
Combining Space Exploration and Heuristic Search in Online Motion
Planning for Nonholonomic Vehicles

Chao Chen1 and Markus Rickert1 and Alois Knoll2

Abstract— This paper presents an efficient motion planning
method for nonholonomic vehicles, which combines space ex-
ploration and heuristic search to achieve online performance.
The space exploration employs simple geometric shapes to
investigate the collision-free space for the dimension and
topology information. Then, the heuristic search is guided by
this knowledge to generate vehicle motions under kinodynamic
constraints. The overall performance of this framework greatly
benefits from the cooperation of these two simple generic algo-
rithms in suitable domains, which sequentially handles the free-
space information and kinodynamic constraints. Experimental
results show that this method is able to generate motions
for nonholonomic vehicles in a time frame of less than 100
milliseconds for the given problem settings.

The contribution of this work is the development of a Space
Exploration Guided Heuristic Search with a circle-path based
heuristics and adaptable search step size. The approach is grid-
free and able to plan nonholonomic vehicle motions under
kinodynamic constraints.

I. INTRODUCTION

Due to the wide applications of mobile platforms and
autonomous vehicles, motion planning (combining path plan-
ning and trajectory generation) for car-like robots or non-
holonomic vehicles always stays in the focus of robotics and
intelligent vehicles research and development.

In general, two kinds of information should be processed
during the motion planning: constraints from the environment
and constraints from the vehicle itself. The former one
determines the collision-free subspace Cfree of the vehicle
configuration space C . The latter one defines the dimension
and metric of C . The mission of motion planning is to find
a collision-free path {q0,q1, . . . ,qn} from start configuration
qstart to goal qgoal together with a series of time-labeled
control variables {ut0 ,ut1 , . . . ,ut1}, which could drive the
vehicle through this path.

In classic motion planning paradigms, a collision-free
path is planned in advance only considering the kinematic
constraints. After that, a trajectory is generated according
to the speed and acceleration constraints. However, these
methods do not always produce optimal results. Because the
path generated in the first place may be suboptimal under
certain speed and turning conditions or acceleration and
steering constraints of the vehicle. Even worse, the path may
contain inevitable collisions, which can only be found by
trajectory generation and require modifications of the original
path. A kinodynamic planner, which also takes speed and

1Chao Chen and Markus Rickert are with fortiss GmbH, affiliated institute
of Technische Universität München, Munich, Germany

2Alois Knoll is with Robotics and Embedded Systems, Technische
Universität München, Munich, Germany

Fig. 1. Motion planning for nonholonomic vehicles using Space Explo-
ration Guided Heuristic Search. Start position is shown in green, goal in red,
obstacles in gray, exploration circles and solution trajectory in blue.

steering into account, performs better in such situations. As
the price, a kinodynamic planner faces a more complicated
search space containing speed and steering, which makes it
more challenging to achieve online performance. The related
work is introduced in Section II.

This paper introduces a novel online capable kinodynamic
planner. Compared to the traditional approaches, this method
relaxes the kinematic constraints in the first path-finding
stage in order to quickly extract free-space knowledge; it
then employs a heuristic search algorithm to find a trajectory
through the free-space. The kinodynamic constraints are
handled during the search node expansion with a numerical
integration-based forward dynamic method. The combina-
tion between these two steps is realized by a circle-path
based heuristic design and search step size adaptation. Thus,
the search space is customized to the Cfree, which greatly
improves the search efficiency even without C discretiza-
tion. The resulting motion is applied to the kinodynamic
constraints and optimal for safety regarding the distance to
obstacles. The details of the whole framework are elaborated
in Section III.

An example is demonstrated in Fig. 1. The circles are
generated by the space exploration, which indicates a “circle
path” in free-space. The curved lines are expanded during
the heuristic search, which drives from start to goal through
the circle-path. Further experiments and comparison with
reference methods are shown in Section IV

