camera field of view to obtain reliable feedback signal during the

servoing process. To minimize the probability that the object leaves the FOV, several methods

such as a repulsive potential field [93, 103, 152], a path planning strategy [93, 153], switching

strategies [128], the changes of visibility in image features during the control task [122], using

structure light [101], as well as intrinsic-free visual servoing approach[65] can be adopted.

2.7 Performance and Robustness

A dynamic performance of PBVS is presented in [42]. It considers different orientation formats

in controlling the robot end effector in the desired and in the current end-effector frames.

In [68], the effect of vision system properties to the performance of the control system are

investigated by analyzing the propagation of image errors through pose estimation and visual

servoing control law.

Quantitative performance metrics for specific tasks can be formulated using some metric

measures as shown in [118]. These measures include the number of iterations required to

converge, error at termination, maximum feature excursion, maximum camera excursion and
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maximum camera rotation. The evaluation and the comparison between different visual servoing

approaches can thus be performed for a given task.

Recently in [96], the robustness of standard image-based visual servoing control and efficient

second order approximation method (ESM) was studied theoretically with respect to errors on

the 3D parameters introduced in the interaction matrix when any central catadioptric camera

is used as a sensor and when points coordinates are used as input of the control scheme. It

has been noticed that the stability region is similar for all catadioptric cameras and it is not

expected to increase by simply changing the type of central camera used.

In [154], a comprehensive comparison of IBVS and PBVS is presented by comparing system

stability and dynamic performance in the Cartesian and image spaces on a common frame-

work using both predefined and taught references. The robustness and sensitivity analyses are

investigated with respect to the camera, target, and robot modeling errors.

2.8 Conclusion

In this chapter, we presented a review of the state of the art concerning two main components

in visual servoing: features selection and design of the control scheme. The review of features

selection can be summarized as illustrated in Fig. 2.3. For a chosen combination of feature

selection and control scheme, different behaviors can be obtained by the robot system. There-

fore, there is a large collection of research concerning the robustness with respect to selected

features, structure of the employed control scheme, existence of errors and uncertainty in robot

or camera calibration, and errors and uncertainty in input signals and in object model.

In this thesis, our work focuses on contributing the selected features. 6D orthogonal and

independent signals are chosen as visual features for visual servoing system. Two solutions for

visual occlusion problem are introduced to change the feature visibility in image features dur-

ing the control task. For the proposed visual servoing, quantitative validations of the approach

and comparisons to classical methods in terms of steady-state errors, transient systems perfor-

mance in the Cartesian and image spaces, and robustness to uncertainties have been presented.

Furthermore, other fundamental characteristics of the different methods, such as sensory space

singularity and local minima are also compared.
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Visual Features used in Visual Servoing
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Figure 2.3: Visual features used in visual servoing.
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Chapter 3

Robot Modeling

The main objective of this thesis is to implement the visual servoing for an industrial robot

manipulator involved in human-robot interaction scenarios. Therefore, getting prior knowledge

of the behavior of a manipulator is necessary. In this chapter, the kinematic and dynamic models

of the StäubliTX90 industrial robot are described. Furthermore, some classical controllers which

will be used in the thesis, are presented.

3.1 Forward Kinematics

The forward kinematics problem is concerned with the relationship between the individual joints

of the robot manipulator and the position and orientation of the tool or end-effector. Stated

more formally, the forward kinematics problem is to determine the position and orientation of

the end-effector, given the values for the joint variables of the robot. The joint variables are

the angles between the links in the case of revolute or rotational joints, and the link extension

in the case of prismatic or sliding joints.

To perform the kinematic analysis, we rigidly attach a coordinate frame to each link. In

particular, we attach oixiyizi to link i. By this convention, joint i connects link i− 1 to link i.

When joint i is actuated, link i moves, and then oixiyizi is changed. The first coordinate frame

o0x0y0z0, which is attached to the robot base, is referred to as the inertial (base) frame. The

final coordinate system onxnynzn is commonly referred to as the end-effector or tool frame.

A robot manipulator with n joints will have n+ 1 links, since each joint connects two links:

• Link/Frame: 0, 1, 2, 3, ..., n.

• Joint: 1, 2, 3, ..., n.
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3. ROBOT MODELING

Now suppose Hi
i−1, i = 1, 2, ..., n is the homogeneous transformation matrix that expresses

the position and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. Taking the assumption

that each joint has a single degree-of-freedom, Hi
i−1 is a function of only a single joint variable,

namely qi.

The position and orientation of the end-effector with respect to the base frame is denoted by

two elements, the vector tn0 ∈ R3×1, which gives the coordinates of the origin of the end-effector

frame with respect to the base frame, and the rotation matrix Rn0 ∈ SO(3). The definition of

the homogeneous transformation matrix Hn
0 is given by

Hn
0 =

[
Rn0 tn0

01×3 1

]
. (3.1)

Then the position and orientation of the end-effector in the base frame are given by trans-

formation matrix

Hn
0 = H1

0 (q1)H2
1 (q2)...Hn

n−1(qn). (3.2)

A commonly used convention for selecting frames of reference in robotic applications is

the Denavit-Hartenberg Representation or D-H convention. The details about this

convention are described in the book by Spong [155]. Each relative homogeneous transformation

Hi
i−1 can be obtained using the Denavit-Hartenberg representation.

3.1.1 3DOF Model

Here we first represent the 3DOF model where we only care about the position of the end-

effector. In this case the last three joints of the StäubliTX901 are controlled in a static position

and the robot end-effector pose are decided by the first 3 DOF. The three-link elbow (RRR)

manipulator configuration is shown in Fig. 3.1. The D-H parameters for this robot are shown

in the Table 3.1. The end-effector position Xef ∈ R3×1 can be represented as:

Xef = f(q), q = [q1, q2, q3]T . (3.3)

When no Kinematic Decoupling2 has been used for the description of the kinematic chain

of a robot arm, the Forward Kinematics is computed directly from the translation vector

t30, which is obtained from H3
0 as follows

Xef = t30(q) with H3
0 =

[
R3

0 t30(q)
0 1

]
. (3.4)

1StaubliTX90: http://www.staubli.com/en/robotics/6-axis-scara-industrial-robot/medium-payload-6-axis-
robot/6-axis-industrial-robot-tx90

2This topic will be covered in next section. For now, lets say that Kinematic Decoupling is a special
coordinate frame arrangement where the orientation and position of the end-effector are controlled by a set of
different joint variables, therefore they are decoupled from each other.
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Figure 3.1: The StäubliTX90 configuration (3 DOF) .

Table 3.1: D-H Parameters of StäubliTX90 Industrial Robot (3 DOF).

Link i θi (rad) di (m) ai (m) αi (rad)

1 q1 + 0 d1 = 0.478 l1 = 0.050 −π/2
2 q2 + π/2 d2 = 0.050 l2 = 0.425 0

3 q3 + 0 0 l3 = 0.595 0

The corresponding transformation Hi
i−1 and H3

0 can be obtained using the D-H parameters.

Finally, we can obtain end-effector position using the definition of Forward Kinematics as:

Xef = t30(q) =



l1 cos(q1)− d2 sin(q1) + l2 cos(q1) sin(q2) + l3 sin(q2 + q3) cos(q1)
l1 sin(q1) + d2 cos(q1) + l2 sin(q1) sin(q2) + l3 sin(q2 + q3) sin(q1)

d1 + l2 cos(q2) + l3 cos(q2 + q3)


 . (3.5)
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3.1.2 6DOF Model

Consider now the whole StäubliTX90 manipulator shown in Fig. 3.2. This manipulator is an

example of an elbow (RRR) manipulator with a spherical wrist (RRR). This manipulator has

an offset in the shoulder joint.

i d
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Figure 3.2: The StäubliTX90 configuration (6 DOF) and D-H parameters.

Using the D-H table in Fig. 3.2, the whole forward kinematics for StäubliTX90 can be
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3.2 Inverse Kinematics

obtained by:

H6
0 = H1

0 ∗H2
1 ∗H3

2 ∗H4
3 ∗H5

4 ∗H6
5 (3.6)

=

[
R6

0 t60
0 1

]
. (3.7)

The position of the end-effector with respect to the robot base frame is

Xef = t60. (3.8)

Kinematic Decoupling:

If we choose the coordinate frames in such a way that o4 = o5 = o6 (Kinematic Decoupling:

Fig. 3.3), then we have the position of the end-effector as

Xef = t6
′

0 + defR
6
0




0
0
1


 . (3.9)

q1

O0

z0

x0

q2

q3

q5

q4

q6

O1 x1

O3

z1

z3

x2

z2

O2

x3 O5
O4

#O6

z4

z5

x4 , x5 x6

#

 

x = 
fe

6´
 

t +d z
0

ef 6

d
ef

z6

 

x = 
wr

´6

t0

Figure 3.3: The StäubliTX90 configuration (6 DOF) for kinematic decoupling.

3.2 Inverse Kinematics

The forward kinematics problem is to be contrasted with the inverse kinematics problem,

which is concerned with determining values for the joint variables that achieve a desired position

and orientation for the end-effector of the robot.

Although the general problem of inverse kinematics is quite difficult, it turns out that for

manipulators having six joints, with the last three joints intersecting at a point (such as the

31



3. ROBOT MODELING

StäubliTX90 above), it is possible to decouple the inverse kinematics problem into two sim-

pler problems, known respectively as inverse position kinematics and inverse orientation

kinematics, namely first finding the position of the intersection of the wrist axes, hereafter

called the wrist center (oc = o3), and then finding the orientation of the wrist.

This class of manipulators can be modeled with Kinematic Decoupling, which means

that the position of the wrist center is a function of only the first three joint variables, and the

motion axes z3, z4, z5 of final three joints intersect at the wrist center oc. Hence the motion of

the final three links about these axes will not change the position of oc, see Fig. 3.3.

The computation of the inverse kinematics can be summarized by the following algorithm.

Step 1: Find q1, q2, q3 using Inverse Position, with the position of the wrist center Xwr given

by

Xwr = t6
′

0 = Xef − def · z6. (3.10)

Step 2: Using the joint variables (q1, q2, q3) determined in Step 1, evaluate R3
0.

Step 3: The final three joint angles (q4, q5, q6) can then be found as a set of

Euler angles (Z-Y-Z) corresponding to the rotation matrix R6
3

R6
3 = (R3

0)−1R6
0 = (R3

0)T R6
0. (3.11)

3.2.1 Inverse Position: A Geometric Approach

For the common kinematics arrangements that we consider, we can use a geometric approach

to find the variables q1, q2, q3 corresponding to Xwr given by (3.10). Fig. 3.4 shows the elbow

manipulator with shoulder offset, with the component of Xwr denoted by xc, yc, zc.

From this figure, we see geometrically that

q1 = α− θ1; (3.12)

q2 =
π

2
− θ2 − θ3; (3.13)

q3 = atan2 (CD, D). (3.14)

in which atan2(y, x) is the arctangent function with two arguments, whose range is (−π, π].

atan2(y, x) is defined for all (y, x) 6= (0, 0) and the sign of the angle is decided by sign of y.

(The angle is positive when y > 0 and negative when y < 0.)
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Figure 3.4: Elbow Manipulator with shoulder offset: the first 3 joints of StäubliTX90.

To see the joints, note that

r =
√
x2
c + y2

c − d2
2 (3.15)

A = r − l1 (3.16)

B = zc − d1 (3.17)

C =
√
A2 +B2 (3.18)

α = atan2 (yc, xc) (3.19)

β = π − q3 (3.20)

θ1 = atan2 (d2, r) (3.21)

θ2 = atan2 (B, A) (3.22)

θ3 = atan2 (d4 ·CD, l2 + d4 ·D) (3.23)

We can apply the law of cosines to obtain

D = cos q3 = − cosβ =
C2 − l22 − d2

4

2 · l2 · d4
(3.24)

CD = sin q3 = elbowConfig ·
√

1−D2 (3.25)
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where the elbowConfig = ±1 are the two solutions for q3 corresponding to the elbow-up

configuration and elbow-down configuration, respectively.

3.2.2 Inverse Orientation
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Figure 3.5: Spherical wrist: the final 3 joints of StäubliTX90.

In the previous subsection we used a geometric approach to solve the inverse position prob-

lem. This gives the values of the first three joint variables corresponding to a given position of

the wrist origin. The inverse orientation problem is one of finding the values of the final three

joint variables (q4, q5, q6) corresponding to a given orientation (R6
3) with respect to the frame

o3x3y3z3. For a spherical wrist, this can be interpreted as the problem of finding a set of Euler

angles corresponding to a given rotation matrix R. In Fig. 3.5, frame o3’x3’y3’z3’ represents

the new coordinate frames after rotating z3 by φ, frame o3”x3”y3”z3” represents the new co-

ordinate frame after the rotating y3’ by θ, and frame o6x6y6z6 represents the final frame, after

the rotating z3” by ψ. Therefore, we solve for three Euler angles, φ, θ, ψ, using equations for

Z-Y-Z representation and then use the mapping

q4 = φ, q5 = θ, q6 = ψ. (3.26)
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3.2 Inverse Kinematics

Z-Y-Z Euler Angles:

Given the rotation matrix as 1

R6
3 = Rz,φRy,θRz,ψ (3.27)

=



cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ
−sθcψ sθsψ cθ


 (3.28)

=



r11 r12 r13

r21 r22 r23

r31 r32 r33


 (3.29)

we can get the Euler angles with

If: not both r13 and r23 are zero, then r33 6= ±1, and we have

φ = atan2 (wristConfig · r23, wristConfig · r13) (3.30)

θ = atan2 (wristConfig ·
√

1− r2
33, r33) (3.31)

ψ = atan2 (wristConfig · r32, −wristConfig · r31) (3.32)

where the wristConfig = ±1 are the two solutions for q5 corresponding to the wrist-up position

and wrist-down position, respectively.

Else: r13 = r23 = 0, then the fact that R is orthogonal, implies that r33 = ±1:

if: r33 = 1, then θ = 0. In this case, the sum (φ+ ψ) can be determined as

φ+ ψ = atan2 (r21, r11) (3.33)

else: r33 = −1, then θ = π. In this case it becomes

φ− ψ = atan2 (−r12, −r11) (3.34)

Since only the sum and the subtraction can be determined in this case there are infinitely many

solutions. We may take φ = oldValue by convention, and define ψ.

3.2.3 Summary of Inverse Kinematics of StäubliTX90

To summarize the preceding developments, we write down one solution to the inverse kinematics

of the 6DOF elbow manipulator shown in Fig. 3.3 which has shoulder offset and a spherical

wrist.

Given

Xef =



xef
yef
zef


 , R6

0 =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 (3.35)

1Here we use the shorthand notation cθ = cos θ, sθ = sin θ for trigonometric functions.
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3. ROBOT MODELING

then with

xc = xef − def r13 (3.36)

yc = yef − def r23 (3.37)

zc = zef − def r33 (3.38)

a set of D-H joint variables is given by

q1 = atan2 (yc, xc)− atan2(d2, r) (3.39)

q2 =
π

2
− atan2 (B,A)− atan2 (d4 ·CD, l2 + d4 ·D) (3.40)

q3 = atan2 (±
√

1−D2, D) (3.41)

q4 = atan2 (±r23, ±r13) (3.42)

q5 = atan2 (±
√

1− r33
2, r33) (3.43)

q6 = atan2 (±r32, ∓r31) (3.44)

The other possible solutions are already explained above.

3.3 Velocity Kinematics

In order to control the robot manipulator, it is required to obtain not only forward and inverse

kinematics but also differential kinematics, which relates the linear and angular velocities of the

end-effector (or any other point on the manipulator) to the joint velocities of the robot.

In particular, we will derive the linear and angular velocities (vn0 ∈ R3×1 and ωn0 ∈ R3×1,

respectively) of the end-effector frame with respect to the robot base frame as a function of the

joint velocities q̇i.

Mathematically, the forward kinematic equations define a function between the space of

Cartesian position and orientation and the space of joint positions. The velocity relationships

are then determined by the Jacobian of this function. The Jacobian is a matrix-valued function

and can be thought of as the vector version of the ordinary derivative of a scalar function. This

Jacobian is one of the most important quantities in the analysis and control of robot motion.

For a n-link manipulator, the differential kinematics is defined as (3.45) and it is obtained

taking the time derivative of the end-effector pose

Ẋef =

[
vn0
ωn0

]
= Jn0 qi (3.45)
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where Jn0 is given by

Jn0 =

[
Jv
Jω

]
. (3.46)

The matrix Jn0 is called the Manipulator Jacobian or Jacobian for short. Note that Jn0 is

a 6× n matrix where n is the number of links.

3.3.1 Differential Kinematic for StäubliTX90

Given that the StäubliTX90 is a 6DOF robot manipulator, and all the joints are revolute with

o3, o4, o5 representing the origins of the coordinate frames associated to the spherical wrist, see

Fig. 3.2. Then, following the above definitions, the Geometric Jacobian for this robot is

J6
0 =

[
z0 × t60 z1 × (t60 − t10) z2 × (t60 − t20) z3 × (t60 − t30) z4 × (t60 − t40) z5 × (t60 − t50)
z0 z1 z2 z3 z4 z5

]
.

(3.47)

Kinematic Decoupling: If we choose the coordinate frames in such a way that o4 = o5 = o6

(Kinematic Decoupling: Fig. 3.3), then the Geometric Jacobian is given by

J6′

0 =

[
z0 × t6

′

0 z1 × (t6
′

0 − t10) z2 × (t6
′

0 − t20) 0 0 0
z0 z1 z2 z3 z4 z5

]
. (3.48)

Remarks:

1. In this case, the position of the end-effector is given by Xef = t6
′

0 + d6z6 and its
linear velocity is J ′v q̇ + d6ż6.

2. Note that this form of the Jacobian does not necessarily give the correct
relation between the velocity of the end-effector and the joint velocities. It is
intended only to simplify the determination of singularities.

3.4 Singularities

Since the Jacobian is a function of the configuration q, those configurations for which the rank

of J decreases are of special significance. Such configurations are called singularities.

3.4.1 Decoupling of Singularities

In our robot, n = 6, the manipulator consists of a 3 − DOF arm with a 3 − DOF spherical

wrist. In this case the Jacobian is a 6× 6 matrix and a configuration q is singular if and only if

det J(q) = 0. (3.49)

Now, we can partition the Jacobian J(q) into 3× 3 blocks as

J =
[
JP | JO

]
=

[
J11 | J12

J21 | J22

]
. (3.50)
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Case 1: Without Kinematic Decoupling

In this case we need to directly compute (Fig. 3.2)

det(J(q)) = det(J11) det(J22)− det(J12) det(J21) = 0 (3.51)

which is very difficult for computing the solutions.

Case 2: Kinematic Decoupling

Since the wrist axes intersect at a common point oc, if we choose the coordinate frames in

such a way that o4 = o5 = o6 (Kinematic Decoupling: Fig. 3.3), then J12 = 03×1. In this case

the Jacobian matrix (3.50) has the block triangular form

J =

[
J11 0
J21 J22

]
(3.52)

with determinant

det(J) = detJ11 · det J22. (3.53)

Therefore the set of singular configurations of the manipulator is the union of the set of

arm configurations satisfying det(J11) = 0 and the set of wrist configurations satisfying

det(J22) = 0.

3.4.2 Wrist Singularities

In the case 2: Kinematic Decoupling, we get

J22 =
[
z3 z4 z5

]
. (3.54)

From (3.54) we can now see that a spherical wrist is in a singular configuration whenever

the vectors z3 , z4 and z5 are linearly dependent. Referring to Fig. 3.6 [155] we see that this

happens when the joint axes z3 and z5 are collinear.
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with determinant

det J = det J11 det J22 (5.127)

where J11 and J22 are each 3⇥ 3 matrices. J11 has i-th column zi�1 ⇥ (o� oi�1) if joint i
is revolute, and zi�1 if joint i is prismatic, while

J22 = [z3 z4 z5]. (5.128)

Therefore the set of singular configurations of the manipulator is the union of the set
of arm configurations satisfying detJ11 = 0 and the set of wrist configurations satisfying
det J22 = 0. Note that this form of the Jacobian does not necessarily give the correct relation
between the velocity of the end-e↵ector and the joint velocities. It is intended only to simplify
the determination of singularities.

5.9.2 Wrist Singularities

We can now see from (5.128) that a spherical wrist is in a singular configuration whenever
the vectors z3, z4 and z5 are linearly dependent. Referring to Figure 5.3 we see that this

z4

�6�4

�5 = 0

z3 z5

Figure 5.3: Spherical wrist singularity.

happens when the joint axes z3 and z5 are collinear. In fact, whenever two revolute joint
axes anywhere are collinear, a singularity results since an equal and opposite rotation about
the axes results in no net motion of the end-e↵ector. This is the only singularity of the
spherical wrist, and is unavoidable without imposing mechanical limits on the wrist design
to restrict its motion in such a way that z3 and z5 are prevented from lining up.

5.9.3 Arm Singularities

In order to investigate arm singularities we need only to compute J11 according to (5.124)
and (5.125), which is the same formula derived previously with the wrist center o in place
of o6.

Example 5.10 Elbow Manipulator Singularities Consider the three-link articulated
manipulator with coordinate frames attached as shown in Figure 5.4. It is left as an exercise

q5 = 0°

q6q4
Figure 3.6: Spherical wrist singularity.

38



3.5 Dynamics

3.4.3 Arm Singularities

In order to investigate arm singularities we only need to compute J11 according to (3.52),

det J11 = 0. (3.55)

q3 = 0 or π is one of the solutions for equation (3.55), which are shown in Fig. 3.7 [155].
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Figure 5.4: Elbow manipulator.

(Problem ??) to show that
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2
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3
5 (5.129)

and that the determinant of J11 is

det J11 = a2a3s3(a2c2 + a3c23). (5.130)

We see from (5.130) that the elbow manipulator is in a singular configuration whenever

s3 = 0, that is, ✓3 = 0 or ⇡ (5.131)

and whenever

a2c2 + a3c23 = 0. (5.132)

The situation of (5.131) is shown in Figure 5.5 and arises when the elbow is fully ex-

�3 = 0� �3 = 180�

Figure 5.5: Elbow singularities of the elbow manipulator.

tended or fully retracted as shown. The second situation (5.132) is shown in Figure 5.6.

q3 =180°q3 = 0°

Figure 3.7: Elbow singularities of the elbow manipulator.

3.5 Dynamics

The dynamics of a serial n-link rigid, non-redundant, fully actuated robot manipulator can be

written as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) +Bq̇ = τ (3.56)

where q ∈ Rn×1 is the vector of joint positions, τ ∈ Rn×1 stands for the applied joint torques,

M(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is the vector of

centripetal and Coriolis effects, G(q) ∈ Rn×1 is the vector of gravitational torques, and finally

B ∈ Rn×n is a diagonal matrix for the viscous frictions.

