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Abstract

This paper addresses the difficulty that designers of embedded software systems face when doing formal verifi-
cation. Existing theories and practices in verification are powerful, but when applying formal techniques, the use of
detailed mathematical model descriptions in verification greatly increase the burden on system designers; construc-
tion of such models may be time consuming and error prone. We lay the groundwork for solving this problem by
providing a mapping from actor models to mathematical models suitable for verification; the conversion is automatic
with minimal human intervention. Meanwhile, the interactions between the verification model and its environment
can guide us in designing how the implementation model interprets the raw data from sensors and to actuators, al-
lowing us to reuse the verification model as the basis of its implementation model. Following these strategies, the
productivity of designers and the correctness of designs can be maintained simultaneously.

1 Introduction

Designing embedded systems according to the model-based approach [16, 35], detailed implementations are synthe-
sized from models. If the model and the synthesis technique are correct, then the implementation is guaranteed to be
correct. In this paper, we address the issue of ensuring that a model is correct.

Verification[33] is the process of determining whether a design conforms to its specification; techniques may in-
clude simulation and testing. However, for many embedded systems, violating specifications can be lethal, expensive,
or both, so the above two techniques may not provide the necessary confidence. Formal approaches help solve this
problem by providing rigorous mathematical means to explore system behavior exhaustively, offering stronger claims
regarding the correctness of the system.

Theoretically, modeling and verification should be tightly bound. In practice, an irreconcilable tension exists
between modeling convenience and formal verification, and tools tend towards one extreme or the other.

Tools emphasizing modeling convenience focus on the productivity of designers, time-to-market constraints, and
design re-use through modeling expressiveness, readability, extensibility, and synthesizability. However, their lack of
verification can be problematic for safety critical systems.
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Tools supporting formal verification emphasize precision, tractability, and compositionality at the expense of ease
of construction. Furthermore, verification techniques often only handle control flow, when data transformation is
equally important for model correctness, so redundant modeling becomes necessary.

Our approach,applied verification, incorporates the benefits of both standard approaches: designers can easily
model systems and then rigorously verify them. Two components make this new approach a reality:

• To maintain ease of design while still allowing the use of formal verification techniques, we have developed an
automatic mapping from commonly used higher level components to mathematical models used for verification,
which requires little human intervention (sections 3, 4). This is especially important because many designers
are domain experts with little understanding of formal verification techniques. The converted models can be
fed to model checkers which will perform formal verification to test the correctness of control flow. Behavior
which cannot be checked with model checkers, like data correctness, can be tested using existing simulation
mechanisms.

• Our design for verificationmethodology shows how to design a model that can be used for verification and
then as the basis for implementation. When verifying a model, we need to characterize the behavior of the
environment; we then mimic these characteristics in the implementation’s sensors and actuators, so we can use
the same model for both purposes, allowing maximal component reuse (section 5).

We use Ptolemy II [14] as the framework for applied verification (section 6) and provide a case study (section 7).
Ptolemy II is an open-source software package for modeling and simulating concurrent, real-time, embedded systems.
It facilitates the design process with a component assembly framework and a graphical user interface. Its provided
actor library, which is easily extendible, allows designers to quickly construct models. We believe that Ptolemy II
can serve as the front-end design tool for any verification engine, given a conversion mechanism between Ptolemy II
models and the necessary mathematical models. Our work allows model checking on some models in thesynchronous
reactive(SR) domain and thediscrete event(DE) domain to composefinite state machines(FSMs) andmodal models.
We leverage the code generation infrastructure of Ptolemy II to integrate the NuSMV [9] model checker for the
verification of synchronous and real-time systems (section 6.2). Our provided instructions show how other model
checkers can be easily integrated into Ptolemy II.