II. RELATED WORK

The idea of space exploration has played an important
role in many motion planning approaches. As planning is
always done in C , the exploration is first targeted in C

to extract the information of Cfree. As the kinematics of a
car-like robot is a small-time controllable system [1], it is
possible to design a steering method, which drives the vehicle
through any collision-free corridor in Cfree. This collision-
free corridor can be easily obtained by a geometric planner
in C . However, the kinodynamic constraints make a car-
like robot only locally controllable, with the consequence
that a geometric path does not guarantee an applicable
trajectory. Potential fields, such as the artificial potential field
in [2], can handle the kinodynamic constraints well with
real-time performance and superposition ability. Because of
local minima, such methods are limited to local problems,
otherwise the whole Cfree should be analyzed for a global
navigation function [3]. The overhead of such analysis is too
large for online applications. Another approach is to partially
evaluate the Cfree to achieve guidance for potential fields,
such as elastic bands in [4]. But as long as the exploration
is done in C , the complexity grows exponentially with the
space dimension. In [5], Brock and Kavraki suggested to
explore the workspace W instead. The W of vehicle motion
planning is the 3D Cartesian space, and even 2D is sufficient
in most scenarios. As a result, the exploration turns out to
be much more efficient, and more complicated structures can
be built for the planning [6].

The metric in C of a nonholonomic vehicle is non-trivial,
which leaves a large gap between learning the geometric path
in Cfree and finding a drivable path under the constraints.
The works from Dubins [7] and Reeds & Shepp [8] provide
an insight into these complex metrics. With the assumption
that the vehicle can only steer with a certain radius, the
metric can be described with a bunch of combinations of
primitive segments such as straight lines and arcs. These are
however suboptimal in practice, because the vehicle must
stop and steer at every connecting point of two segments.
These is no explicit method to obtain metric between two
configurations when kinodynamic constraints are considered.
A workaround is provided through forward kinematics or
dynamics, which provide neighbor configurations according
to certain control inputs. With this technique, kinodynamic
planning is possible, for example, the Rapidly-Exploring
Random Tree (RRT) [9] and its variants. The exploration
efficiency is a key factor for RRTs, therefore numerous
exploration schemes have been developed. RRT-Connect [10]
takes two trees to double the exploration performance. RRT-
Blossom [11] uses a flood-like method with multiple ex-
pansions. Shkolnik et al. [12] use reachability information
to guide the exploration. In contrast, the information ob-
tained from the continuous exploration could also update
the discrete lead decisions [13]. Workspace exploration is
applied by Rickert et al. [14], which is especially powerful to
solve the narrow passage problems. Furthermore, RRT* [15]
introduced an any-time algorithm which optimizes the result
continuously during the runtime. However, due to the ran-
domness of the planning results, these sample-based methods
are less preferable for practical autonomous driving applica-
tions. And time requirements exceed the online criterion in
most cases.

In recent years, grid-based search methods are customized
for motion planning of intelligent vehicles, e.g., any-time
incremental search in multi-resolution grid [16] and Hybrid
A* search [17]. These methods made trade-off between
completeness and performance by discretizing C and ap-
plying heuristic search with predefined primitive motions to
expand the vehicle states. In addition, other efforts have been
made in trajectory generation when a path is provided [18],
which focuses on the kinodynamic constraints and human-
comfort. The heuristics and cost function design is the crucial
part of these methods. For nonholonomic and kinodynamic
systems, finding a good heuristic is almost as complex as
the motion planning problem itself. Furthermore, the grid
in C is anisotropic due to the complicated metric structure
and different resolutions are required for different situations.
However, theses methods show great advantages in online
performance, because the discretization and the heuristics
greatly reduce the search space.

The idea of this paper is to combine an exploration stage
in W with a grid-free heuristic search in Cfree. The space
exploration can rapidly check the existence of possible solu-
tion by examining the space connectivities. By constructing
the space connection topology, not only a distance heuristic
is available for the search phase, but also the information
of the free-space dimension can be useful for choosing the
optimal search step size. This method can be regarded as the
search-based version of [5] and [14]. Details are explained
in the following sections.

III. EXPLORATION AND SEARCH FRAMEWORK

A. Problem Statement

The kinodynamic state of a vehicle is (x,y,θ ,v,φ), which
can also be expressed as a vector q in C . The vehicle
takes (a,ω) as control inputs, i.e., control vector u. The
speed v and steering angle φ are bounded, as is the accelera-
tion a and steering speed ω . According to the bicycle model,
the kinodynamic motion is specified as

ẋ
ẏ
θ̇

v̇
φ̇

=

vcosθ cosφ

vsinθ cosφ

vsinφ/l
0
0

+

0
0
0
1
0

a+

0
0
0
0
1

ω . (1)

The first column on the right is the drift of the system, which
means the vehicle will continue changing its state even if the
control inputs are equal to zero. l is a constant value of the
vehicle axis-base. The turning radius r is determined by l
and φ with the equation r = l cotφ .