Using the Iterative Euler-Lagrange method to compute the dynamic equations of mo-

tion, the matrices are computed as:

1. Compute the Inertia matrix M(q) ∈ Rn×n:

M(q) =

n∑

i=1

miJ
cmi
υi (q)TJcmiυi (q) + Jcmiωi (q)TRcmi0 (q)IiR

cmi
0 (q)TJcmiωi (q).

2. Compute the matrix of Coriolis and Centripetal effects C(q, q̇) ∈ Rn×n:

ckj =
1

2

n∑

i=1

{
∂Mkj

∂qi
+
∂Mki

∂qj
− ∂Mij

∂qk

}
q̇i.
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3. Compute the vector of gravitational torques G(q) ∈ Rn×1:

Gk =
∂P

∂qk
, P =

n∑

i=1

mig
T tcmi0 .

4. Substituting M,C,G into the motion equation gives the dynamical equations (3.56).

3.5.1 Dynamics Properties

The dynamic model of the robot, represented by equation (3.56), presents the following prop-

erties [155].

1. Positive Definite Matrix

M(q) is a bounded symmetric positive definite matrix that is, in general, configuration

dependent: M+(q) = M+(q)T .

2. Skew Symmetric Matrix

The matrix N(q, q̇) = Ṁ(q) − 2C(q, q̇) is skew symmetric, that is, the components nij of

N satisfy nij = −nji. In other words,

• N = −NT ;

• XTNX = 0, where X ∈ R3×1 is any vector.

3. Linearity in the Parameters

The robot model described in (3.56) can be written in terms of a known state robot Re-

gressor Y = Y (q, q̇, q̈) ∈ Rn×m and an unknown robot Parameter vector Θ ∈ Rm×1 by using

nominal references q̇r and q̈r as follows:

M(q)q̈r + C(q, q̇)q̇r +G(q) +Bq̇r = YrΘ. (3.57)

Subtracting the linear parameterization equation (3.57) to (3.56), produces the open-loop

error dynamics

M(q)Ṡq + C(q, q̇)Sq = τ − YrΘ (3.58)

with the joint error surface Sq defined as Sq = q̇ − q̇r, where q̇r represents the nominal

reference of joint velocities. This nominal reference can be used to design a control.

These properties are important in terms of designing the control, as shown in the next

section. This design is based on Lyapunov Theory.
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3.6 Control

In this section we introduce some classical controllers briefly, that will be used in our system

later. Here, we assume B = 0 for simplicity in equation (3.56) and use this equation subse-

quently.

3.6.1 PD Control with Gravity Compensation

Let a constant equilibrium posture be assigned for the system as the vector of desired joint

variables qd. It is desired to find the structure of the controller which ensures global asymptotic

stability of the above posture. The determination of the control input which stabilizes the

system around the equilibrium posture is based on the Lyapunov direct method.

An independent joint PD-control scheme can be written in vector form as

τ = Kp∆q −Kdq̇ +G(q) (3.59)

where ∆q = qd − q is the error between the desired joint displacements qd and the actual joint

displacements q, and Kp,Kd are diagonal matrices of (positive) proportional and derivative

gains, respectively. We first show that the PD control law (3.59) achieves asymptotic tracking

of the desired joint positions.

To show that the above control law achieves zero steady state error, consider the Lyapunov

function candidate

V =
1

2
q̇TM(q)q̇ +

1

2
∆qTKp∆q. (3.60)

Differentiating (3.60) with respect to time and substituting the PD control law (3.59) for τ ,

and recalling that qd is constant, yields

V̇ = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + ∆q̇TKp∆q (3.61)

= −q̇TKdq̇ ≤ 0, (3.62)

where in the last equality we have used the fact that Ṁ − 2C is skew symmetric.

The above analysis shows that V is decreasing as long as q̇ 6= 0 for all system trajectories.

It can be shown that the system reaches an equilibrium posture. To find such posture, notice

that V̇ ≡ 0, only if q̇ ≡ 0. At the equilibrium (q̇ ≡ 0, q̈ ≡ 0), it is

∆q = qd − q = 0. (3.63)
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The above derivation rigorously shows that any manipulator equilibrium posture is glob-

ally asymptotically stable under a controller with a PD linear action and a nonlinear gravity

compensating action.

Note: This PD control is only for regulation since q̇d = 0.

3.6.2 Inverse Dynamics Control

Consider now the problem of tracking a joint space trajectory. The nonlinear control law for

inverse dynamics control is represented as

τ = M(q)aq + C(q, q̇)q̇ +G(q). (3.64)

Then, since the inertia matrix M is invertible, the combined system (3.56) and (3.64) reduces

to

q̈ = aq. (3.65)

Given a desired trajectory and choosing the reference input as

r(t) = q̈d +Kd q̇d +Kp qd (3.66)

the term aq represents a new input to the system which is yet to be chosen. Since aq can now

be designed to control a linear second order system r, the obvious choice is to set

aq = q̈d +Kd (q̇d − q̇) +Kp (qd − q) (3.67)

where Kp and Kd are diagonal matrices with diagonal elements consisting of position and

velocity gains, respectively. Then the tracking error e(t) = q − qd satisfies

ë(t) +Kd ė(t) +Kp e(t) = 0. (3.68)

For this control law, two feedback loops are represented: an inner loop based on the manip-

ulator dynamic model, and an outer loop operating on the tracking error.

Task Space Inverse Dynamics:

The tracking in task space can be achieved by modifying our choice of outer loop control q̈ in

(3.65) while leaving the inner loop control unchanged. Let X ∈ R6 represent the end-effector

pose using any minimal representation of SO(3). Since X is a function of the joint variables q

we have

Ẋ = J(q)q̇ (3.69)

Ẍ = J(q)q̈ + J̇(q)q̇ (3.70)
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where J is the analytical Jacobian of the robot. Given the double integrator system, (3.65), in

joint space we see that if aq is chosen as

aq = J−1{aX − J̇ q̇} (3.71)

the result is a double integrator system in task space coordinates

Ẍ = aX . (3.72)

Given a task space trajectory Xd(t), satisfying the same smoothness and boundedness as-

sumptions as the joint space trajectory qd(t), we may choose aX as

aX = Ẍd +Kd(Ẋd − Ẋ) +Kp(Xd −X) (3.73)

so that the Cartesian space tracking error, eX = X −Xd, satisfies

ëX +KdėX +KpeX = 0. (3.74)

Therefore, a modification of the outer loop control achieves a linear and decoupled system

directly in the task space coordinates, without the need to compute a joint space trajectory

and without the need to modify the nonlinear inner loop control.

3.6.3 Regressor-based Control

As shown in the (3.57), using the nominal reference and joint error space Sq, the system then

becomes as

M(q)Ṡq + C(q, q̇)Sq = τ − YrΘ (3.75)

where Sq = q̇ − q̇r.
The Lyapunov function

V =
1

2
Sq
TM(q)Sq (3.76)

is used to show uniform ultimate boundedness of the tracking error. Calculating V̇ yields

V̇ = Sq
TMṠq +

1

2
Sq
T ṀSq (3.77)

= Sq
T (τ − YrΘ). (3.78)

By inspecting (3.78), we see that if we choose the control τ according to the equation as

τ = −KdSq + YrΘ (3.79)
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3. ROBOT MODELING

then

V̇ = −SqTKdSq ≤ 0. (3.80)

At the equilibrium point, V̇ ≡ 0. Then (3.80) implies that Sq ≡ 0 and hence velocity q̇ = q̇r.

This means that we can modify the velocity reference q̇r to control the robot behavior.

Case 1: Break

If we want a break, we can set the q̇r = 0.

Case 2: PD Control

If we want a PD controller for the robot system, we can define

(q̇ − q̇d) +Kp(q − qd) = 0, (3.81)

which yields velocity reference q̇r as

q̇r = q̇d −Kp(q − qd) (3.82)

q̈r = q̈d −Kp(q̇ − q̇d). (3.83)

3.6.4 Passivity Based Adaptive Control

The feedback linearization approach relies on exact cancellation of nonlinearities in the robot

equations of motion. Its practical implementation requires consideration of various sources of

uncertainties such as modeling errors, unknown loads, and computation errors. In this case, we

can rewrite the (3.75) as

M(q)
˙̂
Sq + C(q, q̇)Ŝq = τ − ŶrΘ, (3.84)

where joint error surface is

Ŝq = q̇ − ˆ̇qr = Sq −∆q̇r, (3.85)

with ∆q̇r = ˆ̇qr − q̇r as the estimation errors.

In the adaptive approach, the vector Θ̂ in (3.84) is taken to be a time-varying estimate of

the true parameter vector Θ. Combing the control law (3.79) with (3.84) yields

τ = −KdŜq + ŶrΘ̂. (3.86)

The parameter estimate Θ̂ may be computed using standard methods such as gradient or

least squares. For example, using the gradient update law

˙̂
Θ = −ΓŶr

T
Ŝq (3.87)
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together with the Lyapunov function

V =
1

2

[
Ŝq
T
M (q) Ŝq + ∆ΘTΓ−1∆Θ

]
(3.88)

results in global convergence of the tracking errors to zero and boundedness of the parameter

estimates since

V̇ = Ŝq
T
M

˙̂
Sq +

1

2
Ŝq
T
ṀŜq + ∆ΘTΓ−1 ˙̂

Θ (3.89)

= −Ŝq
T
KdŜq + Ŝq

T
Ŷr∆Θ−∆ΘT Ŷr

T
Ŝq (3.90)

= −Kd‖Ŝq‖ ≤ 0 (3.91)

where ∆Θ = Θ̂−Θ, Kd = Kd
T ∈ Rn×n+ and Γ ∈ Rm×m+ are constant matrices.

3.6.5 Force Control

Active interaction control strategies can be grouped into two categories: those performing direct

force control and those performing indirect force control. The main difference between the two

categories is that the former offer the possibility of controlling the contact force and moment

to a desired value, thanks to the closure of a force feedback loop; the latter instead achieves

force control via motion control, without explicit closure of a force feedback loop.

3.6.5.1 Direct Force Control

As compared to indirect force control, direct force control requires an explicit model of the

interaction task. In fact, the user has to specify the desired motion and the desired contact force

and moment in a consistent way with respect to the constraints imposed by the environment. A

widely adopted strategy belonging to this category is hybrid force/motion control, which aims

at controlling the motion along the unconstrained task directions and force (and moment) along

the constrained task directions.

When the manipulator is in contact with the environment, the dynamic equations of rigid

robot must be modified to include the reaction torque JTFc corresponding to the end-effector

force Fc. Thus the equations of motion of the manipulator in joint space (3.56) are modified as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − JTFc. (3.92)

3.6.5.2 Impedance Control

In the second category are impedance control (or admittance control), where the deviation of

the end-effector motion from the desired motion due to the interaction with the environment
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is related to the contact force through a mechanical impedance/admittance with adjustable

parameters. A robot manipulator under impedance (or admittance) control is described by an

equivalent mass-spring-damper system with adjustable parameters.

The idea behind Impedance Control is to regulate the mechanical impedance, through

force feedback Fe. Let Xd be a reference trajectory defined in task space coordinates and

let M,Kd,Kp be 6× 6 matrices specifying desired inertia, damping and stiffness, respectively.

Let e = Xd −X be the tracking error in task space. Then the closed loop system is

Fe = Më+Kdė+Kpe, (3.93)

which results in desired impedance properties of the end-effector. Note that for Fe = 0 tracking

of the reference trajectory, Xd, is achieved.

3.7 Conclusion

The details of robot model for 6DOF StäubliTX90 industrial manipulator are described in this

chapter, including its kinematics and dynamics. Some classical controllers which will be later

used in this thesis, are also reviewed. From the next chapter, we will start to introduce the

vision based robot control, Visual Servoing (VS). We will first present two camera models for

the position-based VS and show some solutions for the visual occlusion problem in PBVS in

next chapter.
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Chapter 4

Camera Models for Occlusion
Avoidance

In this chapter, two different solutions are provided for the visual occlusion problem in PBVS

(e.g. out of camera field of view, visual occlusion by environments). Two different camera

models are presented to obtain the 3D Cartesian position of the objects, using the pixel features

extracted from the image plane. The properties of both camera models are validated on a real

industrial robot. The proposed camera models are integrated into a 3D PBVS in a human-robot

interaction (HRI) scenario.

4.1 Object Pose Estimation

In PBVS, features are extracted from the image and used to estimate the 3D Cartesian pose

of the target with respect to camera. Using these values, an error between the current and

the desired pose of the robot is defined in the task space. The translation and the rotation in

Cartesian space are explicitly reconstructed using pose estimation algorithms. The first step

is to extract features from the image. The color-based object tracking algorithm, described in

Appendix A, detects the objects and provides the pixel positions of the centroids of the detected

objects in the image plane. In the following section, we present the relationship between these

pixel positions in image space and the 3D positions in Cartesian space.

Pinhole Camera Model

The pinhole camera model in Fig. 4.1 can be represented as [156]



u
v
1


 =



fx 0 cx
0 fy cy
0 0 1





xc/zc
yc/zc

1


 (4.1)
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where Xc = [xc, yc, zc]
T is the 3D Cartesian position of point P with respect to the camera

frame Oc, while [u, v]T is the projected position in pixels, C = [cx, cy]T is the position of the

principal point in image plane (image center). fx, fy is the focal length of the lens used.

v

v

v

v

1 2

v v v v

Xc Xv

o o

Camera

u v

Figure 4.1: A general projective camera model.

Fig. 4.1 shows the point P represent in the world frame Ov with Xv = [xv, yv, zv]T . Suppose

the axes xc, xv and yc, zv are parallel, respectively, with a distance λ. Then the relationship

between frame Ov and Oc is

(Rcv)−1 = Rv
c =




1 0 0
0 0 1
0 −1 0


 tcv =



oc1
λ
oc2


 (4.2)

where [oc1 , oc2 ]T is the position of the optical center of the camera with respect to the coordinate

frame Ov.

Therefore, using these transformations we can get Xc as

Xc = Rv
c (Xv − tcv) =



xv − oc1
zv − oc2
λ− yv


 . (4.3)

Now, if the camera coordinate frame Oc is rotated an angle θ around zc axis, keeping the

planes (xc − yc) and (xv − zv) parallel. The equation (4.3) can be rewritten as

Xc =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1





xv − oc1
zv − oc2
λ− yv


 =


R(θ) ·

[
xv − oc1
zv − oc2

]

λ− yv


 (4.4)
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where the rotation matrix R(θ) is defined as

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (4.5)

Substituting (4.4) into (4.1) we obtain
[
u
v

]
=

1

−yv + λ

[
fx 0
0 fy

] [
cos θ − sin θ
sin θ cos θ

] [
xv − oc1
zv − oc2

]
+

[
cx
cy

]
. (4.6)

The equation (4.6) represents the relationship between pixel position [u, v]T in image plane

and 3D Cartesian position [xv, yv, zv]T of the point P . All of the parameters of the cameras

(intrinsic and extrinsic parameters) are obtained by standard camera calibration methods [156].

The following sections describe two different camera models that can be used to obtain the

3D Cartesian positions.

4.2 Orthogonal Cameras System

This section describes the use of orthogonal configuration of cameras to obtain the 3D Cartesian

position of objects. First, we introduce the Composite Camera Model, which consists of two

cameras in orthogonal configuration. Furthermore, the camera model is extended to incorporate

four orthogonal cameras, which provides a solution for visual occlusion for PBVS.

4.2.1 Composite Camera Model

Generally, one camera is not enough to get the 3D position of a target relative to a specific

coordinate frame. Therefore, in order to get a model that allows to obtain the 3D position of

a target through visual information, a second camera is placed in an orthogonal position with

respective to the first camera. In Fig. 4.2, coordinate frames Oc1 and Oc2 are cameras frames

and Ov is reference frame. Note that the planes xc1 −yc1 and xv− zv are parallel, and xc2 −yc2
and yv − zv are parallel.

Following the same procedure described in the previous section, the pinhole model for cam-

eras is defined by the equation (4.6). Therefore, the model for camera 1 is given by
[
u1

v1

]
=

1

−yv + λ1
α1R(θ1)

[
xv − o11

zv − o12

]
+

[
cx
cy

]
(4.7)

where θ1 is the rotation angle of camera 1 along its optical axis, O1 = [o11, o12]T is the position

of the optical center with respect to the coordinate frame Ov, λ1 is the distance from the camera

frame Oc1 to the reference frame Ov along its optical axis. α1 is defined as

α1 =

[
fx1

0
0 fy1

]
. (4.8)
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21 22

Xs=( u1,  u2,  v2) 

o o

2

11 12o o

2

2

2

1

1

1

1

1

Xv=(xv, yv, zv) 

2

meter
pixel

(u2,v2) 

Camera 1

Camera 2

c

c

c
c

c

c

c

c

v

v

v

v
(u1,v1) 

Xv

Figure 4.2: Two projective cameras which are orthogonal.

Similarly, camera 2 is defined as:

[
u2

v2

]
=

1

xv + λ2
α2R(θ2)

[
yv − o21

zv − o22

]
+

[
cx
cy

]
. (4.9)

Using properties of the rotation matrix R(θ1) and the fact that α1 =

[
fx1 0
0 fy1

]
is a diagonal

matrix, from (4.7), u1 can be written in terms of v1 as

u1 = (
fx1

cos θ1
) ·

xv − o11

−yv + λ1
− (

fx1
sin θ1

fy1 cos θ1
) · v1 + (

fx1 sin θ1

fy1 cos θ1
) · cy + cx (4.10)

= γ1 ·
xv − o11

−yv + λ1
− γ2 · v1 + γ3 (4.11)

where the constant parameters γ1, γ2, γ3 ∈ R are explicitly defined as

γ1 =
fx1

cos θ1
(4.12)

γ2 =
fx1

fy1
tan θ1 (4.13)

γ3 = cx + cyγ2. (4.14)

Since the axes of u2, v2 and u1 are orthogonal to each other. Therefore, based on (4.9) and

(4.11), we can define a 3D pixel vector Xs = [xs, ys, zs]
T in frame Os as

Xs =



xs
ys
zs


 =



u1

u2

v2


 =

Rα︷ ︸︸ ︷[
γ1 01×2

02×1 α2R(θ2)

]

xv−o11
−yv+λ1
yv−o21
xv+λ2
zv−o22
xv+λ2


+ ρ (4.15)
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where ρ = [γ3 − γ2v1, cx, cy]
T
. The pixel position Xs constructs the virtual 3D Pixel Space.

Remarks:

1. Xs is a 3D image features which are measured in pixels. It is not a Cartesian
position.

2. We always define the reference frame Ov as a specific orientation, such as
θ1 = θ2 = 0. In this case, then γ1 = fx1 , γ2 = 0, which implies ρ = [cx, cx, cy]T is
constant and Rα ∈ R3×3 is a diagonal matrix.

Therefore, equation (4.15) can be simplified as

Xs =



fx1

0 0
0 fx2 0
0 0 fy2





xv−o11
−yv+λ1
yv−o21
xv+λ2
zv−o22
xv+λ2


+



cx
cx
cy


 . (4.16)

Now, taking the derivative of (4.16), the differential relationship between Xs and Xv is given

by

Ẋs = RαJoẊv (4.17)

where the Jacobian matrix Jo ∈ R3×3 is defined as

Jo =




1
−yv+λ1

xv−o11
(−yv+λ1)2 0

− yv−o21
(xv+λ2)2

1
xv+λ2

0

− zv−o22
(xv+λ2)2 0 1

xv+λ2


 . (4.18)

For our analysis to hold, the composite image Jacobian matrix Jo has to be invertible.

4.2.1.1 3D Cartesian Position

Equation (4.16) shows the relationship between the 3D pixel position Xs = [u1, u2, v2]T and

the 3D Cartesian position Xv. Now given projected image points in each camera as [u1, v1]T

and [u2, v2]T , we need to obtain the Cartesian position Xv of point P in frame Ov.

For simplicity, we defined the off-setted Cartesian vector Xv ∈ R3 as

Xv =



xv

yv

zv


 =



xv−o11
−yv+λ1
yv−o21
xv+λ2
zv−o22
xv+λ2


 (4.19)

According (4.15) and (4.19), we can get

Xv = (Rα)−1(Xs − ρ). (4.20)

Then, given pixel positions [u1, v1]T and [u2, v2]T , which implies Xs = [u1, u2, v2]T , we can

compute the off-setted Cartesian vector Xv through (4.20).
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Extending (4.19), we have




xv + yv ·xv = xv ·λ1 + o11

yv − xv · yv = yv ·λ2 + o21

zv − xv · zv = zv ·λ2 + o22

(4.21)

These equations can be written in matrix form



1 xv 0
−yv 1 0
−zv 0 1





xv

yv

zv


 =



xv ·λ1 + o11

yv ·λ2 + o21

zv ·λ2 + o22


 . (4.22)

Finally, from (4.22), 3D Cartesian position Xv can be obtained using

Xv =



xv

yv

zv


 =




1 xv 0
−yv 1 0
−zv 0 1



−1 

xv ·λ1 + o11

yv ·λ2 + o21

zv ·λ2 + o22


 . (4.23)

where [xv, yv, zv]T is obtained in (4.20).

4.2.1.2 Summarize

For two orthogonal cameras, given image projected points [u1, v1]T and [u2, v2]T , which con-

struct a 3D pixel position Xs = [u1, u2, v2]T , we can compute the 3D Cartesian position Xv

with respect to the reference frame Ov. The process is summarized in Fig. 4.3 .

Xs=(u1, u2, v2) 
meterpixel

T T
Xv=(xv, yv, zv) 

Eq. (4.20) T Eq. (4.23)
Xv=(xv, yv, zv) 

Figure 4.3: 3D position computation in orthogonal configuration.

4.2.2 Rotation Matrix between Ow and Ov

Fig. 4.4 and Fig. 4.5 show two cameras placed in orthogonal configuration with respect to

reference frame Ov. Coordinate frame Ow is the world frame which is placed in the same

position as Ov with different rotation. Then, in order to apply the models (4.15)-(4.23) proposed

above and get 3D Cartesian position Xw with respect to world frame Ow, it is necessary to find

out the rotation matrix between coordinates frames Ov and Ow.

The cameras are calibrated using the method described in [157], which gives the transfor-

mations between cameras and world frame Ow as

Rwc1 =



Rwc1(1, 1) Rwc1(1, 2) Rwc1(1, 3)
Rwc1(2, 1) Rwc1(2, 2) Rwc1(2, 3)
Rwc1(3, 1) Rwc1(3, 2) Rwc1(3, 3)


 (4.24)
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(u1, v1) 
(u2, v2) 

v

b b

b

b

Robot

X
tb
w

Camera 1 Camera 2

v

v

v

v

Figure 4.4: Geometric model of the orthogonal camera system.

Camera 1

Camera 2

v

v

v
v

Figure 4.5: Two orthogonal camera configuration.