2 Preliminaries

We use the following notation.
• Given a setV , the size (number of elements) ofV is denoted as|V |, and2V is the powerset ofV .
• The symbolφ represents the empty set.
• Mathematical notation ‘∃1’ represents “exists only one element”.
• Theverbatim font specifies textual strings.
• Square brackets represent the atomic proposition, e.g.,[a == 3].
• ‘iff’ is a shorthand for “if and only if”.
• 0 and1 are indistinguishable from the boolean valuesfalse andtrue , respectively.
•

∧
is the symbol for Cartetian product.

2.1 Ptolemy II Models, Actors and Domains

Systems in Ptolemy II are built using components calledactors. Though models often feature no text, the following
abstract syntaxof an actor will facilitate our discussion.

Definition 1 An actor is a tupleA = (E,P, Para, R).
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D1 : Director

D2 : Director

A0 : System

A1

A2

A3
A4 A5 A6

P0 P1
P2 P3 P4 P5 P6 P7

P8 P9

P11P10

Figure 1: A system featuring actors and directors.

• E is the set of (inner) actors.
• P is the set ofports.
• Para = {(name, attribute)} is the set ofparametersspecifying properties.
• R = {(pi, Paraij , pj)| pi ∈ P̂ , pj ∈ Ṗ , Â = {Ê, P̂ , ˆPara, R̂} ∈ E, Ȧ = {Ė, Ṗ , ˙Para, Ṙ} ∈ E} ∪
{(pi, Paraij , pj)| pj ∈ P̂ , pi ∈ P, Â = {Ê, P̂ , ˆPara, R̂} ∈ E} ∪ {(pi, Paraij , pj)| pi ∈ P̂ , pj ∈ P, Â =
{Ê, P̂ , ˆPara, R̂} ∈ E} are thechannelsbetween (1) two inner actors’ ports or (2) a port of the actor and a
port of the actor’s inner actor. For each channel(pi, Paraij , pj), Paraij = {(name, attribute)} is the set of
parameters for the channel.

Ptolemy II usesdirectorsto support heterogeneous modeling. Directors control the execution order of actors and
mediate their communication. A director is an actorAdir = (φ, φ, Paradir, φ), whereParadir contains an element
(director , semantics). The semantics attribute may be an element of the set{FSM, SR, DE, CT, PTIDES} 1.
Heterogeneous models consist of different directors at different levels. Actors aredomain polymorphicin that their
semantics depend on the director controlling them.

A systemis merely a composite actor; its hierarchical structure is defined by the recursive definition of its inner
actor set. In fig. 1, the system is represented asA0 = {E0, P0, Para0, R0} whereE0 = {A1, A2, A3, D1}, P0 = φ,
R0 = {(P0, P1), (P8, P9)}. A1 is an atomic actor, whileA2 is composite.

2.2 Models Commonly Used in Verification

Generally, four types of models are used for formal verification: graph models, game models, stochastic models,
and timed models [22]. We focus on graph models and timed models (graph models with continuous variables), and
introduceKripke structuresandcommunicating timed automata(CTA), which are commonly used by existing model
checkers.

Definition 2 A Kripke structure over a set of atomic propositionsAP = {p1, . . . , pn} is a tupleM = (S, S0, R, L).
• S is a finite set ofstates.
• S0 ⊆ S is the set ofinitial states.
• R ⊆ S × S is the set oftransition relations.
• L = S → 2AP is thelabeling functionthat associatess ∈ S to the set of atomic propositionsAP ′ ⊆ AP that
are true ins.

Definition 3 A system of communicating timed automata is a tupleS = {A1, . . . ,An}, whereAi = {Qi, Ci, Synci, qi,
Jumpi, Invi} is an automaton with the following constraints.

1The set listed includes common directors, but Ptolemy II features more directors to support a rich set of MoCs.
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q0{a, b} q1{a}

q2{b} q3{}

(a) (b)

A1 A2

c1 ≤ 5 c2 ≤ 3

q11

q12 q22

q21

c1 == 5

c1 := 0
c2 == 3
c2 := 0

c1 == 2

c1 := 0
c2 == 2

c2 := 0

? sig ! sig

Figure 2: Examples of Kripke structure (a) and communicating timed automata (b).