The problem statement of motion planning is as follows:
given a start configuration qstart and a goal configuration qgoal
in C , the desired planning result is a series of control inputs
{ut}, which drives the vehicle from qstart to qgoal. All the
intermediate states {qt} should be in Cfree, which consist the
trajectory of the motion.

If no sliding occurs during the motion, the track from
a high-speed motion can always be followed by a motion
with lower speed. A short explanation is as follows: when

traveling with bounded steering speed and acceleration, the
path from the vehicle is smooth and determined by the
curvature. The curvature of the path is continuous. When
traveling slower through the same path, the time derivative
of the curvature becomes smaller, which results in slower
changes of φ , i.e., smaller ω . Thus, the problem condition
can be simplified as finding a trajectory for a q∗goal with
v∗goal ≥ vgoal.

B. Space Exploration

The space exploration is done in W , i.e., the 2D Cartesian
space. The basic geometric shape used in the exploration
is circles, which have the simplest collision detection and
distance calculation. The circles are expanded from the
start to goal position with a depth-first schema taking the
Euclidean distance as guidance. Meanwhile, the largest circle
is also visited in each iteration, which serves as a breadth-
first exploration to maximize the space explored, as well as
to escape local minima. New circles are born on the edge of
the parent circle and take the radius as the distance to the
nearest obstacle. A detailed explanation is given in [19].

Partial collision detections are done with a distance margin
as the inner circle radius of the vehicle geometry. The space
exploration procedure is shown in Algorithm 1.

Algorithm 1 SpaceExploration((x,y)start,(x,y)goal)

1: cstart← GenerateCircle((x,y)start)
2: cgoal ← GenerateCircle((x,y)goal)
3: Sclosed← /0
4: Sopen← cstart
5: while Sopen 6= /0 do
6: if Overlap(Nearest(Sopen),cgoal) then
7: return success
8: else
9: cnearest← PopNearest(Sopen)

10: clargest← PopLargest(Sopen)
11: if NotExist(cnearest) then
12: Sopen← Expand(cnearest)
13: Sclosed← cnearest
14: end if
15: if NotExist(clargest) then
16: Sopen← Expand(clargest)
17: Sclosed← clargest
18: end if
19: end if
20: end while
21: return failed

Two sets of circles are maintained by the algorithm:
Sclosed holds all the visited circles for overlapping check or
result construction; SOpen contains all the newborn circles
for expansion. The function GenerateCircle((x,y)) creates
a free-space circle centered at the position (x,y) with the
radius equal to the distance to the nearest obstacle minus
the inner radius of the vehicle. The function Overlap(c1,c2)
checks if two circles overlap with each other in a cer-
tain margin, e.g., 50% of the radius of the smaller circle,

which guarantees enough space for a transition motion. The
function PopNearest(S) and PopLargest(S) pop the circle
nearest to goal or with the largest radius respectively from
set S. The function NotExist(c) checks whether the circle
c greatly overlaps with any circle in Sclosed. In this case,
the circle is neglected in order to reduce the redundancy.
The function Expand(c) samples the border of circle c, and
generates child-circles on the sample points with the function
GenerateCircle((x,y)). When cgoal is reached, the program
traces back the relationship among circles to produce and
optimize a circle-path. A path distance is also calculated for
each circle according to the distance between circle centres.

The circles are grown in a tree-like manner. No other
structures among circles are built based on intersections.
The interconnections are only examined in the final result
optimization. A more complicated exploration scheme could
be building a graph data structure and find the shortest
path with Dijkstra’s algorithm, or growing the circles from
both start and goal sides. The experiment section will show
that even without these enhancements, the simple version of
space exploration is fast and efficient.

C. Heuristic Search
The heuristic search makes use of the circle-path from

space exploration. This rough path of overlapping circles
provides two useful informations: distance estimations and
hints of free-space dimension.

The distance is used to build a heuristic of estimated time
cost from q to qgoal with

theuristic =
dq,c +dc

|v|
. (2)

dq,c is the distance between configuration q and circle c. dc is
the circle-path distance from circle c to goal. The sum of both
is the estimated distance from q to qgoal. It is then divided
by the current vehicle speed v to obtain estimated time cost.
For each q, multiple time estimations are calculated with the
nearest circle and its neighbors, and the minimum is taken as
the valid heuristic cost. Time is used instead of distance as
a heuristic due to the fact that speed matters in kinodynamic
planning. With this heuristic, the node with the faster speed
has higher priority when distances are similar. The search
algorithm based on this heuristic is described in Algorithm 2.
As the typical heuristic algorithms, the node from the open
set Sopen with the smallest total cost is expanded in each
iteration. The total time cost is calculated by adding the
heuristic time cost with the time already spent to reach
q together. The visited node is then pushed to the closed
set Sclosed, while the new ones are pushed to Sopen. This
procedure is repeated until Sopen is empty or qgoal is reached.