Rwc2 =



Rwc2(1, 1) Rwc2(1, 2) Rwc2(1, 3)
Rwc2(2, 1) Rwc2(2, 2) Rwc2(2, 3)
Rwc2(3, 1) Rwc2(3, 2) Rwc2(3, 3)


 (4.25)

twc1 =



twc1(1, 1)
twc1(2, 1)
twc1(3, 1)


 twc2 =



twc2(1, 1)
twc2(2, 1)
twc2(3, 1)


 . (4.26)

In previous subsection, we mentioned that the reference frame Ov is in a special case:

θ1 = θ2 = 0. It means that coordinate frame Oc1 and Oc2 have no rotation around their z axes

with respect to Ov. As shown in Fig. 4.5, xv is the same direction as xc1 , yv is the same as
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4. CAMERA MODELS FOR OCCLUSION AVOIDANCE

xc2 and zv is the same as yc2 . Therefore, the rotation matrix (orientation) of the coordinate

frame Owxwywzw with respect to Ovxvyvzv is the same as frame Owxwywzw with respect to

Ovxc1xc2yc2 .

Using the definition and properties of a rotation matrix, the rotation between Ov and Ow

is defined as

Rwv =



xw ·xc1 yw ·xc1 zw ·xc1
xw ·xc2 yw ·xc2 zw ·xc2
xw · yc2 yw · yc2 zw · yc2


 (4.27)

=



Rwc1(1, 1) Rwc1(1, 2) Rwc1(1, 3)
Rwc2(1, 1) Rwc2(1, 2) Rwc2(1, 3)
Rwc2(2, 1) Rwc2(2, 2) Rwc2(2, 3)


 . (4.28)

Equation (4.28) represents the orientation of Ow with respect to the Ov coordinate frame.

Then we can obtain

Rv
w = (Rwv )T =



Rwc1(1, 1) Rwc2(1, 1) Rwc2(2, 1)
Rwc1(1, 2) Rwc2(1, 2) Rwc2(2, 2)
Rwc1(1, 3) Rwc2(1, 3) Rwc2(2, 3)


 . (4.29)

Finally, the 3D Cartesian position Xw with respect to world frame Ow is computed by

Xw = Rv
w ·Xv. (4.30)

4.2.3 Avoid Visual Occlusion using four Orthogonal Cameras

As mentioned earlier, visual occlusion is one of the main issues when a visual servoing approach

is employed to control a robot involved in a human-robot interaction task. In this section, we

propose a new approach to avoid visual occlusions that emerge when an obstacle is placed be-

tween the camera and its target. It consists of placing four calibrated cameras in an orthogonal

configuration around the workspace of the robot, as shown in Fig. 4.6.

As seen in the previous section, only two orthogonal cameras are needed to get the 3D

Cartesian position of the target in real time. The only restriction is that the position of the

cameras used to get the 3D position have to be orthogonal. The purpose of placing four cameras

is to increase the possibility of keeping the targets in the field of view of cameras. Every time

we can choose 2 orthogonal cameras which are not occluded by obstacles to compute the 3D

Cartesian position.

In order to get the 3D position of a target relative to the coordinate frame Ow through

visual information provided by four cameras placed orthogonally around a reference coordinate

frame Ov, the following steps have to be applied:
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Figure 4.6: Four orthogonal camera configuration.

1. Place four cameras in orthogonal configuration, as shown in the Fig. 4.6.

2. Calibrate the four cameras orthogonal using the method described in [157].

3. Choose two orthogonal cameras from four cameras. The selected two cameras have to

keep tracking the targets.

4. Decide camera one and two. The condition is that the camera one is placed on the positive

side of the camera two. The choice of these two cameras decides the reference coordinate

frame Ov.

5. Apply equation (4.23) to get the 3D position Xv relative to the coordinate frame Ov.

6. Transform the 3D position from coordinate frame Ov to world frame Ow using a rotation

matrix Rv
w (4.29), to get Xw, shown as (4.30).
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4. CAMERA MODELS FOR OCCLUSION AVOIDANCE

Remarks:

1. The algorithm selects two orthogonal cameras from four cameras automati-
cally and keeps changing the selection in real time.

2. It is important to mention that the configuration of reference frame Ov is
always changing since it depends the selected two orthogonal cameras while
the world coordinate frame Ow is fixed. Hence, the rotation (Rv

w) between
frame Ov and Ow keeps changing. However, equation (4.29) provides a uni-
fying solution for the orientation, which means that the model to get the 3D
Cartesian position is never changed. The only changed values are Rwc1 and Rwc2
due to selected orthogonal cameras.

3. The model of the cameras never changes, making the algorithm fast.

4.3 Uncalibrated Stereo Vision System

In previous section, we reviewed a methodology designed to obtain the 3D position of a target

through visual information employing at least two cameras placed orthogonally. Similarly, in

this section we reviewed another way to get the 3D position of a target using two cameras in a

stereo configuration. The geometric camera model of stereo system is shown in Fig. 4.7.

yb

zb

ob

xb

l
l

l

ll

r

r

r

b

Figure 4.7: Geometric model of the stereo camera system.

4.3.1 3D Recovery from Stereo System

In the two-camera setup, each camera gives a different 3D back projection line. These two back

projection lines usually coincide at exactly one point (Fig. 4.8 (a)). Given a stereo setup, it can

find the 3D position of a point P by observing its position in two different cameras[156].
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Figure 4.8: The stereo camera model: (a) shows a 3D point projected in two cameras, (b) the
world coordinate frame is on the left camera frame point.

For two cameras with two projection matrices P1 and P2 we have

s1



u1

v1

1


 = P1




x
y
z
1


 s2



u2

v2

1


 = P2




x
y
z
1


 . (4.31)

Given the observed image points in each camera (u1, v1) and (u2, v2), we want to solve the

3D position in the world frame Xw = [x, y, z]T .

Multiplying out in terms of the Pi gives:

xuip
i
31 + yuip

i
32 + zuip

i
33 + uip

i
34 = xpi11 + ypi12 + zpi13 + pi14

xvip
i
31 + yvip

i
32 + zvip

i
33 + vip

i
34 = xpi21 + ypi22 + zpi23 + pi24

(4.32)

where i is 1 or 2, and pi11 denotes element (1,1) in Pi.

Since we want to solve this for Xw = [x, y, z]T , these terms are collected on the left and

other terms on the right, and the equation is then rewritten as:

AXw = B (4.33)

A =


u1p

1
31 − p111 u1p

1
32 − p112 u1p

1
33 − p113

v1p
1
31 − p121 v1p

1
32 − p122 v1p

1
33 − p123

u2p
2
31 − p211 u2p

2
32 − p212 u2p

2
33 − p213

v2p
2
31 − p221 v2p

2
32 − p222 v2p

2
33 − p223

 (4.34)

and

B =


p114 − u1p

1
34

p124 − v1p134
p214 − u2p

2
34

p214 − v2p234

 . (4.35)

We need to solve this for Xw. Since A is not square, the pseudo inverse is used:

Xw = (ATA)−1ATB. (4.36)
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4. CAMERA MODELS FOR OCCLUSION AVOIDANCE

4.3.2 Stereo Camera Model

If we put the world coordinate frame Ow at the left camera origin point Ocl (see Fig. 4.8 (b)),

then given the relation between right camera and left camera (defined by the orientation matrix

Rlr ∈ SO(3) and the translation vector tlr ∈ R3×1), we can define the projection matrices Pcl

and Pcr ∈ R3×4 for each camera as

Pcl = Kl

[
I3×3 03×1

]
Pcr = Kr

[
Rlr tlr

]
(4.37)

where Kl and Kr are the intrinsic camera matrices of the left and right cameras respectively1.

Then, defining the observed image points in each camera as pl = [ul, vl]
T , pr = [ur, vr]

T ,

we can use triangulation [156] to compute the relative position Xw = Xcl = [xc, yc, zc]
T with

respect to the left camera Ocl , which is shown in (4.36).

In order to control the robot, we need to compute the 3D position with respect to the robot

base coordinate frame Ob. By knowing the transformation between Ow (the same as Ocl) and

Ob, T
w
b = T clb = [Rclb tclb ], we can get the robot end-effector position

Xef = Xb = Rclb Xcl + tclb . (4.38)

4.3.3 On-line Estimation of Rotation for the Stereo System

We define this system as uncalibrated because we not only assume that the calibration of the

stereo vision system (left camera Ocl) with respect to the robot base frame (Ob) is unknown,

but we also consider the possibility of manually moving the camera to a better position. When

the target object is occluded (visual occlusions), the stereo camera system can be moved to

another position to maintain the target in the field of camera view. After moving the stereo

cameras, an on-line estimation of the transformation T clb (or Twb ) is needed. This estimation

uses the real-time information generated by the robot without stopping robot during the task

execution.

Finding the rotation and translation between two sets of corresponding 3D point data, such

that they are aligned, is a common problem. An illustration of the problem is shown below for

the simplest case of 3 corresponding points (the minimum number of points required to solve).

As shown in Fig. 4.9, let the given 3D datasets A and B be represented in two coordinate

frames. We want to find the best rotation R and translation t that will align the points in

dataset A to dataset B.

P iB = RP iA + t, (4.39)

1These parameters can be computed off-line.
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 t

Dataset A Dataset B

R

Dataset A

Dataset B

(a) (b)

Figure 4.9: Two datasets of corresponding 3D points.

where i = 1, 2, ..., n, (n ≥ 3), P = [x, y, z]
T

, PA and PB are points in dataset A and B

respectively.

Finding the optimal rigid transformation matrix can be broken down into steps:

1. Find the centroids of both dataset

The centroids CA,B are the average points and can be calculated as follows:

CA =
1

n

n∑

i=1

P iA CB =
1

n

n∑

i=1

P iB . (4.40)

2. Estimation of Base Orientation R

There are several ways of finding optimal rotations between datasets. The easiest way is

using Singular Value Decomposition (SVD), as discussed in [158]. Define a 3 × 3 matrix

M as

M =

n∑

i=1

(
P iA − CA

) (
P iB − CB

)T
, (4.41)

then a least-squares fit of the rotation matrix can be written as

R = Udiag
(
1, 1, det

(
UV T

))
V T (4.42)

where (U, S, V ) = svd(M).

3. Compute the translation t

After the rotation R is obtained, t can be solved as:

t = CB −RCA. (4.43)

In our case, PB is defined as a set of end-effector 3D positions Xb with respect to robot

base frame Ob, while PA denotes a set of the corresponding position vectors Xcl in stereo

camera frame Ocl . Hence, the estimated orientation R = Rclb .
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4. CAMERA MODELS FOR OCCLUSION AVOIDANCE

4.4 Discussion

In this chapter, two camera models were introduced to avoid visual occlusions for PBVS. The

first camera model consists of four orthogonal cameras with precise calibration. The system au-

tomatic selects two composite cameras that keep tracking the targets to obtain the 3D Cartesian

position for the robot controller. The second camera model is an uncalibrated stereo camera

system, which can be moved manually to maintain the targets in the field of camera view when

visual occlusion occurs. Both these approaches have been tested on a real industrial robot in a

Human-robot-interaction scenario, see Appendix B.

Both methods have their advantages and disadvantages. The orthogonal camera model can

provide 3D pixel positions on images. Each component of the 3D pixel positions is orthogonal

and independent. If the 3D pixel positions are chosen as visual features for visual servoing,

then a linear mapping between those pixel positions and Cartesian positions is obtained, which

can be used to design a decoupled controller. However, for the orthogonal configuration, a

complicated camera placement and accurate calibration is required. It is physically difficult to

achieve this in real world.

In contrast, the uncalibrated stereo camera system does not require the exact calibration

and can be moved. However, it can not generate independent image features. The choice

of features directly influences on the performance of the control system and on the ability to

analyze the closed-loop dynamics. If the classical features extracted from the stereo cameras

are used as inputs for visual servoing, then some common problems such as image singularity

and local minima may occur, which lead to stability and convergence issues.

The ideal case is to find a camera configuration which can combine the advantages of both

approaches. In next chapter, we will propose a new camera model which combines these two

camera configurations by mapping the stereo configuration into a virtual orthogonal camera

arrangement. The measurements obtained by the virtual camera model can generate 3D or-

thogonal pixel positions, which are chosen as the visual features for visual servoing.
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Chapter 5

6D Image-Based Visual Servoing

In this chapter, we present an approach (6DVS) to control a 6 DOF manipulator using an un-

calibrated visual servoing (VS) approach that addresses the challenges of choosing proper image

features for target objects and designing a VS controller to enhance the tracking performance.

The system is composed of the manipulator coupled with a stereo vision system in the eye-to-

hand configuration, see Fig. 5.1. We construct a new virtual visual space, using a novel stereo

camera model employing virtual orthogonal cameras. A 6D pixel pose vector (Ws) is extracted

from this virtual space. It represents the image positions as 6 linearly independent and orthog-

onal signals, which are used as inputs for visual servoing instead of the classical visual features.

This leads to generate a full-rank 6× 6 image Jacobian matrix which allows avoiding classical

problems, such as image space singularities and local minima. Furthermore, several tasks are

evaluated in simulation to show the performance and properties of the proposed method.

Figure 5.1: Real world experimental setup.
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5. 6D IMAGE-BASED VISUAL SERVOING

5.1 Problem Statement

5.1.1 Classical IBVS with a Stereo vision System

Based on the existing literature in this field, we can conclude that two main aspects have the

impact on the behavior of a visual servoing scheme: the selection of visual features used as

inputs of the control law and the form of the control scheme.

As described in [9], in classical IBVS, the image point position s = [u, v]T is chosen as the

visual feature and the control scheme is

ṡ = LsẊc (5.1)

in which the interaction matrix Ls is defined as (2.17).

Ls =

[
f
z 0 −uz −uvf

f2+u2

f −v
0 f

z −vz − f2+v2

f
uv
f u

]
(5.2)

where f is the focal length expressed in pixel units.

If a stereo vision system is used and a 3D point is visible in both left and right images, it is

possible to use as visual features

s = [pl, pr]
T = [ul, vl, ur, vr]

T (5.3)

to represent the point by stacking in s the x and y coordinates of the observed point in the left

and right images [10]. Therefore, the corresponding equation given in (5.1) is expressed in both

left and right camera frame. More precisely, we have:

ṡ = LsẊc =

[
Lsl
Lsr

]
Ẋc. (5.4)

To control a 6 DOF robot, at least three points are necessary. If we have a vector Wb =

[Xb, θb]
T = [xb, yb, zb, αb, βb, γb]

T ∈ R6×1, which is the pose of the end-effector in the robot base

frame (in this case we choose Euler angles to representation the orientation of the end-effector),

and a feature vector s = [u1l , v1l , u1r , v1r , ..., upl , vpl , upr , vpr ]
T ∈ R4p×1, which contains p image

points. The mapping between ṡ and Ẇb is given by

ṡ︸︷︷︸
4p×1

= Jx︸︷︷︸
4p×6

Ẇb︸︷︷︸
6×1

(5.5)

where (Jx = [Ls1 , ..., Lsp ]T ·V bc ) ∈ R4p×6 is known as the image Jacobian, Lsi is given by (5.4)

and (5.2), and V bc ∈ R6×6 is the mapping to transform velocities expressed in the robot base

frame to the camera frame, defined as (2.5).
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5.1 Problem Statement

5.1.2 The problem of Classical IBVS

If we consider ∆Wb as the input to a robot controller, then we need to compute the inverse

mapping of ṡ as

∆Wb = J+
x ∆s, (5.6)

where ∆∗ is an error function defined in the space ∗, J+
x ∈ R6×4p is chosen as the Moore-Penrose

pseudo inverse of Jx, which leads to the two characteristic problems of the IBVS method: the

feature (image) space singularities and local minima. For most IBVS approaches we have 4p > 6.

In this case, the image Jacobian is singular when rank(Jx) < 6, while the image local minima

is defined as the set of image locations Ωs =
{
s|Ẇb = 0,but ∆s 6= 0,∆Wb 6= 0,∀s ∈ R4p×1

}

when using redundant image features. Examples of the problems generated by the local minima

conditions are illustrated in [10] and [159].

5.1.3 Algorithm Design

In image-based control approach, the ideal case is to choose visual features with good de-

coupling and linearizing properties [35, 160] where the interaction matrix has neither local

minima nor singularities. In our work, we propose a new camera model which can map the

the classical image features s to a new visual representation defined as Ws = [Xs, θs]
T =

[xs, ys, zs, αs, βs, γs]
T ∈ R6×1. In this case, Ws is a 6D pixel pose vector defined in a 3D Image

space (we call this space the virtual visual space). This visual pose is measured in pixels and it

is composed of 3D visual position and 3D visual orientation.

The algorithm design and concept of the proposed 6DVS is shown in Fig. 5.2. The new visual

features Ws has six orthogonal elements and they are linearly independent. If we consider Ws

as the inputs to visual servoing control, then a new mapping as

Ẇs = Jimg Ẇb (5.7)
[
Ẋs

θ̇s

]

6×1

= Jimg︸︷︷︸
6×6

[
Ẋb

θ̇b

]

6×1

= Jimg · Ja(q) · q (5.8)

is obtained, where Ja(q) is the Jacobian matrix of the robot manipulator and q is the robot

joint position.

The advantage of this new mapping is that, a full-rank image Jacobian matrix (Jimg ∈ R6×6)

can be obtained, and if we choose camera parameters properly, then the image space singularities

and local minima can be avoided.
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6DVS Concept

Feature Extraction 

Stereo Vision
Model

Orthogonal
Camera Model4 Image points

Classical IBVS with stereo cameras 6DVS: with new Image features

Figure 5.2: Algorithm design: mapping from the classical IBVS features to new orthogonal
features in the virtual visual space.

5.2 Image Jacobian for 3D position

5.2.1 3D Camera Model

In order to get the new pixel features Ws, we propose a new camera model, where a real stereo

camera model employing virtual orthogonal cameras is used to tracking the objects. First we

use standard stereo vision model to compute the object position, then the position is projected

onto two virtual orthogonal cameras, whose reference frame is located in the left stereo camera

frame. Fig. 5.3 shows this new camera model.

The new camera model can construct a new virtual visual space, and is used to map 6D

poses from Cartesian space to this virtual visual space. Each component of the 6D pose vector

defined in this virtual visual space is linearly independent, leading to a full-rank 6 × 6 image

Jacobian matrix, which allows avoiding classical problems, such as image space singularities

and local minima. Furthermore, the control for rotational and translational motion of robot is

decoupled due to the diagonal image Jacobian.

The obtained new image Jacobian matrix (Jimg ∈ R6×6) describes the relationship between

the motion of selected six image features and the velocity of the robot end-effector. It has

a block decoupled structure, which is divided into position image Jacobian (Jv ∈ R3×3) and

orientation image Jacobian (Jω ∈ R3×3).
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Figure 5.3: Image projections for 3D vision model to get the virtual visual space.

• Fig. 5.3 (a): The figure depicts the different coordinate frames used to obtain a general

3D virtual visual space. Xb ∈ R3×1 is the position in meters [m] of an Object with respect

to the world coordinate frame (wcf) denoted by Ob. OCl and OCr are the coordinate

frames for the left and right cameras, respectively. RbCl ∈ SO(3) represents the orientation

of wcf with respect to the left camera. Ov is a reference coordinate frame for the virtual

orthogonal cameras Ov1,2
where RClv ∈ SO(3) is its orientation with respect to OCl . The

vectors pvi ∈ R2×1 represents the projection of the Object in the virtual cameras Ovi .

• Fig. 5.3 (b): 4 points (pef , p1, p2, p3) are attached to the end-effector to represent the

orientation frames of virtual visual space, with the optical center offsets of virtual cameras

being zero ( O1 = O2 = [0, 0]T ).

Jv ∈ R3×3 describes the relationship between the velocities of 3D Cartesian position Ẋb

(meters) and 3D visual position Ẋs (pixels). The key idea of this model is to combine the

stereo camera model with a virtual composite camera model to get a full-rank image Jacobian.

Fig. 5.3 shows the 3D camera model, which can be computed in two steps:

1. The standard stereo vision model [156] is used to analytically recover the 3D relative

position (XCl) of an object with respect to the reference frame of the stereo system OCl .

2. The Cartesian position XCl is projected into two virtual cameras Ov1 and Ov2 .

This projection is a crucial step, since it modifies the dimension of the mapping from two

2D-image feature measurements of all p points (s = [pl1 , pr1 , ...plp , prp ]T ∈ R4p×1) to a single

3D visual position vector Xs ∈ R3×1 in the virtual visual space. Since s represents the position
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5. 6D IMAGE-BASED VISUAL SERVOING

XCl ∈ R3×1 in the image feature space, the maximum number of independent elements of s is

3. Therefore, there are 4p − 3 dependent elements in s. In this thesis, we propose a virtual

projection that reduces the dimension of s and extract 3 linearly independent elements to get

a full-rank image Jacobian (Jv).

5.2.2 Stereo Vision Model

The relation between right camera and left camera is given by a orientation matrix Rlr ∈ SO(3)

and a translation vector tlr ∈ R3×1. Using this transformation we can define the projection

matrices PCl and PCr ∈ R3×4 for each camera as

PCl = Kl

[
I3×3 03×1

]
PCr = Kr

[
Rlr tlr

]
(5.9)

where Kl and Kr are the intrinsic camera matrices of the left and right cameras1.

Then, defining the observed image points in each camera as pl = [ul, vl]
T , pr = [ur, vr]

T , we

can use triangulation [156] to compute the relative position XCl = [xc, yc, zc]
T of the point Xb

with respect to the left camera OCl . This can be done by solving the system

A

[
XCl

1

]
= 0 (5.10)

where

A =


ulp

l
31 − pl11 ulp

l
32 − pl12 ulp

l
33 − pl13 ulp

l
34 − pl14

vlp
l
31 − pl21 vlp

l
32 − pl22 vlp

l
33 − pl23 vlp

l
34 − pl24

urp
r
31 − pr11 urp

r
32 − pr12 urp

r
33 − pr13 urp

r
34 − pr14

vrp
r
31 − pr21 vrp

r
32 − pr22 vrp

r
33 − pr23 vrp

r
34 − pr14

 (5.11)

where plij denotes the element (i, j) in PCl , and prij denotes the element (i, j) in PCr .

Before integrating the stereo cameras model with the virtual composite model, a re-orientation

of the coordinate frame OCl to a new coordinate frame Ov with the same origin is required.

The projection Xv = [xv, yv, zv]T of XCl in Ov is defined as (Fig. 5.3)

Xv = RClv XCl (5.12)

where RClv is the orientation of the reference frame Ov with respect to left stereo camera OCl .