• Qi is a finite set ofmodes(locations).
• Ci = {ci1 , . . . , cim} is the set ofclock variables.
• Synci = {si1 , . . . , sin} is the set ofsynchronizers; each synchronizers is of the formats ∈ {?, !} × Σ where
elements inΣ represents a synchronizer symbol. Conceptually,”?” represents receiving, and”!” represents
sending.
• qi ∈ Qi is theinitial locationof the automaton.
• Jumpi = Qi × Guardsi → Qi × Resetsi is the jump from mode to mode where every element inGuardsi

is of the formcix ≥ k or cix ≤ k, c ∈ Q, andResetsi is the set of assignments of the formcix = 0.
• Invi is the set of mode invariants mapping a mode to a subspace ofR|Ci| indicating the possible clock values
to maintain in the mode.

Fig. 2 shows the semantics for these models. In fig. 2(a) is a Kripke structureS = {{q0, q1, q2, q3}, q0, R, L}
whereR = {(q0, q0), (q0, q1), (q1, q3), (q3, q3), (q3, q2), (q2, q0)}, L mapsq0 to set{a, b}, q1 to set{a}, q2 to set
{b}, andq3 to the empty set. Fig. 2(b) contains two automata trying to communicate using synchronizers?sig and
!sig . The inequality in each state is the invariance condition. Synchronizing jumps occur in CTA between different
automata with synchronizers withmatching names. A1 synchronizes withA2, jumping from modeq11 to q12 when
it receives signalsig and the clock valuec1 is 2. In the context of timed automata, transmission of signals takes no
time.

2.3 Specifications in Mathematical Logics

Temporal logic is used to specify the behavior of a system by describing sequences of transitions between states.
Specifications can be linear time, where conditions are on a single infinite path of the system, or branching time,
where conditions are on the tree structure of all paths of the system. [38] contains a comprehensive review of formal
specification languages. The following temporal logics are acceptable by verification engines we used:

PLTL (Propositional Linear Temporal Logic) [30] is a description language for linear time. The PLTL formula
G(open → F closed) specifies the requirement that in the state sequence every (operatorG) ”open” is eventually
followed by a (operatorF) ”closed”2.

CTL (Computation Tree Logic) [13] and RTCTL (Real-time CTL) [15] are descriptions of branching time temporal
logic. TCTL (Timed CTL) [1] is often used in timed models.

2Note that our description makes a state with properties both open and closed satisfiable.



Applied Verification: The Ptolemy Approach 5

2.4 Model Checking

Model checking [12] is a technique for verifying non-terminating (finite) state machines. We apply it on a converted
model to see if its behavior conforms to the expectations specified in temporal logic. For details, see [12]. While
invariants in general cannot be generated algorithmically using deductive verification, CTL, RTCTL, PLTL, and TCTL
model checking is computationally decidable [12, 38], if not solvable in P-time.

3 SR Model Analysis and Conversion

Converting models in the SR domain into Kripke structures requires (1) understanding execution semantics, (2) per-
forming suitable data abstraction, and (3) analyzing layered model structures. We discuss these three tasks below.

3.1 Execution Semantics of FSMActors under the SR Domain

In Ptolemy II,FSMActorsare extended state machines which record values of variables for each state. They are the
basic blocks in verification; in theory, most actors can be represented as finite state machines (see section 4.1 for
exceptions). An FSMActor isAfsm = (Qfsm, Pfsm, Parafsm, Tfsm).

• Qfsm is the set ofstates. One state,q0 = {φ, Pq0 , Paraq0 ,
φ} ∈ Qfsm with a parameter(initial , true ), is theinitial stateof the FSMActor.