The function Expand(q,s) generates new configurations
from q with a step size s. The size of the circle helps to
select the right s with

s = min(α · rc,β ·dc,smin) . (3)

α and β are coefficients and rc is the radius of the circle
which associates with the heuristic value. dc is the circle-
path distance and smin is a pre-defined minimal step size. By

Algorithm 2 HeuristicSearch(qstart,qgoal,{ci})
1: Sclosed← /0
2: Sopen← qstart
3: i← 0
4: while Sopen 6= /0 do
5: if Top(Sopen)≈ qgoal then
6: return success
7: else
8: q← PopTop(Sopen)
9: if NotExist(q) then

10: s← UpdateStep(ci,qgoal,q)
11: Sopen← Expand(q,s)
12: Sclosed← q
13: end if
14: end if
15: end while
16: return failed

taking the minimum of the three, the planner tends to take
large steps with big circles, which indicate vast free-space,
and proceeds with small steps when it is close to the goal.

The child configurations are generated with forward dy-
namics as

xt+∆t
yt+∆t
θt+∆t
vt+∆t
φt+∆t

=

xt
yt
θt
vt
φt

+

vcosθ cosφ

vsinθ cosφ

vsinφ/l
a
ω

∆t . (4)

∆t is the time step to perform the numeric integration.
The number of integration steps are decided with equation
n ≈ s/|v|/∆t. The value of the control variables a and ω

are chosen from a group of pre-defined primitive actions.
Table I shows a simple example with combinations of three
acceleration and three steering speed values.

TABLE I
ELEMENTAL ACTIONS FOR THE EXPANSION PHASE

a > 0 a = 0 a < 0

ω > 0 accelerate left left decelerate left

ω = 0 accelerate straight decelerate

ω < 0 accelerate right right decelerate right

A common issue for such a forward simulation is that it
is almost impossible to exactly reach the goal configuration.
In Hybrid A* search [17], an analytical expansion with
the Reeds-Shepp method is responsible for this last step.
However, as no such method is applicable under kinody-
namic constraints, the search will finish when arriving in the
neighborhood of qgoal.

IV. EXPERIMENTAL RESULTS

Experiments have been designed to verify and compare
this method with RRT and a plain Hybrid A* search. The
planning progress and result are visualized in a graphic in-
terface as already illustrated in Fig. 1. The vehicle geometry

is modeled as a rectangle, with an arrow indicating the
forward direction. The reference point is at the middle of
the rear axis. The start configuration is colored in green and
the goal configuration in red. The obstacles are modeled
with rectangles in gray. The yellow circles and lines are
generated during the planning, with the resulting circle-path
and trajectory displayed in blue.

The RRT is implemented after [20] and takes the same
primitives as the heuristic search. The nearest node to the
random sample is chosen in each iteration for expansion
and a goal-bias is used with a specified probability. The
Hybrid A* search plans in a grid of (x,y,θ) with constant
resolution and considers only the kinematic constraints. The
path optimization and trajectory generation parts from [17]
are skipped to reduce the implementation effort.

All algorithms are implemented in C++ with the same ve-
hicle kinematics, collision detection and visualization frame-
work. The simulations run on a machine with 2.9GHz CPU
and 8GB RAM. Each scenario generates 20 different qstart
and qgoal by adding random displacements. The number of
iterations are limited to 10000, therefore a success-rate is
counted. The Space Exploration Guided Heuristic Search is
abbreviated as SEHS in the following sections.

A. Low-Speed Navigation Scenario

The first scenario is a navigation problem through multiple
obstacles in low-speed of vmax = 3ms−1, as shown in Fig. 2.
The size of the scene is 60m×40m. vstart and vgoal are both
0ms−1. The vehicle can accelerate with amax = 1ms−2.

The results are listed in Table II. The number and time
cost of the SEHS circle expansion are listed in parentheses.
Compared to the total time cost, the space exploration takes
a relative small portion of the total planning duration.