Remark:

The reference frame Ov is fixed on the left camera frame and defined by the user. Therefore,

it is assumed to be known. In other words, if we move the whole stereo camera system, the

orientation matrix RClv is not modified. From Fig. 5.4, we can obtain RClv is a constant matrix

1These parameters can be computed off-line.
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5.2 Image Jacobian for 3D position

as

RClv =




1 0 0
0 0 −1
0 1 0


 . (5.13)

5.2.3 Virtual Composite Camera Model

5.2.3.1 Composite Camera Analysis

We propose a Composite Camera Model as a minimization method for the feature point space s.

The advantage of the orthogonal camera configuration is the linear independence of the visual

measurements, as presented in section 4.2 (Xs in Fig. 5.4). It represents the image positions

as 3 orthogonal signals which can be used as inputs for visual servoing instead of the classical

features extracted from the stereo cameras.

While this orthogonal camera configuration is useful for generating independent feature

vectors, it requires a complex and accurate arrangement of the cameras which is physically

hard to achieve. A stereo camera arrangement, on the other hand, is easy to configure and

move, but doesn’t provide independent image features. We propose to combine the benefits of

these two configurations by mapping the projections of the stereo configuration into a virtual

composite cameras arrangement. The measurements obtained from the virtual camera model

can generate a 3D pixel position.

5.2.3.2 Virtual Composite Camera Model Generation

In order to compute the virtual visual space, we define two virtual cameras attached to the

stereo cameras system using the coordinate frame Ov (Fig. 5.4). We use the pinhole camera

model [156] to project the relative position Xv to each of the virtual cameras Ov1
and Ov2

.

The model for the virtual camera 1 is given by

pv1 =

[
uv1

vv1

]
=

1

−yv + λ
αR (φ)

[
xv − o11
zv − o12

]
+

[
cx
cy

]
. (5.14)

where φ is the rotation angle of the virtual camera along its optical axis, O1 = [o11, o12]T is the

projection position of the optical center with respect to the coordinate frame Ov, C1 = [cx, cy]
T

is the position of the principal point in the image plane, λ is the distance from the virtual camera

coordinate frame Ov1
to the reference frame Ov along its optical axis, α and the rotation matrix

R(φ) are defined as:

α =

[
fβ 0
0 fβ

]
R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
. (5.15)

where f is the focal length of the lens used, β is the magnification factor of the camera.
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Figure 5.4: Placement of the virtual composite camera model with respect to left camera.

Since this model represents a user-defined virtual camera, all its parameters (extrinsic and

intrinsic1) are known, in fact, in the defined configuration of the virtual cameras φ = 02

(Fig. 5.4).

Similarly, the model for virtual camera 2 is defined as:

pv2
=

[
uv2

vv2

]
=

1

xv + λ
αR (φ)

[
yv − o21

zv − o22

]
+

[
cx
cy

]
. (5.16)

In order to construct the 3D virtual visual space Xs ∈ R3×1, we combine both virtual

camera models as follows.

Using the properties of the rotation matrix R(φ) and the fact that α is a diagonal matrix,

from (5.14), uv1 can be written in the form

uv1
= γ1

xv − o11

−yv + λ
− γ2vv1

+ γ3 (5.17)

where the constant parameters γ1, γ2, γ3 ∈ R are explicitly defined as

γ1 =
fβ

cosφ
, γ2 = tan(φ), and γ3 = cx + cyγ2. (5.18)

1Since the virtual cameras are user-defined, we can set the same intrinsic parameters and λ values for both
cameras.

2The reason to introduce the auxiliary coordinate frame Ov is to simplify the composite camera model by
rotating the coordinate frame OCl in an specific orientation, such as φ = 0.
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5.2 Image Jacobian for 3D position

Based on (5.16) and (5.17), we define the 3D Visual Camera Model (Os) representation

Xs = [xs, ys, zs]
T 1 using the orthogonal elements [uv1

, uv2
, vv2

]T as

Xs =



uv1

uv2

vv2


 =

Rα︷ ︸︸ ︷[
γ1 01×2

02×1 αR (φ)

]


xv−o11
−yv+λ
yv−o21
xv+λ
zv−o22
xv+λ


+ ρ (5.19)

where ρ = [γ3 − γ2vv1
, cx, cy]

T
and the pixel position Xs constructs the new virtual visual

Space.

Given that φ = 0, then γ1 = fβ, γ2 = 0, γ3 = cx, implies that ρ = [cx, cx, cy]
T

and

Rα = diag(fβ) ∈ R3×3. Therefore, the mapping in (5.19) can be simplified as

Xs = diag(fβ)




xv−o11
−yv+λ
yv−o21
xv+λ
zv−o22
xv+λ


+



cx
cx
cy


 . (5.20)

The velocity mapping can be obtained with the time derivative of (5.20), with combing

(5.12) as follows:

Ẋs =

Jα︷ ︸︸ ︷
RαJo Ẋv = JαẊv = (JαR

Cl
v ) ẊCl (5.21)

where the Jacobian matrix Jo ∈ R3×3 is defined as

Jo =




1
−yv+λ

xv−o11
(−yv+λ)2 0

− yv−o21
(xv+λ)2

1
xv+λ 0

− zv−o22
(xv+λ)2 0 1

xv+λ


 . (5.22)

This composite image Jacobian Jα represents the mapping from velocities defined in the

reference frame Ov to velocities in virtual visual space. In order to complete the 3D visual

mapping we need to map from left camera OCl to robot base frame to Ob, see Fig. 5.3:

XCl = RbClXb + tbCl (5.23)

where RbCl and tbCl are the transformation between frame OCl and Ob.

Taking the time derivative of (5.23), equation (5.21) can be rewritten in the form

Ẋs =

Jυ︷ ︸︸ ︷
Jα(RClv RbCl) Ẋb (5.24)

= JυẊb (5.25)

where we define the Jacobian Jυ ∈ R3×3 as the position image Jacobian.

1We use Xs instead of the classical notation s because Xs is more than an image feature measurement, in
fact, it defines a position vector in the 3D virtual visual space.

69



5. 6D IMAGE-BASED VISUAL SERVOING

Remark: Virtual Cameras.

The two virtual cameras are selected in such a way that their optical axes intersect at 90°. Since

the cameras are virtual they have infinite field of view, and pixel positions Xs can be either

negative or positive.

5.3 Image Jacobian for 3D Orientation

In the previous section, a point in Cartesian space Xb can be projected to a vector Xs defined

in the virtual visual space. If we set the optical center offsets of the virtual cameras as O1 =

O2 = [0, 0]T (Fig. 5.3 (b)), then the mapping (5.20) can be simplified as

Xs = diag(fβ)




xv

−yv+λ
yv

xv+λ
zv

xv+λ


+



cx
cx
cy


 . (5.26)

In order to define the orientation, we need to define 4 different points rigidly attached to

the robot end-effector (Fig. 5.3 (b)). These 4 points can be used to represent the orientation of

the end-effector in the base frame. The 4 points: [Pef , P1, P2, P3] expressed in the end-effector

frame Oef , are the origin and the canonical basis of a 3D Euclidean space, which means





origin point Pef : Xef = [0, 0, 0]T

x axis P1: Xe1 = [1, 0, 0]T

y axis P2: Xe2 = [0, 1, 0]T

z axis P3: Xe3 = [0, 0, 1]T .

(5.27)

5.3.1 Orientation Definition in Virtual Visual Space

In order to specify 3 orthogonal vectors in the virtual visual space, which can be used to represent

visual orientation, the 4 points defined in (5.27) can be represented in frame Ov and Os using

(5.26) 



Xvef = [0, 0, 0]T

Xv1 = [1, 0, 0]T

Xv2
= [0, 1, 0]T

Xv3
= [0, 0, 1]T

=⇒





Xsef = [cx, cx, cy]T

Xs1 = [cx + fβ
λ , cx, cy]T

Xs2 = [cx, cx + fβ
λ , cy]T

Xs3 = [cx, cx, cy + fβ
λ ]T .

(5.28)

In the same form, using (5.28), we define a basis of the 3D virtual visual space (expressed

in pixels) 



V1 = Xs1 −Xsef = [ fβλ , 0, 0]T

V2 = Xs2 −Xsef = [0, fβ
λ , 0]T

V3 = Xs3 −Xsef = [0, 0, fβ
λ ]T .

(5.29)
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5.3 Image Jacobian for 3D Orientation

According to the definition of the rotation matrix, the orientation of this 3D virtual visual

space is represented as

Rv
s =

[
V1

‖V1‖
V2

‖V2‖
V3

‖V3‖

]
= I. (5.30)

Hence, the visual rotation matrix of the end-effector with respect to Os can be computed as

Refs = Rv
sR

ef
v = Refv (5.31)

= (RClv RbCl)R
ef
b . (5.32)

5.3.2 Orientation Mapping Jω

Given a rotation matrix R, the angular velocity of the rotating frame can be represented as

S(ω) = ṘRT (5.33)

in which S(ω) is a skew symmetric matrix, defined as

S(ω) =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 (5.34)

and ω = [ωx, ωy, ωz]
T is the angular velocity.

Therefore, the angular velocity of the end-effector frame with respect to the robot base

frame (ωb) is given by

S(ωb) = Ṙefb (Refb )T (5.35)

and using (5.32) the angular velocity (ωs) of the end-effector frame with respect to Os is given

by1

S(ωs) =
˙

Refs (Refs )T (5.36)

= (RClv RbCl)
˙

Refb (Refb )T (RClv RbCl)
T (5.37)

= (RClv RbCl)S(ωb)(R
Cl
v RbCl)

T (5.38)

= S((RClv RbCl)ωb). (5.39)

From (5.39) we can obtain the visual angular velocity

ωs = (RClv RbCl)ωb. (5.40)

Now, let θ = [α, β, γ]T be a vector of Euler angles, which denotes a minimal representation

for the orientation of the end-effector frame relative to the robot base frame. Then, the definition

1Properties of Skew Symmetric matrices show that: RS(α)RT = S(Rα) with R ∈ SO(3) and α ∈ R3.
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5. 6D IMAGE-BASED VISUAL SERVOING

of the angular velocity ω is given by [155]

ω = T (θ)θ̇. (5.41)

If Ref = Rz,γRy,βRx,α is the Euler angle transformation, then

T (θ) =




cos(γ) cos(β) − sin(γ) 0
sin(γ) cos(β) cos(γ) 0
−sin(β) 0 1


 . (5.42)

Singularities of the matrix T (θ) are called representational singularities. It can easily be shown

that T (θ) is invertible provided cos(β) 6= 0.

Substituting (5.41) into (5.40) we obtain

T (θs)θ̇s = (RClv RbCl)T (θb)θ̇b. (5.43)

Furthermore, this expression can be written as

θ̇s =



α̇s
β̇s
γ̇s


 =

Jω︷ ︸︸ ︷
T (θs)

−1(RClv RbCl)T (θb) θ̇b (5.44)

= Jω θ̇b (5.45)

where the matrix Jω ∈ R3×3 is defined as the orientation image Jacobian.

5.4 Visual Jacobian

In the previous sections, we have defined the mappings for the 3D pixel position and orientation

separately as position image Jacobian (Jυ) and orientation image Jacobian (Jω). Combining

equation (5.25) and (5.45) we have the full expression

Ẇs =

[
Ẋs

θ̇s

]
=

[
Jυ 0
0 Jω

] [
Ẋb

θ̇b

]
(5.46)

= JimgẆb (5.47)

where Jimg ∈ R6×6 is defined as the image Jacobian , which is a block diagonal Jacobian

matrix.

Substituting the robot differential kinematics Ẇb = Ja(q)q̇, equation (5.47) can be rewritten

in the form

Ẇs = JimgJa(q)q̇ = Jsq̇ (5.48)
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5.4 Visual Jacobian

where Ja(q) ∈ R6×6 is the analytical Jacobian matrix of the robot manipulator and Js ∈ R6×6

is defined as the Visual Jacobian .

The analytical Jacobian, Ja(q) can be computed from the geometric Jacobian J(q) as

Ja(q) =

[
I 0
0 T (θb)

−1

]
J(q) (5.49)

provided that det(T (θ)) 6= 0.

Then the inverse differential kinematics that relates generalized joint velocities q̇ and 6D

visual velocities Ẇs is given by

q̇ = Js
−1Ẇs = Ja(q)

−1
Jimg

−1Ẇs. (5.50)

Equation (5.50) is the inputs of the controller, which is used to design a regressor-based

adaptive control law in the next section.

Some remarks about the proposed visual Jacobian and visual servoing are presented here:

Remark: Image-based Visual Servoing.

As shown in the Fig. 5.2, the general idea behind our method is that we try to extract six

independent features Ws (pixel) from the classical image features s in order to get a square

full-rank image Jacobian Jimg. The mapping from s to our new features Ws can be obtained

by many different methods. In this thesis, we provide one possible solution by recovering 3D

positions from stereo cameras and re-projecting them into two virtual camera frames. Both

these steps are intermediate steps to calculate the required mapping.

Remark: Singularity-free Jimg.

From (5.46), we can see that det(Jimg) = det(Jυ)det(Jω), therefore the set of singular configu-

rations of Jimg is the union of the set of position configurations satisfying det(Jυ) = 0 and the

set of orientation configurations satisfying det(Jω) = 0.

From (5.21) and (5.24), we can see that Jυ
−1 = RbCl

−1
RClv

−1
Jo
−1R−1

α . The matrices

RbCl , R
Cl
v ∈ SO(3) and Rα = diag(fβ) ∈ R3×3 are non-singular. Then, det(Jo) = 0→ det(Jv) =

0. This condition is present only when: 1) O11 + λ = 0 and O21 − λ = 0 or 2) xv = −λ and

yv = O21 or 3) yv = λ and xv = O11. However, O11, O21 and λ are also defined by the user.

Then, a non-singular Jv can be obtained using the condition O11 = O21, λ > max(xvmax , yvmax),

where xvmax
and yvmax

are delimited by the robot workspace defined with respect to Ov. Hence,

det(Jv) 6= 0 and can not become infinite.

In (5.44), singularities of the matrix T (θ) are called representational singularities, which

means when these happen, the orientation can not be presented as Euler angles. In our case,
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5. 6D IMAGE-BASED VISUAL SERVOING

Euler angles always exist by constraining those special points. By providing det(T (θ)) 6= 0, J−1
ω

always exists. Therefore, the singularities of Js are defined only by the singularities of J(q).

Remark: Sensitivity to Camera Orientation RbCl.

The orientation matrix RbCl requires a special attention because it can cause system instability.

Instead of requiring an exact off-line calibration of this parameter, the problem is tackled in two

parts: a) A coarse on-line estimation of the orientation matrix is computed using the real-time

information generated by the robot (subsec 5.4.1) and b) Estimation errors for the complete

Jacobian Js are taken into account in the control design. Thus, a robust control approach is

used to cope with these errors, including estimated error in RbCl and the stereo-rig intrinsic

parameter uncertainties (subsection 5.5.3).

5.4.1 On-line Orientation Matrix Estimation

The stereo system is composed of two USB cameras fixed on a tripod. The stereo-rig is assumed

to be known, which means that the intrinsic parameters and the transformation between two

cameras are known and constant. These can be calculated once off-line. The whole stereo

camera setup can be moved together during the visual tasks.

We define this system as uncalibrated because we not only assume that the calibration of the

stereo cameras system (left camera OCl) with respect to the wcf (Ob) is unknown, but we also

consider the possibility of on-line modification of the parameters that define this relationship

(e.g. RbCl). Nevertheless, an exact calibration of the stereo system is also not required because

errors in the estimation of these visual parameters are handled in the control law (sec 5.5.3).

In order to compute the image Jacobian Jimg in (5.46), we use an on-line orientation esti-

mator for RbCl , where two sets of position points defined in coordinate frames Ob and OCl are

used. These sets are generated while the robot is moving. The estimation approach uses Sin-

gular Value Decomposition (SV D) [158]. More details about the on-line orientation estimation

has been presented in section 4.3.3. This rotation matrix is prone to errors of estimation which

are considered in the next section.

5.5 6D Visual Servoing

In this section, we describe the design of an adaptive image-based dynamic control. Here we

use an adaptive controller since it allows to deal with some uncertainties from robot model and

camera calibration. The proposed second order sliding mode control is chattering free. This

result is obtained using the
∫
sign (∗) function instead of directly using the sign (∗) function.
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5.5 6D Visual Servoing

Furthermore, the sign(∗) function is also replaced for tanh(µ∗) to avoid discontinuous signals

for the nominal reference, similar to [161]. This control method includes the robot dynamics

model in its passivity proof.

5.5.1 Non Linear Robot Dynamic Model

The dynamics of a serial n-link rigid, fully actuated robot manipulator can be written as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) +Bq̇ = τ. (5.51)

where q ∈ Rn×1 is the vector of joint positions, τ ∈ Rn×1 stands for the applied joint torques,

M(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn×n is the vector of

centripetal and Coriolis effects, G(q) ∈ Rn×1 is the vector of gravitational torques, and finally

B ∈ Rn×n is a diagonal matrix for the viscous frictions.

The robot model described in (5.51) can be written in terms of a known state robot regressor

Yr = Y (q, q̇, q̈) ∈ Rn×m and an unknown robot parameter vector Θ ∈ Rm×1 by using nominal

references q̇r and q̈r as follows:

M(q)q̈r + C(q, q̇)q̇r +G(q) +Bq̇r = YrΘ (5.52)

Subtracting the linear parameterization equation (5.52) to (5.51), produces the open-loop

error dynamics

M(q)Ṡq + C(q, q̇)Sq = τ − YrΘ (5.53)

with the joint error surface Sq defined as Sq = q̇− q̇r, where q̇r represents the nominal reference

of joint velocities. This nominal reference can be used to design a control in the virtual visual

space.

5.5.2 Joint Velocity Nominal Reference

Considering equation (5.50), q̇r can be defined as

q̇r = Js
−1Ẇsr (5.54)

where, the 6D visual nominal reference Ẇsr is given by

Ẇsr = Ẇsd −Kp∆Ws + Ssd −K1

∫ t

t0

Ssδ (ζ) dζ−K2

∫ t

t0

sign (Ssδ (ζ)) dζ (5.55)

Ssδ = Ss − Ssd , (5.56)

Ss =
(

∆Ẇs +Kp∆Ws

)
, (5.57)

Ssd = Ss (t0) e−κt (5.58)
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where Ẇsd is the desired visual velocity, ∆Ws = Ws −Wsd is the visual position error, ∆Ẇs is

the visual velocity error, Kp = Kp
T ∈ R6×6

+ and Kj = Kj
T ∈ R6×6

+ (with j = 1, 2) and Ssδ is

the virtual visual error surface.

Using (5.54-5.58) in Sq we obtain:

Sq = q̇ − q̇r = Js
−1
(
Ẇs − Ẇsr

)
= Js

−1Se (5.59)

with

Se = Ssδ +K1

∫ t

t0

Ssδ (ζ) dζ +K2

∫ t

t0

sign (Ssδ (ζ)) dζ (5.60)

where Se is the extended virtual visual error manifold.

5.5.3 Uncertainties in Js

The above definition of q̇r depends on the exact calibration of Js. However, this is a very

restricted assumption. Hence, the uncertainties in the Visual Jacobian Js should be taken into

account in the control design. To achieve this, the uncalibrated nominal reference is defined by

̂̇qr = Ĵs
−1
Ẇsr (5.61)

where Ĵs is an estimate of Js such that Ĵs is full-rank. ∀q ∈ Ωq defines the singularity-free

workspace, where Ωq =
{
q|det (J (q)) 6= 0,∀q ∈ Rn×1

}
. Then, the uncalibrated joint error

surface is:

Ŝq = q̇ − ̂̇qr = Sq −∆JsẆsr (5.62)

with ∆Js = Ĵs
−1 − Js−1 as the estimation errors, which includes both intrinsic and extrinsic

real-camera parameters and kinematic robot parameters.

5.5.4 Adaptive Control Design

Consider a robot manipulator in closed loop with the following second order sliding visual

servoing scheme,

τ = −KdŜq + ŶrΘ̂ (5.63)

˙̂
Θ = −ΓŶr

T
Ŝq (5.64)

where Θ̂ is the on-line estimation of the constant robot parameter vector, Kd = Kd
T ∈ Rn×n+

and Γ ∈ Rm×m+ are constant matrices. This adaptive on-line estimation together with the

second order sliding mode in Ssδ handle the uncertainties on the robot dynamic/kinematic

and camera parameters. The framework for integration the proposed visual features with this

adaptive control is shown in Fig. 5.5.
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Figure 5.5: New 6D visual servoing framework.

5.5.5 Stability Proof

The stability proof is conducted in three parts:

1. Boundedness of the closed loop trajectories

The uncalibrated closed-loop error dynamics between (5.53) and (5.63-5.64) gives

M (q)
˙̂
Sq = τ − ŶrΘ− C (q, q̇) Ŝq (5.65)

= −KdŜq + Ŷr∆Θ− C (q, q̇) Ŝq (5.66)

with ∆Θ = Θ̂−Θ.

The uncalibrated error kinematic energy can be used as a Lyapunov function in the following

form as:

V =
1

2

[
Ŝq
T
M (q) Ŝq + ∆ΘTΓ−1∆Θ

]
. (5.67)

Considering the time derivative of (5.67) in closed loop with (5.63-5.66), V̇ yields

V̇ = Ŝq
T
M

˙̂
Sq +

1

2
Ŝq
T
ṀŜq + ∆ΘTΓ−1 ˙̂

Θ (5.68)

= −Ŝq
T
KdŜq + Ŝq

T
Ŷr∆Θ−∆ΘT Ŷr

T
Ŝq (5.69)

= −Kd

∥∥∥Ŝq
∥∥∥ ≤ 0 (5.70)

where, the property (5.52) in terms of Ŝq has been used.
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Selecting a positive Kd, equation (5.70) becomes negative semidefinite and this proves the

passivity of the robot dynamics (5.51) in closed loop with (5.63-5.64). Then, the following

properties of the closed-loop state arises

Ŝq ∈ L∞ → Se ∈ L∞ =⇒
(
Ssδ ,

∫ t

t0

sign (Ssδ (ζ)) dζ

)
∈ L∞ (5.71)

Which implies that all signal states are bounded, specially (q̇r, q̈r) ∈ L∞ and
(
Ẇsr , Ẅsr

)
∈ L∞.

2. Second-order sliding modes

From (5.59) and (5.62) we obtain

Ŝq = Js
−1Se −∆JsẆsr (5.72)

Using (5.60), (5.72) can be written as

Js

(
Ŝq + ∆JsẆsr

)
= Se (5.73)

Se = Ssδ +K1

∫ t

t0

Svδ (ζ) dζ +K2

∫ t

t0

sign (Svδ (ζ)) dζ (5.74)

then we generate an error function in terms of Ssδ as

Ssδ = −K1

∫ t

t0

Ssδ (ζ) dζ −K2

∫ t

t0

sign (Ssδ (ζ)) dζ + Se. (5.75)

Taking the time derivative of (5.75) and multiplying it by STsδ , we can prove the sliding

mode regimen

STsδ Ṡsδ ≤ −K1 ‖Ssδ‖ − µ |Ssδ | (5.76)

with µ = K2−
∣∣ d
dtSe

∣∣. If K2 ≥
∣∣ d
dtSe

∣∣, then a sliding mode at Svδ = 0 is induced at ts =
|Ssδ (t0)|

µ .