• Pfsm is the set of ports.
• Parafsm contains elements of the format(V ari, IniV ali), which is the set ofinner variablesand correspond-

ing initial values. We denoteParafsm.name as thename setfor inner variables.
• Tfsm = {(ps, Parasd, pd)| ps ∈ Ps, pd ∈ Pd,

qs = {φ, Ps, Paras, φ} ∈ Qfsm, qd = {φ, Pd, Parad, φ} ∈ Qfsm} is the set oftransitions. qs ∈ Q is the
sourcestate andqd ∈ Q is thedestinationstate. Each transition has the following properties:

• expguard is theguardExpression; when its guardExpression is satisfied, a transition triggers. Each of the
zero or more subexpressions ofexpguard, expguardi , puts a constraint on inner variableV ari, where
1 ≤ i ≤ |Parafsm|. In some cases, additional subexpressionsexpguardj

(j > |Parafsm|) of the form
”PortName_isPresent ” indicate whether a token is visible in the port namedPortName .

• actoutput is theoutputAction, which specifies destination ports and values. During simulation, each subex-
pression ofactoutput generates aneventconsisting of avalueandtime stamp. FSMActors are zero-delay
actors, so events from FSMActors get the current time stamp.

• actset is thesetActionwhich updates the values of inner variables. Each of the zero or more subexpressions
actseti

updates the inner variableV ari, where (1 ≤ i ≤ |Parafsm|).

The semantics of actors in Ptolemy II are defined by the controlling director combined with itsaction methods: preini-
tialize(), initialize(), prefire(), fire(), postfire() andwrapup(). For details of FSMActors in the SR domain, see [8]; a
summary follows.

1. preinitialize() andinitialize() are used for initializing; they are invoked only once in the execution.

2. prefire(), fire(), andpostfire() are executed once every time the SR director advances time.

• In prefire(), an actor examines conditions tofire(); FSMActors can alwaysfire().
• In fire(), an FSMActor tests itsexpguard to see if a transition can be triggered. If so, it invokes the

transition and executesactoutput. Subexpressions ofexpguard test against thecurrent values of inner
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Cred

Credyel

Cgrn

Cyel

guard : Sec isPresent&&count == 2
guard : Sec isPresent

expguard : SecisPresent&&count < 2

guard : Sec isPresent

guard : Sec isPresent&&count == 1

guard : Sec isPresent&&count < 1

actset : count = count + 1

actset : count = 0

actset : count = 0
actoutput : SCred = 1, SPstop = 1

Cinit actoutput : SCred = 1, SCyel = 0, SCgrn = 0
expguard : true

actset : count = 0

actset : count = count + 1

actoutput : SCred = 0, SCyel = 0, SCgrn = 1

actoutput : SCyel = 1, SCgrn = 0

actoutput : SCred = 1, SCyel = 0, SPgo = 1

Sec

SCred

SCyel

SCgrn

SPgo

SPstop

Para : {(count, 0)}

Figure 3: An FSMActor indicating the inner processing of a traffic light.

variables. Subexpressions of the formatX_isPresent pass when the actor can retrieve a token from the
portX.

• In postfire(), if the FSMActor triggered a transition infire(), it executes that transition’sactset to update
its state. Therefore, in each clock tick, the FSMActor can make at most one transition.

3. wrapup() is invoked once at the end of execution to display results.

3.2 Abstract Interpretation of Variable Domains in FSMActors

When converting an FSMActorAfsm = (Qfsm, Pfsm,
Parafsm, Tfsm) to a Kripke structure, the number of states in the corresponding Kripke structure may not be|Qfsm|;
since FSMActors can have inner variables, each in effect is a number of different states, one for each possible com-
bination of inner variable values. To achieve correctness of verification, encoding different values of inner variables
into states (and thus APs) is needed. Nevertheless, there is no exact specification on variable domains in a Ptolemy
II model; when the variable domain is infinite, abstraction techniques are required to generate a finite partitioning of
domains. The following steps describe the functionGV D(Afsm, v, span), which generates the abstracted domain for
the integer variablev. The FSMActor in fig. 3 is used to illustrate the process.

1. Retrieve the initial value from the parameter set, and scan through the r-values of subexpressions inexpguard and
actset for each transition. The minimum and maximum of the variable domain are the minimum and maximum
amongst these r-values. In fig. 3, the domain ofcount is {0, 1, 2}.