SEHS is comparable with Hybrid A* in time performance
and both of them are one magnitude better than RRT. The
Hybrid A* plans only with the vehicle kinematic constraints
without optimization or trajectory generation. As mentioned
in [17], the raw path from Hybrid A* search tends to
“hug” the obstacles to achieve the minimum path distance,
which is suboptimal for safety distances. In contrast, SEHS
directly generates a trajectory with acceleration and steering
commands. As a result from the heuristic design, the result
trajectory tends to go through the circle centers, which stays
away from the obstacles in all directions. Another obvious
character of Hybrid A* search is the analytical expansion
with the Reeds-Shepp method in the final stage. As can be
seen from Fig. 2(b), this procedure saves almost one third of
the total search range. SEHS needs to search until it reaches
the close neighborhood of the goal position. Even so, SEHS
takes takes only 10% more nodes to finish the planning,
which means that with the guidance from space exploration,
the heuristic search of SEHS is more efficient than Hybrid
A*.

The RRT, which is also a kinodynamic planner, and
directly generates a trajectory, has the longest planning
time and is not always able to solve the problem in the
given limit. The success-rate is only 85% and the result

(a) SEHS (kinodynamic planning) (b) Hybrid A* (path planning) (c) RRT (kinodynamic planning)

Fig. 2. Low-speed navigation scenario: vmax = 3ms−1, amax = 1ms−2, φmax = 0.6rad, ωmax = 0.6rads−1. The results from SEHS and RRT are trajectories
with directly executable control inputs. The result from Hybrid A* is a path without speed and steering configurations.

varies drastically in time performance and path quality. Most
result paths contain unnecessary motions, that still need
to be optimized, as depicted in Fig. 2(c). It also has the
lowest nodes expansion efficiency, which generates about
3000 nodes per second, compared with about 30000 nodes
per second from SHES and Hybrid A*. The reason is that
the random samples are not always optimal to expand, and
the overhead of the nearest neighbor search grows with the
number of nodes.

TABLE II
RESULTS OF THE LOW-SPEED NAVIGATION SCENARIO

Planner Fig. % nodes time in ms

SEHS 2(a) 100 2858 (1595) 93.10 (4.15)
Hybrid A* 2(b) 100 2615 80.25

RRT 2(c) 85 4213 1361.20

B. High-Speed Overtaking Scenario

Another scenario is a high-speed overtaking problem. The
vehicle has a initial speed of 20ms−1, and can accelerate
up to 30ms−1 with a maximum acceleration of 5ms−2. The
driving corridor is 80m long and 7m wide, which can be
divided into two lanes. A segment of the right lane is blocked
by other traffic. The vehicle should change its lane to the left
first to drive past the long obstacle, then steer back to the
right lane to reach the goal position. The whole scenario
is similar to general overtaking situations. The experimental
results are shown in Fig. 3 and Table III.

TABLE III
RESULTS OF THE HIGH-SPEED OVERTAKING SCENARIO

Planner Fig. % nodes time in ms

SEHS 3(a) 100 331 (1528) 10.15 (2.95)
Hybrid A* 3(b) 100 182 10.10

RRT 3(c) 35 8173 1126.2

In this scenario setting, SEHS and Hybrid A* generate
results in a rather short time frame and again outperform
RRT. Their average planning duration of 10ms satisfies the
online requirement of most autonomous driving systems.

The shortage of kinematic path planners is obvious in this
case. As the steering radius is always the same in Hybrid A*,
the vehicle chooses to make a sharp turn just before the ob-
stacle, which is dangerous or even impossible when driving
in high-speed. It can be argued that the steering radius can be
adapted to the vehicle speed during the planning. However,
as kinematic path planners do not consider acceleration and
steering speed, this adaptation is hard to carry out when the
vehicle can dramatically change these two states. In the other
case, SEHS provides a much more convenient trajectory. The
steering radius is obvious larger than low-speed scenario, and
the whole motion is smoother than the result from Hybrid
A*.

Another issue of the Hybrid A* result is the safety
distance. As the Hybrid A* takes the shortest path under
holonomic constraints as one heuristic, the planner produces
a path closest to the obstacle due to the shorter distance.
Further optimization is necessary to achieve a larger safety
margin for the motion with distance to obstacles in the
cost function. However, this feature is embodied in SEHS
by the circle-path based heuristic, which guides the search
expansions through the circle-centers.