Moreover, notice that for any initial condition Ssδ (t0) = 0 then ts = 0, which implies that the

sliding mode is guaranteed for all time.

3. Exponential convergence of visual tracking errors

Since a sliding mode exists at all times at Ssδ(t) = 0, then Ss = Ssd , therefore ∆Ẇs =

−Kp∆Ws + Ss (t0) e−κt ∀t, which implies that the 6D visual tracking errors converge to zero

exponentially fast.

Remark: Convergence of ∆Wb without local minima.

Given that Jimg is full-rank ∀t, from (5.47) can be seen that ∆Ws = 0 → ∆Wb = 0 without

local minima. This is the most important impact of designing a full-rank image Jacobian which,

in general, is not obtained with the classical methods.
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5.6 Simulation

5.6 Simulation

In this algorithm,a torque level adaptive controller is evaluated in simulation to better illustrate

the robustness of the system to uncertainties in the robot parameters and changes in the

extrinsic parameters of the stereo system.

We simulate a 6DOF industrial robot with real robot dynamic parameters in closed loop

with the control approach in (5.63-5.64). Real camera parameters are used to simulate the

camera projections[2]. The Cartesian pose is projected into two virtual orthogonal cameras to

get the new visual features as inputs for the visual servoing system. Our simulation platforms

is the same as the real experiments, except we simulate the 6D visual desired pose. The robot

motions are visualized in a 3D Visualization System (sub-sec 7.2.3).

In the simulation we first show the robustness of the system to uncertainties in the robot

parameters and changes in the extrinsic parameters of the stereo system. Then, two simulation

tasks are evaluated to show the performance of the proposed scheme.

5.6.1 Robustness to uncertainties

The task is defined as follows: the robot end-effector is commanded to draw a circle in the world

coordinate frame using the Cartesian trajectory Xbd = [0.2 sin(ωt), 0.2 cos(ωt)−0.8, 0.5]T , where

ω = 10rad/sec.

Figure 5.6: Simulation results: the robustness to uncertainties of the camera parameters.
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5. 6D IMAGE-BASED VISUAL SERVOING

Fig. 5.6 shows the results obtained from the simulation, where the 3D position tracking

can be observed in both space. During the simulation, an estimate of robot parameters and a

coarse-calibrated camera intrinsic parameters are used in the control law, and at time t = 4s,

t = 7s, the extrinsic camera parameters are altered, see Fig. 5.6 (c). From the plots it can be

observed that even when the parameters change, the controller is capable to cope with these

uncertainties and maintain stability of the system. In the case of changes in the orientation

matrix RbCl , the controller can handle the uncertainty to a certain extent (approx. 20% error).

Therefore, a suitable technique to generate a rough estimation of RbCl is needed to guarantee

the stability (subsection 5.4.1).

5.6.2 Regulation

The robot end-effector is commanded to a desired pose as Wbd = [0.0,−0.7, 0.5, 3.0, pi/4, 2.2]T .

We map this desired Cartesian pose to the desired 6D pixel pose Ws, which is used to design

the error function for the control scheme.

Simulation results are depicted in Fig. 5.7. Each figure consists of a set of plots shown

in three columns: Column (a) shows the 3D visual position and Euler angles in the virtual

visual space. It also includes their corresponding errors. The same results for the Task space

(Cartesian Space) are illustrated in the second column (b). The 6D trajectories of the robot

end-effector are depicted in both virtual visual space and Cartesian space.

The end-effector trajectories are close to a straight line in both spaces, see Fig. 5.7.(1).

The position and rotation motions exhibit exponential convergence of the visual errors. In 5.7,

elements (a).3 and (b).3 are the 3D position errors, while elements (a).4 and (b).4 illustrate the

orientation errors. The third column (c) in the same figures demonstrates the virtual visual

sliding surface and the error surface for the second order sliding mode control. The figures

also illustrate that when the 6D pixel pose Ws convergence to the desired goal in virtual visual

space, the end-effector pose also converges to the goal in Cartesian space without local minima.

5.6.3 Tracking

The robot end-effector is commanded to draw a circle and rotate the end-effector in the Task

space using the trajectory Wbd = [0.1 sin(ωt) + 0.6, 0.2 cos(ωt), 0.5, 3.0, pi/4, 0.8 sin(ωt) + 2.0]T ,

where ω = 0.05rad/sec.

Fig. 5.8 demonstrate the tracking results. The 3D trajectories are precise tracking in both

spaces, while the orientation tracking has well behavior. Fig. 5.8.(3) and (4) show 6D pose
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5.6 Simulation

Simulation --- Regulation

Figure 5.7: Simulation results for regulation in both Cartesian space and virtual visual space.

errors for both spaces. The results demonstrate the convergence of errors in both virtual visual

space and Cartesian space without local minima. The plots in column (a) and (b) confirm that

the mapping from the proposed virtual space to 3D Cartesian space is linear, and the control of

rotational and translational motion of robot is decoupled due to the diagonal image Jacobian.
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Simulation --- Tracking

Figure 5.8: Simulation results for 6D tracking.

5.7 Discussion

In this chapter, we have investigated the control of translational and rotational motion for

the end-effector of a robotic manipulator under visual feedback from fixed stereo cameras. An

uncalibrated stereo vision system is used to compute the Cartesian position of feature points,
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and then map these points to two virtual orthogonal cameras. The virtual cameras have a wide

baseline, are orthogonal to each other and are aligned with the stereo camera frame axes. This

results in a unique decoupling of the features in these two virtual images. Instead of using the

classical visual features, we extract 6 orthogonal features as image features.

The key contributions of this chapter can be summarized into these aspects:

1. We have proposed a new virtual visual space (measured in pixels), where a 6D visual

pose vector (6 orthogonal features) is defined and chosen as inputs instead of the classical

visual features for IBVS method.

2. Using this 6D visual pose, we obtain a 6× 6 full-rank image Jacobian that can avoid the

well-known problems such as the image space singularities and local minima.

3. The proposed visual Jacobian is used to design an adaptive dynamic controller, which

is evaluated by two simulation tests on an eye-to-hand robotic system. The results of

the evaluation confirm the improvement in controller stability and motion performance.

In order to evaluated the advantages of the proposed 6DVS scheme and show the novel

properties of the new image features, the comparison of the behavior with the different

visual servoing schemes is presented in next chapter 6.

4. Moreover, in Chapter 7 and 8, the proposed visual servoing is experimentally shown to be

easy to integrate with the environment constraints such as robot singularities avoidance

and (self-/obstacle-) collision avoidance in real world applications.
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Chapter 6

Comparison with classical Visual
Servoing Schemes

In this chapter, we compare the proposed 6D scheme (6DVS) presented in previous chapter

with classical visual servoing approaches (IBVS, PBVS and HYVS). First, the selected control

features for different schemes are reviewed, with which the controller is designed in closed

loop with the control approach (5.63-5.64). Then five standard simulation tasks are tested

to evaluate and compare the approaches in terms of steady state errors, transient systems

performance, robustness to uncertainties and decoupling controlled signals. Simulation results

prove that the new features in proposed 6DVS perform better than classical ones since the

system combines the advantages of 2D and 3D visual servoing.

Simulations are based on a 6-DOF StaübliTX90 industrial manipulator and a target with

four feature points. The real camera parameters and real robot dynamic parameters are used

in the simulation.

6.1 Visual Features for different VS Approaches

As described in the visual servoing control tutorial [10], The aim of all vision-based control

schemes is to minimize an error e(t), which is typically defined by

e(t) = s− sd, (6.1)

and the design of the control scheme can be quite simple. Perhaps the most straightforward

approach is to design a velocity controller, the relationship is given by

ṡ = Ls vc (6.2)
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

in which s is a set of geometrical features whose time derivative ṡ is linearly related to the spatial

velocity vc = [υc, ωc]
T of the camera (eye-in-hand configuration1) through the interaction matrix

Ls. Using this relationship, control schemes are designed to minimize the error e between the

current value of the visual feature s and its desired value sd.

Using (6.1) and (6.2), we immediately obtain the relationship between the robot velocity

and the time variation of the error:

ė = Le vc (6.3)

where Le = Ls. Considering vc as the input to the robot controller, and we can solve it as

vc = L+
e ė (6.4)

where L+
e ∈ R6×6 is chosen as the Moore-Penrose pseudo-inverse of Le.

Visual servoing schemes mainly differ in the way that the visual feature vector s is designed,

which decide the formate of control Jacobian Le and the performance of the system. In order to

compare different Visual Servoing schemes, in this section, we review three classical approaches

and our proposed scheme regarding different selected s and the control Jacobian.

6.1.1 Image-based Visual Servoing

Suppose that the robot end-effector is moving with angular velocity ωc = [ωx, ωy, ωz]
T and

translational velocity υc = [vx, vy, vz]
T both with respect to the camera frame Oc in a fixed

camera system (eye-to-hand configuration). Consider the motion of a plane π attached to the

end effector of a robot that rotates and translates through space in order to obtain a desired

position and orientation of the end-effector. We define four target points on π denoted by Pi,

∀i = 1, 2, 3, 4.

Traditional image-based control schemes (IBVS), use the image plane coordinates of a set

of points to define the set s. By considering a 3D point with coordinates P = [X,Y, Z]T in the

camera frame and using a perspective projection model, the point X is projected on a 2D point

x of coordinates (x, y) on image plane such that:

[
x
y

]
=

[
X/Z
Y/Z

]
=

[
(u− cx)/fα
(v − cy)/f

]
(6.5)

where s = [u, v] is the image point coordinates in pixel unit, c = [cx, cy] is the coordinates of the

principle point, f is the focal length of the camera lens and α is the ratio of pixel dimension.

1In our system, we use eye-to-hand configuration, hence vc is the velocity of the robot end-effector with
respect to camera frame Oc.
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6.1 Visual Features for different VS Approaches

For 4 image points, the visual feature vector is

s = m = [x1, y1, x2, y2, x3, y3, x4, y4]T (6.6)

ṁ = Lx · vc (6.7)

and the interaction matrix Lx =
[
Lx1

Lx2
Lx3

Lx4

]T
, and Lxi defined in (2.16) is

Lxi =

[
1
Z 0 − x

Z −xy (1 + x2) −y
0 1

Z − y
Z −(1 + y2) xy x

]
. (6.8)

The image-based approach may reduce interpretation and eliminate errors due to sensor

modeling and camera calibration. However it does present a significant challenge for controller

design since the features are nonlinear and highly coupled.

6.1.2 Position-based Visual Servoing

In position-based servoing (PBVS), image features are extracted as well, but a geometric model

of the target and used known camera model are additionally used to estimate 3D information

(pose of the target in Cartesian space). Feedback is computed by reducing errors of the esti-

mated pose in Cartesian space. With a ZY X Euler angles representation for rotation matrix,

denoted by θ = [α, β, γ]T , the selected feature vector is designed as

s = Wb = [X,Y, Z, α, β, γ]T (6.9)

Ẇb = Jp · vc (6.10)

and the image Jacobian is a block diagonal matrix.

Jp =

[
I3 0
0 Jω

]
,

[
Ṗ

θ̇

]
= Jp

[
vc
ωc

]
. (6.11)

The definition of the angular velocity ω is given by [155]

ω = T (θ)θ̇ (6.12)

where T (θ) is defined in (5.42). Hence,

Jω = T−1(θ). (6.13)

6.1.3 Hybrid Visual Servoing

The 2-1/2D visual servoing (HYVS) is one of the advanced hybrid methods proposed so far

to combine advantages of IBVS and PBVS [11]. The 2-1/2D VS is based on decoupling the
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

rotational motions from the translational motions through selecting visual features defined in

part in 3D Cartesian space and in part in 2D image space. Thus, the rotation is controlled

directly in the Cartesian space, while its translation is controlled using image-based information.

In classical 2-1/2-D visual servoing, as described by Malis et al.[132], the selected feature

vector is h = [Xh,ΘU
T ]T , where Xh is the position vector, Θ and U are the rotation angle

and axis of the rotation matrix R. Consider a point P = [X,Y, Z]T (called the reference point)

lying on the object. If the rotation is in ZY X Euler angles representation as θ = [α, β, γ]T ,

then the control feature vector is

s = h = [Xh, θ]
T = [x, y, log(Z), α, β, γ]T (6.14)

ḣ = Jh · vc (6.15)

The position vector Xh = (x, y, log(Z))T is defined in extended image coordinates, where

x, y are directly computed from image features (2D data), and Z is the depth of the considered

point (3D data).

The corresponding image Jacobian is an upper block triangular matrix, which provides

interesting decoupling properties. It is represented as

Jh =

[
Jυ Jvω
03 Jω

]
,

[
Ẋh

θ̇

]
= Jh

[
vc
ωc

]
. (6.16)

Given Ż in equation (2.10), the time derivative of log(Z) can be represented as

(log(Z))′ =
1

Z
· Ż = [0, 0,

1

Z
,
Y

Z
,−X

Z
, 0]

[
vc
ωc

]
(6.17)

= [0, 0,
1

Z
, y,−x, 0]

[
vc
ωc

]
. (6.18)

Combining equation (6.8) and (6.18), we can get the Jacobian matrices

Jυ =
1

Z




1 0 −x
0 1 −y
0 0 1


 (6.19)

and

Jvw =



−xy (1 + x2) −y

−(1 + y2) xy x
y −x 0


 . (6.20)

Since the rotational motion is directly controlled in the Cartesian space, the orientation Jacobian

Jw is the same as defined in PBVS, (6.13).
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6.1.4 Proposed Visual Servoing

For our proposed visual servoing (6DVS), we define a new virtual visual space (image space),

where a 3D pixel position Xs = [xs, ys, zs]
T is extracted as a feature. All elements of this 3D

position vector are linearly independent and orthogonal to each other, see equation (5.20). In

order to compared with 2-1/2D VS, we simplify the orientation using a rotation matrix with

ZY X Euler angles representation in Cartesian space with respect to the robot base frame,

denoted by θ, which is the same as presented in PBVS and 2-1/2D VS. Thus, the new feature

vector is

Ws = [xs, ys, zs, α, β, γ]T (6.21)

and the new mapping is given by

Ẇs =

[
Ẋs

θ̇

]
=

Jimg︷ ︸︸ ︷[
Jυ 03

03 Jω

] [
vc
ωc

]
(6.22)

where the new image Jacobian (Jimg ∈ R6×6) is a decoupling diagonal matrix that decouples

the translational and rotational control.

The position image Jacobian is defined in (5.21) as

Jυ = JαR
Cl
v (6.23)

and Jω = T−1(θ) is the same as presented in PBVS, (6.13).

The selected visual features and designed controller inputs of four visual servoing approaches

are summarized in Table 6.1.

Table 6.1: Visual features and controller inputs for 4 visual servoing methods.

Selected Visual Features s Controller Inputs

IBVS m = [x1, y1, x2, y2, x3, y3, x4, y4] T vc = Lx
+ ṁ

PBVS Wb = [X, Y, Z, α, β, γ] T vc = Jp
+ Ẇb

HYVS h = [x, y, log(Z), α, β, γ] T vc = Jh
+ ḣ

6DVS Ws = [xs, ys, zs, α, β, γ] T vc = Jimg
−1 Ẇs
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6.2 Comparison of 6DVS with classical Methods

Simulations have been carried out in five different tests in terms of system performance, ro-

bustness to uncertainties and motion decoupling. Four corner points are extracted from image

plane (Table 6.2), which can give us a 16 × 6 interaction matrix in the classical IBVS with

stereo vision system and a 6 × 6 image Jacobian in our algorithm. In the proposed method

6DVS, the image measurements (s) are mapped to the virtual visual space to get new visual

features (Ws), which is used to design the error function for the control scheme. For classical

stereo IBVS, the image features (s) are directly used to design the error function and the real

depth (z) obtained from the stereo vision system is used to compute the interaction matrix.

The 3D Cartesian position from the stereo vision system is used to perform PBVS. Classical

2-1/2D (HYVS) with Euler angle representation is also used in comparison. The control law

used for all approaches is the same.

The initial and desired pixel positions of the image features (s = [u1, v1, u2, v2, u3, v3, u4, v4]T )

from 4 corner points for each test are given in Table 6.2.

Table 6.2: Initial(I) and Desired(D) location of feature points on image plane (pixel) for left
camera

Point 1 Point 2 Point 3 Point 4

(u v) (u v) (u v) (u v)

Test 1
I (207 254) (194 212) (213 200) (225 238)

D (422 379) (406 307) (471 290) (486 360)

Test 2
I (195 177) (236 153) (260 195) (219 219)

D (219 219) (195 177) (236 153) (260 195)

Test 3
I (318 224) (304 191) (312 177) (325 208)

D (226 228) (200 184) (244 159) (269 203)

Test 4
I (207 254) (194 212) (213 200) (225 238)

D (422 379) (406 307) (471 290) (486 360)

Test 5
I (207 254) (194 212) (213 200) (225 238)

D (291 444) (304 382) (367 376) (354 434)

Remarks:

• In simulation figures, only image features in the left camera are illustrated,
since the results in the right camera are similar.
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6.2 Comparison of 6DVS with classical Methods

For all tests, consider the motion of a plane π attached to the robot end-effector and target,

with four target points on π denoted by Pi , ∀i = 1, 2, 3, 4. Then we obtain the translation

motion using triangulation on the center of the four points while utilizing the rotational infor-

mation of the end-effector through the motion of four tracked points.

6.2.1 Test 1: Large translational and rotational Motion

In the first test, we examine the convergence of each image feature point and pose errors when

the desired location is far away from the initial one. The Cartesian and image trajectories of

the proposed 6D visual servoing (6DVS) and the conventional approaches (IBVS, PBVS and

HYVS) are compared in Fig. 6.1.
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Figure 6.1: Simulation Test 1: Large translational and rotational motion.

As shown in Fig. 6.1 (1), PBVS results in a straight-line end-effector trajectory in Cartesian

space. Since there is no control of the image features, the image trajectory, (as shown in

Fig. 6.1 (2)), is unpredictable and may leave the camera field of view. In IBVS, straight-

line image trajectory is observed while the end-effector Cartesian trajectory is not controlled.
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

For HYVS, the image trajectory of the reference point is a straight-line as expected, and the

Cartesian trajectory is also well behaved. However, other points in image plane have curved

trajectories.

Contrary to the previous approaches, the proposed 6DVS has a straight-line Cartesian tra-

jectory (similar to that of PBVS) and all the image features are “indirectly” controlled to move

approximately along straight-line trajectories like IBVS, see Fig. 6.1 (1), (2). Moreover, both

the features errors and the Cartesian pose errors converge to zero very smoothly without any

overshooting in 6DVS (Fig. 6.1 (3), (4)). Because of the selected features which are controlled,

the Cartesian pose errors converge to zero very smoothly in PBVS while the image features

errors are smooth in IBVS. Although HYVS has a similar trade-off between these properties,

the proposed 6DVS is more efficient and has better performance than HYVS. Hence, 6DVS

combines the advantages of PBVS in terms of controlling straight trajectories in Cartesian

Space, and the advantages of IBVS in terms of controlling image trajectories.

6.2.2 Test 2: Motion around the Camera Optical Axis

Desired Pose

1

11

1

1

Initial configuration

Desired configuration

Pure rotation 
around camera 

z axis 90°

Figure 6.2: A pure rotation of features around the camera optical axis zc by 90 degrees.

For this case we perform a pure rotation of features around the camera optical axis zc by

90 degrees, see Fig. 6.2. The comparison results are shown in Fig. 6.3.
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Figure 6.3: Simulation Test 2: Pure rotational motion.

The pure rotational motion is performed successfully in this test for the proposed 6DVS,

IBVS, PBVS and HYVS. Fig. 6.3 (a) shows the performance of the proposed 6DVS algorithm

in image plane and 3D Cartesian space, in terms of trajectories and errors. All the trajectories

in difference spaces are nice and smooth. Fig. 6.3 (b), (c) and (d) illustrate the same move-

ment using the conventional IBVS, PBVS and HYVS. From plots (1) and (2), we can see the

proposed 6DVS and PBVS has nice feature trajectories, which the IBVS may leave the field

of camera view. Moreover, plots (3) illustrate that, the pure rotational motion does not affect

the translational position due to the block diagonal image Jacobian in 6DVS and PBVS. For

IBVS, the position of end-effector is modified during the pure rotational motion performance,

because the controlled features are highly coupled. This motion decoupled property for HYVS

and 6DVS is also compared in Test 5.
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

6.2.3 Test 3: Local Minima

In this test we evaluate a common problem in classical IBVS: local minima. By definition, local

minima are cases where V = 0 and s 6= sd. So, a local minimum is reached when the point

velocity on the robot end-effector is zero while its final position is far away from the desired

position. At that position, the errors s− sd in image plane do not completely vanish (residual

error is approximately two pixels on each u and v coordinate). Introducing noise in the image

measurement leads to the same results.
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Figure 6.4: Simulation Test 3: Reaching (or not) a local minimum.

Reaching such a local minimum is illustrated in Fig. 6.4 (b) for IBVS. Each component of

the feature errors e has a exponential convergence but is not exactly zero (s 6= sd) in plot (2)

while the robot velocity is close to zero in Fig. 6.4 (b) (3). It is clear from Fig. 6.4 (b) (4) that

the system has been attracted to a local minimum far away from the desired position.

In the proposed scheme (6DVS), the image Jacobian Jimg has full rank of 6, which implies

there are no local minima. The global minimum is correctly reached from the same initial

position if the proposed Jimg is used in the control scheme (Fig. 6.4 (a)). In this case, the

trajectories in image plane are straight and each component of the errors e has a exponential

convergence to zero without local minima. Moreover, when the velocity reaches zero, the errors

in image plane and Cartesian space are both close to zero (V → 0,∆s→ 0,∆Xb → 0).
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6.2 Comparison of 6DVS with classical Methods

6.2.4 Test 4: Robustness

For this test we compare the robustness of the proposed 6DVS, the conventional IBVS and

PBVS to camera errors. These errors are formulated as:

• Camera intrinsic parameter errors f̂ = 1.1f .

• Camera extrinsic parameter errors T̂ bc = 1.1T bc .
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Figure 6.5: Simulation Test 4: Comparison of the robustness of 6DVS, IBVS and PBVS with
effects of camera errors.