2. Use the user specified constant span to expand the variable domain. If the span is 1, then the expanded domain
of count is {−3,−2,−1, 0, 1, 2, 3, 4, 5}.

3. Use the symbolgt to represent values greater than the domain maximum and the symbolls to represent values
less than the domain minimum. The concept of regions in timed automata [2] inspires the abstract interpretation
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of these variables. Thus in the Kripke structure,{[count==ls], [count==−3], [count==−2], [count==−1],
[count==0], [count==1], [count==2], [count==3], [count==4], [count==5], [count==gt]} is the set of
atomic propositions representing the domain ofcount.

By scanning all transitions, we can convert FSMActors to Kripke structures once the variable domain is decided.
TheguardExpressiondetermines the possible variable values that will trigger a transition, and thesetActiondetermines
the values of inner variables after the transition triggers. The algorithm follows:

ConvertFSMActor To Kripke StructureSR(Afsm, span){
/* Afsm = (Qfsm, Parafsm, Pfsm, Tfsm) */

Let the set of atomic propositionsAP be(
⋃

q∈Qfsm
[statefsm==q])⋃

(
⋃

v∈Parafsm.name, val∈GV D(Afsm,v,span)[v == val]);
Let the set of states in the Kripke structure be
S = (

∧
q∈Qfsm

2{[statefsm==q]})∧
(
∧

v∈Parafsm.name, val∈GV D(Afsm,v,span) 2{[v==val]});
/* A state in the Kripke structure is a tuple:

([statefsm == state1], . . . , [statefsm == staten],
[v1 == val1,1], . . . , [v1 == val1,|GV D(Afsm,v1,span)|],
. . .

[v|Parafsm| == val|Parafsm|,1], . . . ,
[v|Parafsm| == val|Parafsm|,|GV D(Afsm,v|P arafsm|,span)|])

where each term can be either0 or 1.
vali,j represents the j-th possible value of variable i.*/

Let the mapping function beL := S → S;
Let the initial states0 of the Kripke structure be

([statefsm == state1], . . . , [statefsm == state|Qfsm|],
[v1 == val1,1], . . . , [v1 == val1,|GV D(Afsm,v1,span)|],
. . .

[v|Parafsm| == val|Parafsm|,1], . . . ,
[v|Parafsm| == val|Parafsm|,|GV D(Afsm,v|P arafsm|,span)|])

where
(1) [vi == vali,j ] = 1 if vali,j == IniV ali and0 otherwise
(2) [statefsm == statei] = 1 if statei == q0 and0 otherwise;

Let R = φ be the set of transitions;
∀r = (s, s′) ∈ S × S, R = R ∪ {r} if the following holds.

(1) ∃1 i, 1 ≤ i ≤ |Qfsm| s.t. ins,
entry[statefsm == statei] == 1,

(2) ∃1 i′, 1 ≤ i′ ≤ |Qfsm| s.t. ins′,
entry[statefsm == statei′ ] == 1,

(3) ∀j, 1 ≤ j ≤ |Parafsm|,
∃1 k, k′, 1 ≤ k, k′ ≤ |GV D(Afsm, vj , span)|
s.t. ins, entry[vj == valj,k] == 1 and ins′,

entry[vj == valj,k′ ] == 1,
(4) Based on information in (1),(2),(3),
∃t = (ps, Parasd, pd) ∈ Tfsm:
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A1 A2

P3 P3

Figure 4: Two connected ports with matching names.

(a)ps ∈ Ps, pd ∈ Pd, statei = {φ, Paras, Ps, φ} ∈ Qfsm,
statei′ = {φ, Parad, Pd, φ} ∈ Qfsm,

(b) ∀j, 1 ≤ j ≤ |Parafsm|, expguardj (valj,k) == 1,
andactsetj (valj,k) == valj,k′ ;

return (S, {s0}, R, L);
}

This method leads to an over-approximation of the system behavior with no false positives3. If the variable is closed
within the value domain generated by steps 1 and 2, the introduction ofgt andls has no effect on the correctness of
verification.