The trajectory from SEHS possesses a slight discrepancy
from the ideal form, which should travel exactly through the
circle-centers during the overtaking phase. The reason is a
suboptimal step size. As a result, the planner is not always
able to drive the vehicle exactly to the middle of the lane,
which needs a little effort to converge. Such behavior can be
improved by adding a potential-based controller afterwards to
push the vehicle away from the lane sides. Another solution
could be gradually reducing the step size in a following
incremental planning procedure to find the optimum, similar
to RRT*.

The success-rate of RRT drops greatly in this scenario.
The narrow passage between start and goal is extremely hard
for sampling-based methods, as the sampling points are less
likely to fall in the narrow passage, which hinders the tree
to grow through the passage.

V. CONCLUSION AND FUTURE WORK

The Space Exploration Guided Heuristic Search method
combines two simple, generic algorithms to enable efficient
kinodynamic planning for nonholonomic vehicles. The space

(a) SEHS (kinodynamic planning)

(b) Hybrid A* (path planning)

(c) RRT (kinodynamic planning)

Fig. 3. High-speed overtaking scenario: vmax = 30ms−1, amax = 5ms−2, φmax = 0.6rad, ωmax = 0.6rads−1. The results from SEHS and RRT are trajectories
with directly executable control inputs. The result from Hybrid A* is a path without speed and steering configurations.

exploration takes circles to explore the free space in a
tree-like fashion, while the heuristic search uses the circle-
path as heuristics to generate motions under kinodynamic
constraints. This heuristic not only makes an estimation in
time cost of the rest motion, but also provides information
about search step size and posses the property to achieve
optimal safety margin to obstacles. The performance of this
approach is verified in several experiments with excellent
results in both low-speed or high-speed scenarios.

The further development of SEHS will concentrate on
dynamic scenarios. By knowing the speed, acceleration,
steering and time cost of each nodes, SEHS can plan motions
in more complicated scenarios involving moving obstacles.
With the benefit of extremely efficient circle-based space
exploration, it is possible to do replanning or adaptation
in response to changes in the environment. The step size
of the searching can also be continuously optimized in a
incremental planning fashion.

ACKNOWLEDGEMENTS

This work is partially funded by the German Federal
Ministry of Economics and Technology under grant no.
01ME12009 through the project RACE1.

REFERENCES

[1] J.-P. Laumond, Robot Motion Planning and Control. Springer, 1998.
[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[3] J. Barraquand and J.-C. Latombe, “Robot motion planning: A
distributed representation approach,” The International Journal of
Robotics Research, vol. 10, no. 6, pp. 628–648, 1991.

[4] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proc. IEEE International Conference on Robotics and
Automation, 5 1993, pp. 802–807.

[5] O. Brock and L. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional config-
uration spaces,” in Proc. IEEE International Conference on Robotics
and Automation, 5 2001, pp. 1469–1474.

1http://www.projekt-race.de/

[6] N. Vandapel, J. Kuffner, and O. Amidi, “Planning 3-d path networks in
unstructured environments,” in Proc. IEEE International Conference
on Robotics and Automation, 4 2005, p. 46244629.

[7] L. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and
tangents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–
516, 1957.

[8] J. Reeds and L. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[9] S. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Department of Computer Science, Iowa State University,
Tech. Rep., 1998.

[10] J. Kuffner Jr. and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proc. IEEE International Conference
on Robotics and Automation, 4 2000, pp. 995–1001.

[11] M. Kalisiak and M. van de Panne, “Rrt-blossom: Rrt with a local flood-
fill behavior,” in Proc. IEEE International Conference on Robotics and
Automation, 5 2006, pp. 1237–1242.

[12] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Proc. IEEE
International Conference on Robotics and Automation, 5 2009, pp.
2859–2865.

[13] E. Plaku, L. Kavraki, and M. Vardi, “Discrete search leading con-
tinuous exploration for kinodynamic motion planning,” in Proc. of
Robotics: Science and Systems, 6 2007.

[14] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and ex-
ploitation in motion planning,” in Proc. IEEE International Conference
on Robotics and Automation, 5 2008, pp. 2812–2817.

[15] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the rrt,” in Proc. IEEE International Conference
on Robotics and Automation, 5 2011, pp. 1478–1483.

[16] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[17] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[18] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. 3, pp.
346–359, 2012.

[19] O. Brock and L. E. Kavraki, “Decomposition-based motion planning:
Towards real-time planning for robots with many degrees of freedom,”
Rice University, Houston, TX, USA, Tech. Rep. TR00-367, Aug. 2000.

[20] S. LaValle and J. Kuffner Jr., “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