The comparison of the controllers in terms of image feature trajectories and 3D Cartesian

trajectories are evaluated in Fig. 6.5. The results from this test show that despite the camera

errors, the controllers for each of the evaluated approaches do not become unstable. The

resulting Cartesian and image trajectories have some notable differences (see Fig. 6.5), but can

be still accurately served back to the “desired” Cartesian or image locations.
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

Due to effects of the camera errors, the end-effector Cartesian trajectory of PBVS deviates

from the original straight-line trajectory to a circular motion, and slight effects on the image

trajectories can also be observed (see Fig. 6.5 (c)). However, slight differences in the end-effector

Cartesian trajectory of IBVS are shown in Fig. 6.5 (b). As expected, the image trajectories for

IBVS are robust to camera errors. This is because in the IBVS control loop only the image-

based controller is affected by the camera modeling errors, while in the PBVS control loop both

the PBVS controller and the pose estimation are affected by the camera errors.

Fig. 6.5 (a) illustrates that the effects on both Cartesian and image trajectories for the

proposed 6DVS are minor. The Cartesian trajectory is still straight and the image trajectories

are almost the same. Hence, 6DVS is as robust with respect to camera calibration errors as

IBVS.

6.2.5 Test 5: Motion Decoupling

For standard 2-1/2D VS, the desired control input can be computed from (6.16)
[
υc
ωc

]
=

[
J+
v J+

v JvwJ
+
w

0 J+
w

] [
Ẋh

θ̇

]
. (6.24)

and the control input for the proposed 6DVS is given by (6.22)
[
υc
ωc

]
=

[
J−1
v 0
0 J−1

w

] [
Ẋs

θ̇

]
. (6.25)

From equation (6.24), the translational control input is υc = J+
v (Ẋh + Jvwωc), which com-

bines the position error with the error that would be induced by the rotational motion due

to ωc. Therefore, the rotational motion can also affect the position of the end-effector. Con-

trary to 2-1/2D VS, the translation control input for the proposed scheme defined in (6.25) is

υc = J−1
v (Ẋs), which only be modified through the position error.

Motion decoupling is compared between the proposed 6DVS and conventional 2-1/2D VS in

this test. Both approaches receive the same desired Cartesian position and orientation. First

the desired position is given and both methods perform equally well. As shown in Fig. 6.6, the

trajectories in both Cartesian space and the image plane are straight in the position task.

At around t = 30s, the desired orientation is modified. In the standard 2-1/2D method,

a triangular interaction matrix is used for motion control, as defined in (6.13). Hence, the

rotational error can affect the translation since the Jacobian Jvw exist, as shown in Fig. 6.6 (b).

The visual signals are coupled and both position and orientation in Cartesian space are changed

when only the desired orientation is modified. The same results also can be seen in the Test 2

(Fig. 6.3 (b)), where small translational motion is shown in pure rotational motion case.
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Figure 6.6: Simulation Test 5: Decoupling analysis of position and orientation.

For the proposed 6DVS, we introduce the virtual visual space to decouple the control features

and get a block diagonal image Jacobian. This decoupling of rotational and translational

motions allows a better control design. Fig. 6.6 (a) demonstrates the decoupled performance

using the proposed method.

6.3 Conclusion

In this chapter, the simulation tests to compare the behavior of the different control schemes

are presented. Simulation results of five different tests demonstrate the novel properties and

better performance of the proposed 6DVS algorithm over conventional VS approaches. The

simulation results are shown in Table 6.3. According to the results, 6DVS has a reliable straight

3D Cartesian trajectory like PBVS, and straight feature trajectories like IBVS. It combines the

advantages of PBVS in terms of controlling straight trajectories in Cartesian Space, and the

advantages of IBVS in terms of controlling image trajectories. Moreover, 6DVS allows to avoid

local minima (unlike IBVS) and is robust to camera calibration errors. Contrary to classical
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6. COMPARISON WITH CLASSICAL VISUAL SERVOING SCHEMES

Table 6.3: Comparison of Visual Servoing Schemes

IBVS PBVS HYVS 6DVS

Straight Cartesian Trajectory 3 3 3

Straight Feature Trajectory 3 3 3

No Image Singularities 3 3

No Local Minima 3

Robustness to Image Noise 3

Robustness to calibration Errors 3 3 3

Motion Decoupling 3 3

2-1/2D visual servoing, 6DVS decouples the control of the translational and rotational motion

of robot end-effector due to the diagonal image Jacobian.

According to simulation results, these new features perform better than classical ones since

the system combines the advantages of 2D and 3D visual servoing. The new visual servoing

does not need a precise camera calibration and presents very interesting decoupling and stability

properties. Thanks to its simple structure, analytical results on its robustness with respect to

calibration errors have been obtained. Furthermore, the proposed algorithm can be integrated

in a practical human-robot-interaction scenario with environmental and kinematic constraints,

which can generate a trajectory free of collisions and singularities. The experiments on a 6DOF

industrial manipulator and real world applications are presented in the next chapter.
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Chapter 7

Experiments and Real
Applications

In the real world experiments, safety is a primary concern for industrial robotics. Control of

the physical interaction between a robot manipulator and the environment is crucial for the

successful execution of a number of practical tasks. During task execution, the environment

may set constraints on the geometric paths that can be followed by the end-effector, limitations

on the force or other constraints for safety. Meanwhile, the robot also has some kinematic

constraints. Hence, a robot must accomplish a task while satisfying these constraints, thus

requiring a control framework for combining tasks and constraints.

In this chapter, a framework for integrating the proposed visual servoing system in pre-

vious chapters, with environment constraints in a human-robot interaction (HRI) scenario is

presented. Several constraints such as robot singularities and collision avoidance, have been

integrated in the framework using an operational space impedance controller for the robot

end-effector. The artificial potential field approach [162] is used to model these environment

constraints. Several experiments are performed to validate and evaluate this work on a standard

industrial robot in a realistic human-robot interaction scenario.

7.1 Control Framework with Environment Constraints

We propose a framework which supports several types of constraints, such as: robot singulari-

ties, (self-/obstacle) collision avoidance and joint limits. The constraints are modeled as forces

F using artificial potential field. Fig. 7.1 shows the integration of the control with the different

environmental constraints and robot’s configuration constraints. The environment constraints,

computed at torque level, are added to the desired tracking torque to control the robot move-
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6D Visual 
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+
+
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Robot

Real 
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Figure 7.1: 6D visual servoing framework with environment constraints.

ment. Hence, the torque level decomposition of the global task (τt) and the secondary control

task (τec) is represented by

τ = τt + τec (7.1)

= τt +

N∑

i=1

JTi (q) ·Fi (7.2)

where τt is the global task torque using the visual servoing and the virtual force Fi is represents

the environment constraints modeled through artificial potential field.

In the real experiment, we integrate the visual servoing system in a HRI scenario, where

environment constraints must be included to generate a safe and singularity-free trajectory for

the robot. The definitions of constraint forces are presented in the following subsections.

7.1.1 Joint Limits

For industrial robotics, certain tasks may lead to uncontrollable or unwanted behavior of the

robot. To guarantee the safety of the robot, the constraints imposed by the robot’s structure

should always be satisfied, e.g. the joint limits, robot configuration singularities. Important

points that need to be respected are the limitations of joint angles, velocities and accelerations.

The resulting joint position q needs to be in a certain bounding region qmin ≤ q ≤ qmax (hard

limits), and should not violate these limits to prevent physical damage to the robot. The

100



7.1 Control Framework with Environment Constraints

repelling forces are computed by

FJL =

N∑

i

FJLi (7.3)

and

FJLi =

{
KJLiPJLiDJLi −BJLiẊef , if qi ≥ qupperJLi or qi ≤ qlowerJLi

0, if qlowerJL ≤ qi ≤ qupperJL

(7.4)

where qlowerJL and qupperJL are the threshold vectors of safety joint position (away from the

hard limits). KJLi , BJLi ∈ R3×3 are constant matrices, and DJLi is the direction of gradient

for the maximum manipulability factor µ. Then

PJLi = eαJLiqlimiti − 1 (7.5)

where αr is a constant to control the stiffness of the applied force, and qlimit = (qlowerJL − qi)
or (qi − qupperJL).

7.1.2 Robot Singularity

The singularity avoidance formulation is similar to that for joint limits avoidance, since some

special configuration of the joint position is reached when the singularities occurs. Therefore,

the robot system needs to stay away from the singularity joint position qsingularity, and the

corresponding force is given by (similar as (7.4))

Fr =

{
KrPrDr −BrẊef , if qi < qthreshold

0, if qi ≥ qthreshold

(7.6)

where Ẋef is the linear velocity of the end-effector, Kr, Br ∈ R3×3 are constant matrices, and

qthreshold is away from the singularity joint position qsingularity. We define ∆q as the absolute

value of the difference between qi and qthreshold, Dr is the direction of gradient for the maximum

manipulability factor µ. Then, Pr = eαr∆q − 1, where αr is a constant. In our case, the robot

reaches the singular condition when q3 = 0.

7.1.3 Collision Avoidance

Collisions need to be avoided for the static (i.e., the work-bench) and dynamic elements in the

environment (i.e., the human and moving obstacles). In this task, the avoidance is done in a

reactive way with a dynamically updated collision scene that is interfaceable with a variety of

sensors.

We use the artificial potential field methodology to compute the forces for collision avoidance,

where the obstacles are considered as repulsive surfaces for the manipulator. To compute the
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7. EXPERIMENTS AND REAL APPLICATIONS

Figure 7.2: Computing the repelling forces of an obstacle.

virtual forces that repel the robot from surrounding obstacles, we need to compute the minimum

distances dc of all objects in the environment model (including self-collision) to all body parts

of the robot. Fig. 7.2 depicts the body parts of the used robot with an example of the minimum

distances dc (red lines) from an obstacle to a given joint configuration. If a distance is below a

chosen security threshold (transparent bubble), the distance is used to compute virtual forces

on the robot using potential fields.

We measure the distances of arbitrary shapes to each joint of the robot model. After

calculating the minimum distance vectors Vc in Cartesian space (i.e. the direction of the applied

virtual force), we transform them to forces and find the overall motion of the robot to avoid

the collision.

τc =

N∑

i

JTi (q) ·Fci (7.7)

Fci = KciPciVci −BciẊci , (7.8)

with N being the number of bodies of the robot and Vc is the direction of the applied force.
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Kci , Bci ∈ R3×3 are constant PD control parameters. The repelling potential function is

Pci =

{
eαc(Distc−dci ) − 1, if dci ≤ Distc

0, if dci > Distc

(7.9)

with Distc being the distance at which the potential field function is applied (see transparent

bubble in Fig. 7.2). dc is the minimum distance between the obstacle and robot arm, and αc is

a constant to control the stiffness of the applied force.

In our case, we use the Kinect device to generate a normals map of the environment, where

the normals indicate the direction of the forces. This includes the obstacles, the robot itself

and the table. Note that in our design, only the position is constrained by the environment and

the orientation is free. More details are provided in the experiment section 7.3.

7.1.4 Torque to Position Model

The Impedance control generates a virtual force that can be used to define a desired dynamic

behavior for a robot manipulator. The changes in the robot dynamic behavior are reflected

in the robot trajectory which is generated on-line and takes into account the target task and

knowledge of the environment (external factors). One way of generating this trajectory is to

apply the total torque to a virtual robot, whose dynamic behavior should be similar to the

real robot. This virtual robot will generate the desired joint positions/velocities (qd/q̇d), which

will be used as the input of a position/velocity controller of the real robot. This approach is

called the Torque to Position Model (see Fig. 7.1). The output joint position/velocity (q/q̇)

is processed by the open architecture control of an industrial robot. This approach allows the

implementation of different control strategies in standard industrial robots that typically only

offer position/velocity level interfaces under open architectures.

7.2 Visual Servoing System Architecture

Fig. 7.3 demonstrates robotic experimental setup in a human-robot interaction scenario which

includes a 6DOF industrial robot arm, a control unit, a stereo vision system with 2 USB

cameras, the user and the work station. The experimental setup consists of 3 sub-systems, 1)

a visual stereo tracker, 2) the robot control system and 3) the 3D visualization System.

7.2.1 Visual Stereo Tracker

The stereo system is composed of 2 USB cameras fixed on a tripod, in a eye-to-hand configura-

tion. The stereo rig is uncalibrated with respect to the robot base frame (the same as the world
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Figure 7.3: Robotic experimental setup in a Human-robot Interaction scenario.

frame) and can be manually moved. The parameters of the virtual cameras are selected such

that Jα is always non-singular. In order to compute torque (τ) and avoid a multiple-sampling

system, an extended Kalman filter (EKF) is used to estimate the visual position (sampling

period 4ms), whereas the reference is updated each 30ms with the real visual data of both

cameras.

2D image features are extracted from a stereo vision system with AR markers. We use the

ArUco library1 which is based on OpenCV to detect markers. Every marker provides 2D image

features for 4 corner points. 3D position and rotation with respect to the camera frame are

obtained from the image features using the camera intrinsic parameters.

7.2.2 Robot Control System

The robot system comprises of a 6DOF StaübliTX90 industrial robot arm, a CS8C control

unit and a Workstation running on GNU/Linux OS with real-time kernel (Fig. 7.3). The data

communication between the PC and the control unit is based on TCP/IP in a local network.

Here, the robot is controlled in position mode qd using a Low Level Interface (LLI) library.

7.2.3 3D Visualization System

This module provides a real-time visualization of the static elements as well as active agents

in the scene such as robot, objects, human etc. It has been developed using Coin3D with

OpenGL as backbone, using the Robotics Library2 [163]. The complete test bed environment

1http://www.uco.es/investiga/grupos/ava/node/26
2www.roboticslibrary.org.
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has been modeled using Virtual Reality Modeling Language (VRML) models. This system

updates the configuration of the robot arm and the positions of the target in real-time via a

TCP/IP interface.

7.3 Experiments

Two experiments are performed to validate and evaluate this work on a standard industrial

robot in a realistic human-robot interaction (HRI) scenario. In the first experiment, we control

the robot without environment constraints to better illustrate the stability of the control scheme

and the convergence of 6D visual trajectory error. It focuses on the 6D visual servoing algorithm

as an application of a teaching interface, where the user defines the pose of the end-effector using

a visual marker and this information is later used to define the desired visual task. The second

experiment uses the 6D visual servoing algorithm for tracking a moving target in real-time.

This experiment also provides an example of how this work is used in a practical human-robot

interaction scenario. To this effect, several other features such as singularity avoidance, self-

collision avoidance and obstacle detection and avoidance are implemented to ensure safety of

the robot and human. This experiment also shows how the orientation matrix is estimated on

line enabling an uncalibrated visual servoing system. Occlusions due to camera placement can

be handled in a natural and intuitive way by simply moving manually the camera to a better

position.

7.3.1 6D Visual Tracking

This scheme is implemented on a robotic platform with six degrees of freedom and an eye-

to-hand configuration. Two AR markers are used for 6D tracking task, where one is held by

the user and the other is attached on robot end-effector. 3D position and 3D orientation of

AR markers are tracked by the stereo vision system. The task function of the proposed visual

servoing is defined as the error of 2D image features from 4 corner points of markers.

This experiment consists of two phases: teaching and execution.

7.3.1.1 Teaching Interface

In this experiment, we provide a teaching interface for the user, see Fig. 7.4 (a), where the

user is holding an AR marker, which is detected by the stereo cameras system and provides

2D image features. A red square and a marker ID (displayed in cyan) in the image shows the

detection. In this task, the user moves the marker, creating some visual trajectories, such as,
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(a)  Teaching Interface (b)  Automatic Execution

Left 
Camera

Right 
Camera

Figure 7.4: Snapshot of the 6D visual tracking.

two orthogonal straight lines on the table and two smooth curves on the surface of the globe.

These trajectories include both translation and rotation motions. During the movement, the

2D features for 4 points of the target in the camera frames are recorded and saved. At certain

points, when the marker is lost or can not be detected, it saves the last available data, which

guarantees that the desired pose can be reached and is safe for the robot execution.

7.3.1.2 Automatic Execution

After the teaching phase, the robot can execute the recorded visual trajectories. Another AR

marker with the same size is attached to the robot end-effector. The current robot position (Ws)

is obtained from the visual features tracked from this marker. Target inputs to visual servoing

are the 2D image features which were recorded in the teaching phase. From the recorded

features we extract our desired visual feature vector Wsd = [xsd , ysd , zsd , αsd , βsd , γsd ]T , which

is used to create the error function (see Section 5.2).

Visual servoing is accomplished by driving the error function to zero. In our case, the error

function is e = Ws −Wsd . According to the properties of our image Jacobian and the control

scheme, when the errors in the virtual visual space converge to zero, the errors in Cartesian

space also converge to zero without local minima. Therefore during execution, the AR marker on

the robot end-effector shows identical linear and angular motions as instructed in the teaching

phase (Fig. 7.4). This experiment illustrates how the visual servoing system can track a given

desired trajectory.
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Figure 7.5: Experiment results for 6D visual tracking in both spaces.

Experimental results are depicted in Fig. 7.5. Plots in the first column (a) and (b) show

the 3D linear and 3D angular tracking in the virtual visual space while the second column (c)

and (d) depicts the target trajectory tracking in Cartesian space. The red lines in plots (a) and

(c) are the target trajectories, which exhibit some noise and chattering due to the unsteady

movement of the user. However, the blue lines which show the trajectories of the robot end-

effector, are smooth and chatter free. From the plots of the last column (e) and (f), we can see

that the control signals converges with a satisfactory behavior.

7.3.2 6D Uncalibrated IBVS in Human-Robot Interaction Scenario

In this task, we illustrate real time tracking in Human-Robot Interaction scenario. We use AR

markers to identify the target pose and the current pose of the robot end-effector. The target

is carried by a human, and the control goal is to make the robot end-effector follow the target

placed in the human’s hand. In order to maintain safety and for visualization purposes during

the interaction, we keep a 0.2 meter offset between the robot end-effector and the target marker

in the yb axis of the workspace.

This experiment illustrates the 6D pose tracking in both virtual visual space and Cartesian

space. Moreover, as mentioned in Section 7.1, we integrate the adaptive image-based torque

controller with environment constraints to generate a safe and singularity-free trajectory for

the robot.
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7.3.2.1 Real-time obstacle avoidance

The raw point cloud data obtained from a depth sensor (Kinect) is processed to generate a prim-

itive shape decomposition of the point cloud, followed by computation of a minimum volume

bounding box (MVBB) for each of the primitive shapes along with their normal directions.

These normal directions are stable since they are computed from a robust primitive shape

decomposition algorithm [164, 165] which makes them suitable for obstacle avoidance tasks.

Fig. 7.6 shows the normals map for the environment, which are used to compute the virtual

forces, including (self-/obstacles/table) collision avoidance forces.

(a) (b)

Figure 7.6: Scene perception module: (a) Scene snapshot, (b) Environment normals map.

The experimental obstacle avoidance results are depicted in Fig. 7.7, where the robot end-

effector trajectory (blue line), the target (red +) and the obstacle position (green *) can be

seen in both, the virtual visual space (a), and in the Cartesian space (b). The visual tracking

behavior in the 3 visual axes can be seen in plots (c), (d) and (e) for the 3D position and (f),

(g) and (h) for the 3D orientation. Note that even when the target position is not continuous,

the robot end-effector exhibits a smooth behavior. In the sections where the robot end-effector

is close to the obstacle, we can see the effect of the Obstacle Avoidance Force in the trajectory.

7.3.2.2 Interaction results

This experiment demonstrates real-time tracking for the robot end-effector according to the

moving target held by the human. We address the tracking for both translation and rotation

motions, see Fig. 7.8 (a). The system proves to be stable and safe for HRI scenarios, even in

situations where the target is lost (due to occlusions by the robot or the human), Fig. 7.8 (b).

In this case, the robot stops and the visual tracking is resumed as soon as the target is visible

again.
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Figure 7.7: Position trajectories with obstacle avoidance.

(a) (b) (c) (d) (e) (f)

Figure 7.8: System behaviors: (a) Position and orientation tracking, (b) Case when the target
is lost, (c) Case with singularity avoidance, (d) Case with table collision avoidance, (e) Case with
self-collision avoidance and (f) Obstacle avoidance.

To demonstrate stability, we test our system under several environment constraints. Fig. 7.8 (c)

illustrates the results of singularity avoidance, where the robot does not reach the singular con-

dition (q3 = 0), even when the user tries to force it. Using the normal directions of the
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(a) (b)

Figure 7.9: Target occlusion: (a) The target is occluded by the robot end-effector, (b) The user
manually moves the stereo vision system to a pose where the occlusion is no longer present.

environment provided by the Kinect sensor, the robot can avoid collisions. Fig. 7.8 (d) depicts

the table avoidance where the motion of the robot is constrained in the zb− axis by the height

of the table (the end-effector is not allowed to go under the table) but it can still move in the

xb and yb axes, and (e) shows how the robot handles self-collisions. Fig. 7.8 (f) shows obstacle

avoidance while continuing to track the target.

One of the key contributions of this system is the possibility of handling situations where

the target object is occluded, and the stereo system can be moved to maintain the target in

the field of view. This feature is analyzed in next subsection.

7.3.2.3 On-line Orientation Matrix Estimation

As mentioned earlier in Section 5.4.1, a coarse on-line estimation of the orientation matrix is

computed using the real-time information generated by the robot. The remaining estimation

errors for the complete Jacobian Js can be handled by the controller to a certain extent.

Object occlusion occurs in Fig. 7.9 (a), where the stereo system can then be moved to

maintain the targets in the field of view, see Fig. 7.9 (b). The camera motion is detected by the

system and a process for coarse estimation of the orientation matrix between the stereo system

and the robot base frame is initiated. Based on our experiments, the control scheme can handle

up to 20% error in this rotation matrix.

After the stereo camera system is moved, the robot performs a small motion and a set of

points are collected, as shown in Fig. 7.10 (d). During this stage, the visual servoing is turned off,

110



7.3 Experiments

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

Time (s)

P
o

s
it

io
n

(m
)

(a) End−effector Position and Recover EF Position

 

 
EF

x

RecEF
x

EF
y

RecEF
y

 EF
z

RecEF
z

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

∆
 P

o
s

it
io

n
(m

)

(b) Error of End−effector Position

 

 

∆X

∆Y

∆Z

−0.2

0

0.2

0.4

0.6 −0.05

0

0.05

0.1

0.15
0

1

2

 

Y (m)

(d) The position for Estimation Rotation

X (m)
 

Z
 (

m
)

Xef

Xef
stereo

−1

−0.5

0

0.5 −0.6

−0.4

−0.2

0

0.2−0.5

0

0.5

 

Y (m)

(c) 3D End−effector Position

X (m)
 

Z
 (

m
)

Xef

Xef
rec

Figure 7.10: Results of the on-line orientation matrix estimation.

and the robot motion is in the free space, where the integration of the environment constraints

(obstacle-, self- and singularities avoidance) play an important role for the correct/stable robot

behavior. We compare the actual end-effector position with the recovered end-effector position

that is obtained by using the estimated rotation. Fig. 7.10 (a) and (c) depicts the comparison

of these two position trajectories. It can be observed that the error between them is closed to

zero after the on-line rotation matrix estimation, illustrated in Fig. 7.10 (b).