3.2.1 Interactions between FSMActors

The interactions between actors must be considered when converting a model where FSMActors communicate with
each other into a Kripke structure. An FSMActor is a zero-delay actor; based on the synchrony hypothesis [6],
actors are immediately notified when sent an event and further actions may occur. Therefore, transitions in different
modules may depend on each other. Our tool automatically establishes transition dependencies among FSMActors
when converting to Kripke structures.

Formally, for two actorsAfsm1 = (Qfsm1 , Pfsm1 , Parafsm1 , Rfsm1)andAfsm2 = (Qfsm2 , Pfsm2 , Parafsm2 , Rfsm2),
the set of state spacesS12 is the product of the state spaces for each Kripke structure, i.e.,
S12 =

∧
q1∈Qfsm1

2{[statefsm1==q1]}
∧

q2∈Qfsm2
2{[statefsm2==q2]}∧

v∈Parafsm1 .name, val1∈GV D(Afsm1 ,v1,span) 2{[v1==val1]}∧
v2∈Parafsm2 .name, val2∈GV D(Afsm2 ,v2,span) 2{[v2==val2]}.

Similarly, the set of APs is the union of the set of APs for each Kripke structure. The set of transitionsR12 may include
cases with ports withmatching names; we assume the connected ports have the same name, and unconnected ports
have different names4 (see fig. 4). The conversion algorithm is similar to the one in sections 3.2, so we only describe
the matching name section below.

Let R be the set of transitions;
r = (s, s′) ∈ S12 × S12, R = R ∪ {r} if following conditions hold.

(1) ∀p, p = 1, 2, ∃1 ip, 1 ≤ ip ≤ |Qfsmp
|

s.t. ins, entry[statefsmp == stateip ] == 1,
(2) ∀p, p = 1, 2, ∃1 i′p, 1 ≤ i′p ≤ |Qfsmp |
3This is true when sub-expressions ofexpguard are simple, meaning that they are of the format ”var (≤,≥, <, >, ==) const”. For complex

expressions involving two or more variables, it can be true only whengt andls are never reached throughout the computation.
4This can be further improved by mechanisms of detecting connected ports, but difficulties would later emerge when converting in the DE

system.
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s.t. ins′, entry[statefsmp == statei′p ] == 1,
(3) ∀p, p = 1, 2, ∀jp, 1 ≤ jp ≤ |Parafsmp |,
∃1 kp, k

′
p, 1 ≤ kp, k

′
p ≤ |GV D(Afsmp

, vjp
, span)|

s.t. ins, entry[vjp
== valjp,kp

]==1;
in s′, entry[vjp

== valjp,k′
p
]==1,

(4) Based on information in (1),(2),(3),
∃t1 = (ps1 , Parasd1 , pd1) ∈ Tfsm1 ,
∃t2 = (ps2 , Parasd2 , pd2) ∈ Tfsm2 :

(a)ps1 ∈ Ps1 , pd1 ∈ Pd1 , statei1 = {φ, Paras1 , Ps1 , φ}
∈ Qfsm1 , statei′1

= {φ, Parad1 , Pd1 , φ} ∈ Qfsm1 ,
(b) ps2 ∈ Ps2 , pd2 ∈ Pd2 , statei2 = {φ, Paras2 , Ps2 , φ}
∈ Qfsm2 , statei′2

= {φ, Parad2 , Pd2 , φ} ∈ Qfsm2 ,
(c) ∀j1, 1 ≤ j1 ≤ |Parafsm1 |, expguardj1

(valj1,k1) == 1,
andactsetj1

(valj1,k1) == valj1,k′
1
,

(d) ∀j2, 1 ≤ j2 ≤ |Parafsm2 |, expguardj2
(valj2,k2) == 1,

andactsetj2
(valj2,k2) == valj2,k′

2
,

(e)∃ expguardk1
, k1 > |Parafsm1 | of the textual format

PortName_isPresent ;
iff ∃ actoutputk2

, a subexpression ofactoutput2 , of the
textual formatPortName=IntegerValue ;

Our current implementation can process more than two FSMActors.