Fig. 7.11 demonstrates the experimental results in the case where the camera is moved.

Fig. 7.11 (a) and (b) show the 3D positions in the virtual visual space and the Cartesian space.

In the experiment, at some instance, the robot loses the visual tracking because the target is

occluded and the user manually moves the stereo vision system to a new pose, which leads

to an incorrect rotation matrix for the control. In this situation, our system can handle the

problem by using the on-line coarse orientation estimator and then resuming the visual tracking.

Fig. 7.11 (c), (d), (e) illustrate when the cameras are moved at t ≈ 40s, and the 3D position

shows big errors. After the orientation estimation, the 3D visual position resumes tracking

(t ≈ 42s). The 3D visual orientations are depicted in Fig. 7.11 (f), (g) and (h).

A video where more details for all these experimental results are illustrated can be seen in:

http://youtu.be/arNFrbJ0Lj4
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Figure 7.11: The trajectories of robot end-effector when the stereo camera system is moved by
the user.

7.4 Application: Human-Robot Cooperation

We have tested a typical industrial application, assembly, to evaluate the capabilities of the

system. Since our work is targeted primarily towards industrial applications, the test is con-

ducted using a standard industrial robot, the Comau Smart Six with a C4G open architecture

controller in an industrial scenario.

The application is the assembly of a power converter box. This operation consists of a

number of steps, actors and objects which are identified by the perception module. Some of

components are complex, high precision assembly tasks (e.g. screwing) that are suitable for the

human, while some involving lifting heavy objects are more suitable for the robot. Hence, the

Human-Robot cooperation (HRC) is need for this assembly application. The proposed visual

servoing with multiple constraints is used to drive the robot movement safely.
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7.4.1 Multiple Input Modules

(a) (b) (c)

Figure 7.12: Multiple input modules: (a) A snapshot of the HRC application, (b) Perception
module for object recognition and pose estimation, (c) Articulated human tracker.

For this application, multiple input modules are need, e.g. perception module, human

tracking module. The object recognition and pose estimation algorithm used in this experiment

is presented in [164, 166, 167, 168]. Such environments are typically unstructured and objects

are often occluded by the human. Noisy point cloud data is obtained from the low-cost depth

sensor (Microsoft Kinect) used in the experiments. Also, accurate object poses are required

for precise pick-and-place tasks, due to mechanical limitations of the 2-fingered gripper. Given

these constraints, an accurate algorithm which can handle occlusions, partial views and sensor

noise is essential for such scenarios. Fig. 7.12 shows the object perception module and the

human tracking module.

7.4.2 Automatic Assembly

(a) (b)

Figure 7.13: HRC in an assembly process: (a) interaction, (b) obstacle avoidance.
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This application is aimed at automatic execution of semantic process plans in industrial

scenarios. The perception module provides the objects poses, which are used to control the robot

movement using the proposed visual servoing. The human tracking module provides the human

hand position which is used in the cooperation with robot actions. Besides, the constraints

imposed by the robot’s structure and the external environment are also considered for the safety

purposes, such as robot joints limits and singularity avoidance, human and obstacles avoidance.

All the constraints are combined with 6D visual servoing control using the framework of Fig. 7.1.

Fig. 7.13 shows snapshots of this application. Fig. 7.13 (a) demonstrates the physical interaction

with the robot by using the force sensor and force control in the controller. Fig. 7.13 (b) is the

top view of obstacle avoidance during the assembly task.

A video illustrating results and the process for this applications mentioned above can be

found at : https://youtu.be/TQB6GsUnbDI.

7.5 Discussion: Multiple Tasks Control with Priority

In section 7.1, the system uses a force field for modeling the environment and task constraints for

controlling the robot in complex and unstructured scenarios. Although this approach provides

good results and can be extended easily to accommodate different constraints, the problem of

local minima can not be completely solved using this approach. When there are multiple tasks

or constraints, the constraints maybe conflict with and affect the global task since they are not

at different priorities. Hence, the global task accomplishment can not be guaranteed in the case

of conflicting tasks, as seen in the experiment results in subsection 7.3.2.

Therefore, to guarantee accomplishing the global task while satisfying several constraints,

we need to design a multi-level hierarchical control structure that allows the establishment of

general priorities among tasks. A prioritized, multi-task hierarchical control framework that is

able to control forces will be presented in the next chapter.
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Chapter 8

Prioritized Multi-Task Control
Framework

In order to control robot safely when it interacts with unstructured environment, the robot ma-

nipulators are required to respond in real-time to a variety of dynamic constraints characteristic

of human environments. Moreover, multiple tasks and constraints need to be simultaneously

controlled while accomplishing the global task, including the constraints imposed by the robot’s

structure and the external environment. Hence, a prioritized, multi-task hierarchical control

framework that is able to control forces for industrial is required.

In this chapter, we first review different frameworks for multi-task control of rigid robots,

and analyze the individual merits of these dynamic frameworks. Thereafter, we focus on the

Whole-Body Control Framework, that allows us to establish a control hierarchy for multiple

prioritized tasks. Furthermore, we demonstrate the use of this framework with complicated

geometric constraints by testing several types of constraints. Finally, Section 8.6 presents the

evaluation of our approach on typical real-world industrial robotics applications.

8.1 Overview

Several frameworks for multi-task control of rigid robots exist in the literature. Many frame-

works presented in the 80s, 90s [169, 170, 150, 171] and recently by Smits et al. (iTaSC) [172]

and [173, 174] work at the kinematic level, computing the desired joint velocities (q̇) or accel-

erations (q̈). These approaches are not suited for robots that interact with the environment,

because they do not allow for force control. This motivated a more recent trend of torque con-

trol strategies [175, 176, 177, 178, 179], which consider the dynamics of the robot and compute

the desired joint torques (τ). This approach can also improve tracking, as it compensates for
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the dynamic coupling between the joints of the multi-body system.

Since we are interested in controlling robots that interact with the environment, we focus

on frameworks that allow for force control. Peters et al. [180] demonstrated that we can derive

several of these well-known torque control laws under a unifying framework, allowing for force

control by setting the joint space control torques. This approach is efficient but not optimal. The

Whole-Body Control Framework (WBCF) [175] allows for force control while being optimal,

but is not efficient. The framework (TSID) presented by Prete et al. [181] is motivated by

designing a control framework that is both optimal and efficient. However, it does not allow

for inequality constraints, which are particularly important for modeling joint limits and motor

torque bounds. These are very important for safety in industrial robotics.

The frameworks presented above are usually applied on humanoid robots. In this chapter, we

present a prioritized, multiple-task control framework that allows for force control for industrial

robotics. Although the TSID framework is efficient, we choose the WBCF framework for our

work because of the fact that there are only very few DOFs for industrial manipulators. For

this case, we have observed that both WBCF and TSID have similar computation times. The

main reason for us to choose WBCF is that it is easy to integrate multiple tasks and model

inequality constraints.

Our proposed framework is based on a composable structure where several constraints, each

describing a robot task or behavior, can be combined with priorities. The framework supports

several types of constraints, such as operational task (position and orientation), force (contacts),

or inequality constraints (e.g., joint limits, collision avoidance). For safety and efficient control,

the framework establishes a control hierarchy among behaviors by enforcing priorities among

the different control categories, i.e., safety constraints, operational tasks, and postures. The

priorities are accomplished by null-space projections.

8.2 Whole-Body Control Framework

In this section, we review the hierarchical task control framework based on projecting the control

of lower priority tasks into the null-space of higher priority tasks. This multi-level prioritized

framework allows us to establish multiple priority levels among the different control categories.

In this context, we distinguish three priority levels in the hierarchy: Safety constraints (such

as contacts, joint-limits, self-collisions), Operational tasks (i.e., position, orientation motion),

and Postures (i.e., the residual motion), which should be controlled with different priority

assignments. They are treated as independent control entities. The hierarchies are shown in
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Table 8.1.

Table 8.1: The Multi-level Prioritized Control Categories

Categories Priority level Task Primitive

Safety constraints 1 Joint limit, Obstacle/Self collision, Contact forces

Operational tasks 2 Position, Orientation, Artificial forces

Postures 3 Residual motion

According to Table 8.1, safety constraints should always be guaranteed since they are on

the highest priority level, while operational tasks should be accomplished without violating the

acting constraints, and the posture should control the residual movement redundancy.

8.2.1 Integration of Constraints

This subsection describes the WBCF presented by Sentis et al. [175]. This framework is based

on the Operational Space Formulation [182], which was introduced to address the dynamic

interaction between the robot’s task space motion and force, defining a dynamically consistent

task null-space. We first review the fundamental mathematics and begin by describing the

robot’s joint space dynamics in terms of joint coordinates q with

M(q)q̈ + C(q, q̇) +G(q) = τ , (8.1)

where τ is the set of joint torques, M(q) is the joint inertia matrix, C(q, q̇) is the Coriolis and

centrifugal torque vector, and G(q) is the gravity torque vector.

The Operational Space Formulation describes the torque level decomposition of an opera-

tional task (task1) and a secondary control task (task2) according to the torque equation

τ = τtask1
+ τtask2

. (8.2)

Based on the control algorithm projecting the control of lower priority tasks into the task

null-space of higher priority tasks, the torque decomposition can be represented by

τ = JT
task1

Ftask1
+NT

task1
τtask2

, (8.3)

where Jtask1
is the Jacobian of task 1, Ftask1

is a vector of forces, and Ntask1
= (I−J†task1

Jtask1
)

is the dynamically-consistent null space associated with the task1. J†task1
is the dynamically-

consistent generalized inverse of the task Jacobian.
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8.2.2 Hierarchical Extension

Figure 8.1: A multi-level control hierarchy framework that allows us to establish multiple priority
levels among categories.

In this subsection, we propose a control hierarchy that extends the previous decomposition

to multiple priority levels. This hierarchy integrates constraints and additional tasks according

to desired priorities, while optimizing the execution of the global task. Given n tasks controlling

the robot behavior at a given time, the multi-level hierarchy is represented as

τ =

n∑

i=1

JT
p(i) ·Fp(i) (8.4)

Fp(i) = Λp(i){ẍ∗i − J̇iq̇ + JiM
−1(h−

i−1∑

j=1

JT
p(j)Fp(j))} (8.5)

Jp(i) = Ji ·Np(i) , (8.6)

where τ , Fp(i) and Jp(i) are prioritized controls, prioritized forces, and projected Jacobian,

respectively. ẍ∗i is a reference input at the acceleration level, Ji is the task Jacobian, and

h = C + G. Λp(i) is the task-space mass matrix and Np(i) is an extend null-space matrix

containing the null-spaces of all preceding constraints and tasks:

Λp(i) = (Jp(i) M
−1 JTp(i))

−1 (8.7)

Np(i) = I −
i−1∑

j=1

J†p(j) Jp(j) . (8.8)

This prioritization strategy minimizes the error of each task under the constraint of not

conflicting with any higher priority tasks. The hierarchical control framework is shown in

Fig. 8.1.
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Remark:

The presented framework is a prioritized, multi-constraints control framework, which guaran-

tees accomplishing the global task while satisfying several constraints. The global task, which

normally is a operational task, is achieved using the proposed visual servoing scheme (6DVS)

while the potential field techniques are considered to handle dynamic constraints.

8.2.3 Hybrid Control

The framework allows for hybrid position/force control by setting (8.5)

Fp(i) = Ωff
∗
i + Λp(i){Ωmẍ∗i − J̇iq̇ + JiM

−1(h−
i−1∑

j=1

τp(j))} , (8.9)

where the selection matrices Ωf and Ωm split the control space into force and motion compo-

nents, respectively. f∗i represent the constraint forces.

8.3 Types of Constraints and Control Approaches

The control framework supports several types of constraints, such as motion (position and

orientation), force (contacts), or inequality constraints (e.g., joint limits, collision avoidance).

The robot must accomplish a global task while satisfying several constraints. In this section,

we will discuss our approach to handle some important inequality constraints including joint

limits, obstacles, and self collisions.

8.3.1 Joint Limit Constraints

For industrial robotics, safety is a very important aspect. To guarantee the safety of the robot

and its environment, safety related constraints (e.g., joint-limits, self-collisions) should always

be guaranteed, and operational tasks should be accomplished without violating the acting

constraints. Our approach handles joint-limit constraints as priority processes and executes

operational tasks in the null space of joint-limits constraints.

To illustrate our approach, let us consider the control example shown in Fig. 8.2, where the

robot’s end-effector is commanded to move toward a target point Xd (global task), while the

controller handles joint-limit constraints. When no constraints are active, the end-effector is

controlled using the proposed visual servoing (6DVS) to get τtask

τ = JT
task Ftask , (8.10)
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where τ is the vector of actuation torques, Ftask is a control force to move the end-effector

toward the desired goal, and Jtask is the end-effector’s Jacobian matrix.
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Figure 8.2: End-effector position control under joint limit constraints: In image (a), the robot’s
end-effector has been commanded to move toward a desired goal. The blue area defines a joint
limit activation zone for the elbow joint. When this area is reached (b), a control approach is
implemented to block the elbow joint while pursuing the goal (c). Image (d) depicts the attractor
potential used to block the elbow joint inside the activation area. (e) shows the experiment results.

When the elbow joint enters the activation zone (shown in blue), we project the task in the

constraint-consistent motion manifold, decoupling the task from the constraint. At the same

time, an artificial attraction potential is implemented to prevent the elbow from penetrating

further into the activation area. The simultaneous control of constraints and operational tasks

is expressed as

τ = JT
JLC FJLC +NT

JLC · τtask , (8.11)

where NJLC is the dynamically-consistent null space matrix of the constraint Jacobian, FJLC

is the vector of blocking forces (in the example a 1D joint space torque), JJLC is the Jacobian

of the violating joint (in the example it would be a constant matrix with zeros in non-violating

joints and a 1 for the elbow joint). ẍ∗ is controlled through a simple PD controller that includes

velocity saturation. More details about the controller can be found in Sentis’ dissertation [183].

The control of joint-limit constraints is integrated by using the top-most priority level as

specified in (8.11), while the operational task is projected into the constraint null-space. Fig. 8.2
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illustrates the results of the control. When the elbow joint enters the constraint activation area

shown in Fig. 8.2 (b), we apply blocking forces (FJLC) to block the elbow joint while pursuing

the goal (Fig. 8.2 (c)). To lock the joint, we use attraction fields as shown in Fig. 8.2 (d). If

there are no joint-limit constraints, the robot joints will be violated during motion, as can be

seen in Fig. 8.2 (e).

We consider here potential field techniques to handle dynamic constraints in real time. For

example, let us analyze in more detail the joint limit behavior shown in Fig. 8.2. When the

joints enters the constraint activation area, we use attraction fields to lock the joints inside the

activation area. This potential can be expressed using the following energy function

Vconstraint = ‖qc − qlock(i,j,k,...)‖2, (8.12)

where each violating joint has an associated lock position represented by the values qlock(i,j,k,...),

and qc is the joint position vector involving all violating joints,

qc =




qi
qj
qk
...


 , (8.13)

where i, j, k, . . . are violating joints. The Jacobian corresponding to this multidimensional

constraint is

Jconstraint =




0 · · · 1i · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 1j · · · 0 · · · 0
0 · · · 0 · · · 0 · · · 1k · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·


 , (8.14)

which corresponds to a selection matrix selecting components corresponding to violating joints,

and the velocities are

ẋconstraint = Jconstraint · q̇c. (8.15)

In this framework, every task primitive is controlled through a simple PD controller that

includes velocity saturation, i.e.

ẍ∗constraint = −kd(ẋconstraint − νυdes), (8.16)

υdes =
kp
kd
5 Vconstraint, ν = min

(
1,

υmax

‖υdes‖

)
, (8.17)

Using the control expression given in (8.16), and the prioritized structure shown in (8.11) we

can simultaneously handle multiple joint limits without interrupting the global task.
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8.3.2 Obstacle Avoidance

To handle obstacles we apply repulsion fields in the direction of the approaching objects as

shown in Fig. 8.3. Repulsion fields can be applied to desired points on the robot’s body by

using the control structure described in (8.5) and the velocity saturation control law described

in (8.16).
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dthresholddsafety

n

Fconstraint

Nconstraint

Figure 8.3: Obstacle avoidance: When an obstacle approaches the robot’s body, a repulsion field
is applied to the closest point on the robot’s body.

When handling obstacles we use repulsion fields. A repulsion field is illustrated on image

(b) of Fig. 8.3. This potential can be expressed using the following energy function

Vconstraint = ‖dobstacle − dsafety‖2, (8.18)

where dobstacle is the distance between the obstacle and the closest point on the robot’s body

and dsafety is a desired safety distance. The quantities are defined as follows

dobstacle = xrobot − xobstacle, (8.19)

dsafety = Ksafety
dobstacle

‖dobstacle‖
, (8.20)

where xrobot is the Cartesian position of the closest point to the obstacle on the robot’s body,

xobstacle is the position of the closest point on the obstacle, and Ksafety is a constant gain

determining a safety margin. Though we define the above distances as 3D vectors, obstacle

avoidance should be a 1D task acting on the direction of the distance vector. To map a 3D

task into 1D space we manipulate the Jacobian associated with the distance vector, removing

unnecessary components,

Jconstraint =
(
RdoSnR

o
d

)
Jrobot, (8.21)
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where Rdo is a 3D rotation matrix between the robot base frame and a frame aligned with the

distance vector, and Sn is a 3× 3 selection matrix that selects the components on the normal

direction. Although the constraint Jconstraint has three rows, its rank is one. As a result,

when projecting constraint forces into actuation torques, only the perpendicular direction to

the obstacle will be considered.

8.3.3 Self Collision Avoidance

Self collisions are especially important in industrial robotics due to the safety issues. Our

approach to avoid self collisions is almost identical to avoiding obstacles. A repulsion field is

created to maintain a safety distance between pairs of nearby links,

Vconstraint = ‖dselfcollision − dsafety‖2. (8.22)

This time the distance vector corresponds to closest points on separate links,

dselfcollision = xlink(a) − xlink(b), (8.23)

and the safety distance has identical form for obstacle avoidance as shown in (8.20).

8.4 Operational Task: Motion Constraints

The basic operational tasks are position and orientation movements with constraints. In the

Peg-in-Hole scenario, the first step is to move the robot end-effector to the plane where the

hole is on, then the robot needs to search the hole on that plane. Therefore, we test these two

cases for our control framework on a 6-DOF industrial manipulator in simulation. The robot

kinematics, dynamics, and low-level robot control are simulated using the Robotics Library1

[163] with a realistic robot model.

8.4.1 Move to a Plane

In this case, the robot is commanded to reach a plane with its end-effector while controlling the

movement only along the plane normal direction. The plane is defined by a point (p) and its

normal vector (n). During task execution, the distance d between the robot end-effector and

the plane converges to zero when it reaches the plane. The orientation of the end-effector is

finally aligned with the normal direction, which means the z axis of the end-effector is parallel

to the plane normal n. The constraints are described in Fig. 8.4 (a). There are two steps:

1http://www.roboticslibrary.org/
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Step 1: Move the robot to PlaneA (d→ 0) with

ẍ∗position = Ωm(ẍ∗d) , (8.24)

where ẍ∗d is the desired input to drive the robot end-effector to move toward the point p on

PlaneA. This is computed using the proposed visual servoing scheme (6DVS). However, the

task is to reach a plane with the movement only along the plane normal direction n, therefore we

accomplish dynamic decoupling in the controllable directions according to the selection matrix

Ωm with

Ωm = Rdo ·Sn ·Rod , (8.25)

in which Rdo is the transformation between the task frame Od and the robot base frame Oo. In

this case, we constrain the motion only in the n (zd) direction, and the motion matrix Sn can

be chosen as

Sn =




0 0 0
0 0 0
0 0 1


 . (8.26)

Step 2: After the robot has reached the plane, we rotate the end-effector until the zd axis

is perpendicular to PlaneA (or zd//n, which means angle (α) between zd and n converges to

zero) with

ẍ∗orientation = Ωm(kp θ − kd ω) , (8.27)

where ω is the robot angular velocity, θ = (0, 0, α)T and α is the angle between the robot

end-effector’s zd axis and the plane normal n.

These steps are demonstrated in Fig. 8.4(1) (d). Fig. 8.4(1) (b) and (c) show the simulation

results, with the robot trajectory in the Cartesian space and the control parameters d, α. Both

task errors converge to zero smoothly. In step 2, the position constraint is at a higher priority

than the orientation. Due to the projection of the orientation task into the null-space of the

position constraint, the orientation task does not affect the position task. Fig. 8.4(1) (d) shows

that the position has not changed during the orientation task in step 2.

8.4.2 Move on a Plane

In this case, we constrain the robot motion only on the plane with the robot end-effector

perpendicular to the plane. Suppose we have a desired position Xd that does not lie on the

plane, see Fig. 8.4(2) (d). The robot is commanded to reach the target position Xd, while

staying on the plane (xd − yd plane) and keeping the end-effector zd axis parallel to normal n.
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(2) move on a plane. (a) Constraints for tests, (b) 3D position in the task space, (c) control
parameters, (d) 3D visualization of coach for simulations.

The control law is

ẍ∗position = Ωm · (ẍ∗d), (8.28)

where ẍ∗d is the desired input to reach the target position Xd, which is computed by using the

proposed visual servoing (6DVS). The selection matrix is

Ωm = Rdo




1 0 0
0 1 0
0 0 0


Rod . (8.29)

In this task, the control of the position constraint is integrated by using the top-most priority

level, while the secondary task is the orientation constraint. The orientation task is projected

into the null space of the position constraint with

τ = τposition +NT
position · τorientation , (8.30)

where Nposition is the constraint null-space matrix.

Fig. 8.4 (2) shows the results for this test. During the task execution, the distance d and

the angle α remain zero since the robot is constrained to move on the plane and keeps the

orientation of the end-effector (Fig. 8.4(2) (c). In this test, since the task position Xd is out of

the plane, the robot moves on the plane linearly until he reaches the projection point pd, which

is the projection point of the task position Xd, see Fig. 8.4(2) (b) and (d).
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8.5 Hybrid Control

In real applications, an accurate model of the environment is difficult to obtain, e.g., the PlaneA

in the move to a plane case cannot be known as model (point, normal). Therefore, we require

a force sensor and a dynamic contact to decide where the plane is located and what its normal

direction n is. In this case, we use hybrid control to accomplish the task move to a plane.
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Figure 8.5: Hybrid control: (a) 3D pose for the robot end-effector. (b) Two steps for the motion,
including the desired force and the contact force from the force sensor.

Step 1: We apply a desired force Fdesired to command the robot to move while the motion

is constrained in the x and y axes. All constraints are combined together to guide the robot

motion solely along the z axis (Fig. 8.5) until it reaches a plane, where the contact force Fsensor

is provided by the force sensor. The control law is

Fp(i) = Ωff
∗
i + Λp(i){Ωmẍ∗i − J̇i q̇ + JiM

−1(h−
i−1∑

j=1

τp(j))} , (8.31)

with the selection matrices as

Ωm = Rdo




1 0 0
0 1 0
0 0 0


Rod (8.32)

and

Ωf = I − Ωm = Rdo




0 0 0
0 0 0
0 0 1


Rod . (8.33)

The force control is defined as

f∗i = ks(Fdesired − Fsensor) , (8.34)
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where ks is the contact stiffness. Finally, the robot stays on the plane when Ωff
∗
i = 0.

Step 2: After the robot reaches the plane, we rotate the end-effector until the contact

force Fsensor only has the z axis component, which means that the z axis of the end-effector is

perpendicular to the plane.

The results and motion are depicted in Fig. 8.5.

8.6 Real-world Applications

In this section, we evaluate our approach on a selection of classical industrial robotics scenar-

ios in real-world setups (using a 6-DOF industrial robot). We choose several typical industrial

robotic applications for demonstrating and evaluating the proposed approach: grasping of cylin-

drical objects, welding and two force control applications (Erasing and Peg-in-Hole).

8.6.1 Grasping of Cylindrical Objects

In this scenario, an industrial manipulator is supposed to grasp a cylindrical object at its

rim using a parallel gripper (Fig. 8.6). The robot end-effector is commanded to grasp the a

cylindrical object at any point along the object’s rim (a valid grasping pose). The orientation

of the gripper is adjusted in a way that it is tangential to the cylinder’s rim.

This task can be defined with the following constraints:

• Line-Plane Coincident Constraint: PlaneB , which contains AxisB1 and AxisB2 , co-

incident with AxisA.

• Line-Point Distance Constraint: PointB , which is the point of intersection of AxisB1

and AxisB2
, at a distance (CylinderA) from AxisA.

• Plane-Point Distance Constraint: PointB is at a distance zero from PlaneA, which

is the top plane of the object.

• Orientation Constraint: AxisA is parallel to AxisB1
and AxisA is perpendicular to

AxisB2 of the gripper.

While the above constraints need to be fulfilled exactly, a residual degree of freedom is

available as a path along the rim of the cylinder (Fig. 8.6 (b)). We implemented this scenario

in simulation and on an industrial robot platform (Fig. 8.6 (c) and (d)), where we solve the

constraints to obtain the target pose closest to the previous waypoint of the robot.
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Figure 8.6: Grasping of cylindrical objects at their rim in a robotic workcell: (a) Task constraints.
(b) 3D pose in Cartesian space, shows the end-effector trajectory. (c) and (d) illustrate the
snapshots in simulation and real experiment.

8.6.2 Welding

For the welding application, we test two cases: point welding and seam welding.

In the point welding scenario (Fig. 8.7 (b)), the robot is supposed to weld an object at a

user-specified point. This task fixes the position of the welding tool-tip. However, its orientation

is not fixed and can be optimized during runtime. The tip of the welding gun must exactly

coincide with the target point on the object with the position constraint:

• Point-Point Coincident Constraint: PointA of workpiece is coincident with PointB

of welding gun tool (Fig. 8.7 (a)).

In this example, the orientation of the welding gun should be adjusted by an operator.
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Figure 8.7: Welding in a robotic workcell: (a) Task constraints, (b) point welding, (c) seam
welding in simulation and real experiment, (d) 3D end-effector trajectory and velocities for robot
end-effector.

In the seam welding scenario (Fig. 8.7 (c)), the tip of the welding gun must lie on the target

line on the object. The task constraints are

• Point-Line Coincident Constraint: LineA of workpiece is coincident with PointB of

welding gun tool (Fig. 8.7 (a)).

In this simplified experiment, we add one more constraint with constant velocities for the robot

movement. This velocity constraint is applied in the null space of the position constraint, which

means that the motion along the line is always satisfied. Fig. 8.7 (d) illustrates the pose of the

seam welding and the constant velocities of 0.04 m/s. Moreover, the robot can be jogged in the

null-space to choose an orientation as required by other constraints from the workcell.

8.6.3 Erasing with Constant Force

For the erasing board application, it can be divided in 2 steps: step 1 in which the robot is

move to a plane in z direction, and step 2 in which the gripper is sliding on the board with

constant forces (erasing the board with given trajectory). Step 1 Move to a Plane is the same

as presented in subsection 8.4.1. Then the step 2 erasing task can be defined with the following

constraints:

• Plane-Point Distance Constraint: end-effector is at a distance zero from the board.
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• Orientation Constraint: EFz is perpendicular to the board, with fixed orientation for

robot end-effector.

• Force Constraint: the contact force Fsensor should be equal to the given desired force

Fdesired along the z axis.
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Figure 8.8: Erasing the board: (a) Task constraints, (b) Erasing task in simulation and real
experiment, (c) 3D end-effector trajectory in Cartesian space and contact force from force sensor.

In this task, the hybrid control is used to guide the robot motion, where the contact force

Fsensor is provided by the force sensor, and the Fdesired = 10N . The control law is presented in

equation (8.9) and the force control is defined in (8.34). When f = (Fsensor + Fdesired) is close

to 0N , the robot is maintained on the board, where the erasing task is performed.

Fig. 8.8 (a) lists the constraints for this task and Fig. 8.8 (b) shows the scenario where the

erasing task is evaluated in simulation and on a real industrial manipulator. A desired trajectory

with rectangle shape is given for this task. Fig. 8.8 (c) demonstrates the experiment results in

terms of the 3D trajectory in Cartesian space and the contact forces. From the force plot, it can

be seen clear 2 steps (t ≈ 46s). The forces for both x and y axes is close to zero since the robot

end-effector is perpendicular to the board. However, there are still some noise and chattering

due to different velocities of the robot and unsteady noise of the force sensor. Furthermore,

from Fig. 8.8 (c), it can be observed that the contact force in z direction, Fz ≈ −10N since the

desired force Fdesired = 10N and force error should be close to zero during erasing task.
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8.6 Real-world Applications

8.6.4 Peg-in-Hole

In typical industrial robotics applications, the robotic peg-in-hole assembly task is a force

control application, which is composed of three phases: phase 1 in which the robot is move to

a surface where the hole is located, phase 2 in which the peg is sliding on the surface of the

environment and searching for the hole, and phase 3 in which the peg is located straight on

the hole (Peg-in-Hole phase). Different constraints should be satisfied during different phases,

which are listed in Fig. 8.9 (a). During these constraints, the force constraint is the crucial one.
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Figure 8.9: Peg-in-Hole assembly tasks: (a) Task constraints, (b) 3D trajectory in Cartesian
space, (c) Force and force error in z axis, (d) Spiral search trajectory, (e) Real experiment.

Fig. 8.9 illustrates the experiment on a real industrial manipulator, where Fig. 8.9 (b-d)

is the evaluation results and the (e) is a snapshot of the real experiment. Fig. 8.9 (b) is the

3D trajectory in Cartesian space for robot end-effector, where 3 phases are observed: moving

down along z, searching and insert the hole. The contact force Fsensor which is provided by the

force sensor and the force error f along z axis are demonstrated in Fig. 8.9 (c). During phases

1 and 3, the contract force is close to zero since there is no contract in z-direction. There

is about 5N contact force in z-direction during the searching phase due to Fdesired = −5N .

Moreover, Fig. 8.9 (d) shows an example of 3D trajectory for searching phase. The spiral

searching algorithm is used to search the hole.
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8. PRIORITIZED MULTI-TASK CONTROL FRAMEWORK

8.7 Discussion

In this chapter, we presented a prioritized, multiple-task control framework that allows for

force control in industrial robotics. The proposed framework is based on a composable struc-

ture where several constraints, each describing a robot task or constraint, can be combined

with a priority. The priorities are accomplished by null-space projections. The robot must

accomplish a global task while satisfying several constraints, where the global task is achieved

using the proposed visual servoing (6DVS) while safety constraints are modeled by the poten-

tial field techniques. We tested several types of constraints, e.g., operational task (position and

orientation), force (contacts), or inequality constraints (joint limits). Moreover, several typical

industrial robotics applications were chosen for demonstrating and evaluating the proposed ap-

proach. We also have evaluated the proposed framework with force control applications, where

the force control is a crucial aspect, such as inserting a peg into a hole, erasing the board and

writing.

The constraints supported by our framework are more suitable for industrial tasks. Hence,

the complexity of geometric constraints required is higher than that used in WBCF [175]. In

[174, 184], even more complicated geometric constraints for industrial tasks were presented.

However, these frameworks are designed to work only at the position control level, which is

not suited for robots that interact with the environment. In conclusion, we use the control

framework from [175], but introduce more complicated geometric constraints and adapt it for

use in industrial applications.
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Chapter 9

Conclusion

The individual chapters in this thesis provided a detailed insight into the research and develop-

ment of a vision-based controller for manipulators in human-robot interaction scenarios. Novel

techniques in extracting new image features and modeling new visual servoing control law were

introduced and validated. Furthermore the possibilities of easy integration with a variety of

robotic systems in human-robot interaction scenarios were demonstrated in experiments and

applications.

This chapter summarizes the primary contributions of the thesis, and the resulting conclu-

sions drawn from this work. These conclusions also include the observed shortcomings in the

system. With respect to these observations, the future work in order to overcome the current

shortcomings is discussed.

9.1 Primary Contributions of the Thesis

The primary contribution of this thesis, as also discussed in the earlier chapters, can be sum-

marized as follows:

1. Visual Servoing:

• Improvement for PBVS in terms of Visual Occlusion: Two different camera models

were presented in chapter 4 to provide two different solutions for visual occlusion prob-

lems in PBVS such as out of camera field of view and visual occlusion by unstructured

environments.

• New Orthogonal Image Features for IBVS: The choice of features directly influences

on the performance of the controller. A new virtual visual space was designed where a
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6D pixel pose vector (with 6 orthogonal features) can be extracted. The virtual visual

space is obtained by first computing the 3D position of points in the metric camera frame

using a stereo vision system. Then they are re-projected into two virtual camera frames.

Hence, the extracted 6D pixel vector (Ws) represents the image position as 6 linearly

independent and orthogonal signals, which are used as inputs for visual servoing instead

of the classical image features.

• Full-rank block diagonal Image Jacobian: Points from the image plane are mapped

to the new 6 orthogonal image features, to obtain a mapping (a 6 × 6 image Jacobian).

This mapping maps velocities from Cartesian space (velocity of the robot end-effector)

to the virtual visual space (velocity of selected image features). It is broken down to

pure rotations and translations. Moreover, this full rank image Jacobian can avoid the

well-known problems such as the image space singularities and local minima.

• Novel Properties of the proposed Scheme: The proposed Jacobian is used to de-

sign a new visual servoing scheme (6DVS), which was compared with several classical VS

methods. The evaluation results demonstrated the novel properties and better perfor-

mance of the proposed 6DVS algorithm over conventional VS approaches. It combines

the advantages of PBVS and IBVS, and decouples the control of the translational and

rotational motion of robot end-effector due to the diagonal image Jacobian. Further-

more, an observation from the analysis shows that errors in the virtual visual space are

proportional to the error in the Cartesian space.

• Integration into real-world Robotic Applications: The proposed 6DVS scheme

was integrated into a variety of diverse real-world robotic application scenarios. Its easy

integration into different robotics system confirms its flexibility in terms of usability.

2. Constraint-based robot control:

• Environment Constraints: The proposed scheme was experimentally shown to be easy

to integrate with the unstructured environment constraints in a human-robot interaction

scenario, where the environmental constraints are modeled using artificial potential fields

and geometric constraints.

• Prioritized multi-task Control Framework: To guarantee accomplishment of the

global task while satisfying several constraints, a prioritized, multi-task hierarchical con-
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9.2 Shortcomings of the System

trol framework was designed. It allows force control and complicated geometric constraints

for industrial tasks. It establishes multiple priorities among tasks. The framework sup-

ports three priority levels of constraints, safety constraints, operational tasks and posture

optimization.

• Typical industrial Robotic Applications: Several typical industrial robotic applica-

tions, such as grasping of cylindrical objects, welding, erasing and Peg-in-Hole, were cho-

sen for demonstrating and evaluating the proposed prioritized multi-task control frame-

work with different constraints.

9.2 Shortcomings of the System

Although the proposed visual servoing performs robustly in unstructured environments, there

are few aspects which need further optimization. This section explains these shortcomings,

which shall form the basis for planning future research directions in this area.

• Algorithm Classification: In chapter 5, we categorize our scheme as an image-based

visual servoing due to the nature of terms in the error function. As we know, in IBVS,

the features used as feedback in minimizing the error are from the image space (normally

measured in pixels), while PBVS uses the geometric interpretation of the information in

Cartesian space (such as 3D position, measured in meter). In our case, the general idea

behind our algorithm is that we try to extract 6 independent features (Ws) (pixels) from

the classical image features (s) in order to get a square full-rank Image Jacobian. These

new image features (in pixels) are used to design the error function to control the robot.

However, as an intermediate step, recovery of the 3D Cartesian position from the stereo

cameras is needed to get the new image features. This intermediate steps creates some

confusion for classifying the propose visual servoing. The presented approach for finding

this mapping is not the only possible way, and remains a topic for future research.

• Orientation Estimation for uncalibrated VS: The current method for estimating

the orientation has stability issues and sometimes can result in large errors due to noise

from the input visual signals. The estimation method presented in subsection 4.3.3 highly

depends on the datasets generated by the vision system. Therefore, using a more stable

visual tracking algorithm to improve the estimation accuracy is an important aspect for

further investigation.

135



9. CONCLUSION

• Control Schemes: An adaptive dynamic controller, using second order sliding mode

control, was chosen to control the manipulator since it allows dealing with uncertainties

from robot and camera model. However, the choice of a controller was not considered as

a major contribution in this thesis, since the focus was not on designing a new controller.

• Comparison: Although the proposed 6DVS was compared with some classical visual

servoing methods in several standard tests, more tests with different situations need to

be carried out. Moreover, the simulations used for comparisons should also be performed

on the real robot.

• Flexibility: Another shortcoming of the system is the flexibility of the proposed 6DVS.

Although the scheme was used in some applications, there is still a lot of scope for com-

bining it with other modules and use in various other applications, e.g. visual navigation,

objects grasping.

9.3 Proposed Future Work

From the conclusions drawn and the observed shortcomings, the future work in order to improve

the performance of the system in certain aspects will be discussed in this section. The following

are the planned areas for future research:

• Algorithm Classification: In the chapter 5, we construct a virtual visual space which

has similar properties as Cartesian space (has 6 independent components), but measured

in pixels. This virtual visual space is an extension of 2D image plane with z pixel direction.

Therefore, we still consider it as IBVS. As future work, we can try to find another method

without using 3D reconstruction information in the intermediate step, which will eliminate

the confusion for algorithm classification.

• Orientation Estimation for uncalibrated VS: In order to improve the performance

of the orientation estimation, the vision tracking algorithm will be modified such that it

is more robust to signal noise.

• Control Schemes: This module will be researched further in order to compare the per-

formance with different control schemes for proposed VS approach. Moreover, modeling

new visual servoing control schemes to enhance the task performance and stability will

be also considered.
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9.3 Proposed Future Work

• Integration with more advanced vision systems: For the camera model in chapter

5, two orthogonal virtual cameras are used to extract the new image features. This

concept of the virtual visual space provides the possibilities to integrate the proposed

visual servoing with different kinds of vision modules. Based on the formulation of the

virtual composite camera model presented in section 5.2.3, 3D Cartesian poses obtained

by any visual tracking method also can be mapped to the virtual visual space and the new

6 orthogonal components can be extracted as image features. Thus, use of the proposed

object tracking method based on stereo cameras to obtain the 3D Cartesian position is

not necessary, and can be replaced by more powerful and accurate methods for object

detection and pose estimation [168, 165]. Other sensors, e.g., high frame rate cameras,

depth cameras, RGBD sensors, ToF sensors, and the Leap Motion sensor can also be used

to increase the accuracy of visual tracking and also facilitate many new applications.

• Extension to different fields: Potential applications of visual servoing are numerous.

It is applicable to any task that uses visual information as input and controls the motion

of a dynamic system. Given the capability of easy integration with different modules,

the proposed visual servoing algorithm will be extended from the current human-robot

interaction for industrial robot to a variety of different research fields and domains, such as,

used in visual navigation for a mobile robot or an unmanned aerial vehicle, manipulation

and grasping using a robot arm, locomotion and manipulation with a humanoid robot

and precise surgery in medical robotics.

• Constrained Problems: This module is an important component in enabling the safe

and efficient use of robotic systems in real-world applications. Given the wide variety of

robotic tasks and constraints in unstructured environments, different control formulations

and control strategies will be investigated.
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Appendix A

Color-based Object Tracking

A.1 Image Processing

Visual Servoing is a technique which uses feedback information extracted from a vision sensor

(visual feedback) to control the motion of a robot. Therefore, extraction the visual features

from an image is an important step for visual servoing. In this thesis, object extraction and

pose estimation is not our contribution and concern. Hence, we use an existed simple algo-

rithm (color-based objects tracking) for testing our proposed visual servoing system. Fig. A.1

illustrates the algorithm for detection and tracking the centroid position of colored targets1.

The algorithm segments the target objects based on their color. First, a color histogram of

a mask that belongs to the target is computed off-line and used as a model. Then the back

projection of a histogram is calculated and morphological operations is used for filtering and

noise removal. After finding the contours in a binary image and calculating the minimal up-

right bounding rectangle for the specified point set, the CamShift object tracking algorithm

[185, 186] is used to find the object center, size, and orientation. Outputs of the algorithm, as

shown in Fig. A.2, give the pixel positions of the centroids of the detected objects.

1Thanks to colleague Dario Mendoza Gallegos for contributions to the implementation of this algorithm.
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Start

End

Yes

No

Figure A.1: Color-based objects tracking algorithm.

Figure A.2: The results of color-based objects detection.
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Appendix B

3D Position-based Visual
Servoing Experiments

A 3D PBVS approach based on the two novel camera models proposed in chapter 4 has been

tested on a standard industrial robot in a Human-Robot Interaction (HRI) scenario. The real

time color-based visual tracker is used to identify the target position (green cube) and the

current position of robot end-effector (red cube). The target is carried by a user, and the

robot end-effector tracks the target in a dynamic environment. Several robot attributes such

as singularity avoidance, self-collision and obstacle avoidance are implemented to ensure safety

of the robot and human. The environment constraints are modeled in 7.1.

Two different cameras configurations for tracking system as proposed in chapter 4 have been

tested in the experiments, which provide some solutions for the visual occlusion problem for

PBVS. Fig. B.1 (a) shows the two cameras system: four orthogonal cameras and two stereo

cameras.

Cam 1Cam 3

Cam 2Cam 4

Stereo Cams

(a) (b)

Figure B.1: Vision system with camera indexes.
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B. 3D POSITION-BASED VISUAL SERVOING EXPERIMENTS

B.1 3D PBVS with Four Orthogonal Cameras

In this experiment, four orthogonal camera system is used for tracking the target. The visual

models are presented in Section 4.2, and can be used to avoid visual occlusion problems. Fig. B.1

(a) shows IDs (index) of four orthogonal cameras and (b) shows the snapshot of camera images.

Figure B.2: Orthogonal experiment result: up part is the selected camera IDs and down part
shows the 3D Cartesian position for the target.

During experiments, some of the cameras may be occluded by the user or obstacles. Then

the system automatically selects two cameras that avoid visual occlusions. The two selected

cameras have to be in orthogonal positions in order to get the 3D position. Although the

selected cameras keep changing, the model for computing 3D position is the same, as defined in

(4.29) and (4.30). The experimental process and the results are shown in Fig. B.2, where two

selected cameras’ IDs and the corresponding Cartesian position of the object are illustrated. It

demonstrates that although the selected cameras keep changing, the Cartesian position is still

continuous and smooth due to the precise camera calibration.

During the experimental validation, several behaviors are evaluated. Fig. B.3 (a) shows

how the robot handles self-collisions. The system generates a collision-free trajectory (red line)

instead of moving directly to the target. Fig. B.3 (b) demonstrates obstacle avoidance. The

blue line is the target motion and the red line is the robot end-effector motion. The robot can

avoid the obstacle while continuing to track the target.

For human avoidance, we use a Kinect sensor to detect and track the human skeleton. We
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B.2 3D PBVS with uncalibrated Camera System
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Figure B.3: Experiment results: (a) Self-collision avoidance. (b) Obstacles avoidance.

(a) (b) (c)

Figure B.4: Avoid Human: (a) Tracking human skeleton using Kinect; (b) Human joints model;
(c) Human avoidance results: robot movement (red line) and target movement(blue line), Human
position (green circle).

use this information to build our human model, as shown in Fig. B.4 (a) and (b). Fig. B.4 (c)

shows the process of how the robot avoids the obstacle (human) while continuing to track the

target.

B.2 3D PBVS with uncalibrated Camera System

In this case, two stereo cameras fixed on a tripod are used in tracking system instead of four

orthogonal cameras, as shown in Fig. B.3 (a). The stereo vision tracking system provides the

positions of both red and green cubes with respect to the stereo coordinate frame. During the

experimental validation, several behaviors are evaluated. These behaviors are depicted Fig. B.5.

Fig. B.5 (f) and (a) show visual tracking with and without obstacle avoidance respectively.

Fig. B.5 (c) illustrates the result of singularity avoidance, where the robot does not reach the
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B. 3D POSITION-BASED VISUAL SERVOING EXPERIMENTS
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Figure B.5: System behaviors: (a) 3D Position tracking. (b) Case when the target is lost. (c)
Case with singularity avoidance. (d) Table avoidance. (e) Self-collision avoidance. (f) Obstacle
avoidance. (g) Case when the object is occluded. (h) The camera can be moved when the target
is occluded.

singular condition (q3 = 0), even when the user tries to force it. Fig. B.5 (e) shows self collision

avoidance. Fig. B.5 (d) depicts table avoidance where the motion of the robot in the z − axis
is constrained by the height of the table (the end-effector is not allowed to go under the table).

The system proves to be stable and safe for HRI scenarios, even in situations where the target

is lost (due to occlusions by the robot or the human), see Fig. B.5 (b) and (g).

The primary advantage of our system is that when the target object is occluded (Fig. B.5

(g)), the stereo system can be moved to maintain the targets in the field of view, see Fig. B.5

(h). After moving the stereo system, our approach can use real data to estimate the orientation

matrix on-line without needing to stop the robot and re-calibrate it. More details about the

on-line orientation estimation is shown in 7.3.2.3
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