3.3 Hierarchical Compositionality

In Ptolemy II, theHigherOrderActorlibrary provides support for tree structured, compositional models. TheModalModel,
which can be viewed as an FSMActor with refinement (or a subsystem) in each state, is especially significant. If
each subsystem uses continuous dynamics, the ModalModel describes discrete jumps between continuous dynamics,
which is commonly used for hybrid modeling. Formally, a ModalModelAModalModel consists of (1)AFSMDirector

and (2)Afsmcontroller
, whereAFSMDirector is a director with finite state machine semantics, and an FSMActor

Afsmcontroller
= (Qfsm, Pfsm, Parafsm, Tfsm) is thecontroller. The refinement of a state is defined in the state

q ∈ Qfsm itself.
When the controller of a ModalModel in the SR domain invokesfire() on an SR refinement, the following occurs:

1. The FSM directorAFSMDirector transfers the input tokens from the outside domain toAfsmcontroller
and the

refinement of its current state.

2. The refinement of the current state fires.

3. If a transition triggers, its outputActions execute.

4. Any output tokens produced by the mode controller or the refinement are transferred to the outside domain.

Fig. 5 illustrates this process. In fig. 5(a), stateC1 in the ModalModel has a refinement with SR semantics.
When executing (shown in fig. 5(b)), the controller invokes the firing of the refinement, which enables the transition
of subsystems. Fig. 5(c) shows the corresponding transition in the converted Kripke structure. In a ModalModel,
the controller’s state and the states of FSMActors in the refinement update in the same tick when theypostfire(), so
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ModalModel Controller

FSMActorA FSMActorB

A1

A2

A3

B1

B2

C1 C2

SRDirector

Tick0 Tick1

ModalModel Controller

FSMActorA

FSMActorB

(a)

(b)

(c)

refinement
firing

{A1, B1, C1} {A2, B2, C2}

prefire fire postfire
(state
update)

Figure 5: (a) A ModalModel with SR refinement (b) The starting execution trace based on the semantics of
ModalModel and SR (c) The corresponding transition in the converted Kripke structure.

Figure 6: Two functional actors (AbsoluteValue, MultiplyDivide) and two actors (TimedDelay, Clock) with real-time
properties.

the controller and refinement constitute a product state space; the semantics of the ModalModel guarantees that the
controller and actors in refinements can make one move together between consecutive clock ticks5.

4 From the SR Domain to the DE Domain

4.1 Actors beyond State Machines

FSMActors (or ModalModels) in the SR domain are suitable for verification because only sequence ordering is rel-
evant; time is abstracted. However, Ptolemy II allows designers to construct actors not representable as FSMActors,
which are therefore not suitable for verification in SR. The following summarizes them:

• (Actors with purely mathematical operations)Purely functional actors, those that receive inputi and generate
outputf(i), are stateless, and therefore would not appear in the product state space. Examples include actors
in theMath actor library (see the first two actors in fig. 6). These actors greatly influence transitions and inner
state values, though, so we must be careful when using them in designs we wish to verify.

• (Actors with real-time properties) Actors in the discrete event (DE) domain often have explicitly stated timing
properties. For example, theTimedDelayactor (the third actor in fig. 6) postpones an incoming event a certain
amount of time, and theClockactor (the fourth actor in fig. 6) sends events with a certain period under a fixed
or infinite number of total firings.

5It is possible to design another modal controller with different semantics; for example, the update of state space of the subsystem occurs one
tick later than the update of controller. In this way, the execution semantics must be reinvestigated for correct model conversion.



Applied Verification: The Ptolemy Approach 11

E4

E1

E2 E2

TimedDelay

C2

t = 2

t = 4

Sa

Sb
Sc

E2 isPresent

E1 isPresent

E1 isPresent

Sd Se

E3 isPresent

E3

E4

E3 = 1

E3

E1C1

t = 3

FSMActor1

FSMActor2

Figure 7: Ptolemy II description of two Clock actors, two FSMActors, and one TimedDelay actor (t=2).

• In Ptolemy II, the DE domain can be viewed as a generalization of the SR domain [28], with a global
clock visible to the whole system. Unlike the SR domain, clock readings in the DE domain are arbitrary
non-negative real numbers;super-dense time tags6 in the DE domain are equivalent to ticks in the SR
domain.

• Note that it is not always possible to use discrete clocks (SR semantics) for these actors. Consider a system
having theZenoproperty, meaning that time converges to a certain timet. If a TimedDelay actor has an
event to be fired aftert, then it is impossible to use a discrete-clock to represent the advance of time for
the actor.

4.2 Converting DE Systems with CTA

For systems with actors with real time properties, we use Communicating Timed Automata, mathematical models with
greater expressive power.

4.2.1 Converting FSMActors into CTA

We must make four considerations when keeping an FSMActor’s semantics in the DE domain the same as those in the
SR domain.

• (Passiveness of FSMActors) In the DE domain, there is no ‘tick’ explicitly specified; an FSMActor is ‘passive’,
meaning that it tries to perform the transition when the super-dense time advances (which is invoked by other
actors). Therefore, whenever ‘active’ actors that send events with real time stamps (and let time advance),
FSMActors in the system should always be notified so that they can invoke their transitions.

• (From super-dense time to dense time) Because time is super-dense in the DE domain, semantics of an FSMAc-
tor indicate that at every physical timeτ , it may perform more than one transition. The challenge now is to
describe super-dense time models (DE) with dense time models (CTA). One intuitive approach is to introduce
additional synchronizers for ticks; an active actor notifies an FSMActor by using the synchronizertick+ for

6Super-dense time is of the formatT = R+ ×N , whereR+ is the set of non-negative numbers, andN is the set of natural numbers. For a tag
t = (τ, n) ∈ T , τ is the physical time, andn is the ordering of events that occurs in the physical time [28].
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Figure 8: CTA description of two Clock actors, two FSMActors, and one TimedDelay actor (buffer size=1, t=2).

events happening in time(τ, 1), synchronizertick++ for events happening in time(τ, 2), and so on. Unfor-
tunately, this approach can not guarantee that for all execution traces in the converted CTA, at timeτ every
tick+ comes before everytick++, when there is no causality between two events. To solve this, our current
implementation simply disallows a system to have the chance to advance the time from(τ, n) to (τ, n+1) - this
only happens when an event is passed through the TimedDelay actor with zero delay.

• (One step at one time instance) The semantics of an FSMActor in SR indicate the fact that at every tick, it should
only perform one transition. Therefore, we need to introduce an additional timer; when a transition is made, set
the timer to zero, and make sure that when next transition occurs, the value of the timer is greater than zero.

• (Separated CTA construction for ports) If an FSMActor receives events from other actors, we need to construct
a CTA for each of the ports in the FSMActor with two states indicatingpresentandabsent; tokens may not
accumulate in a port of an FSMActor in the DE domain7.

We illustrate the above concepts by examples. The content in fig. 7 is an actorFSMActor2 receiving events from two
clock actorsC1 andC2, and another actorFSMActor1 receives events fromFSMActor2 via a TimedDelay actor
with t=2. Fig. 8 is its corresponding CTA.

• For all states in theAutomaton of the FSMActor, every transition should be bounded by a synchronizer?tick;
other active actors would send!tick to trigger the transition. An actor sends!tick when the time tag is of the
format(τ, 0).

• When a Clock actor sends an event, the port automaton updates its memory indicating whether the token is
available at the port. By introducing an additional synchronizerN2 in FSMActor2, P1, andP2, we can
understand the impact of the synchronizertick.
• If a tick is triggered by another unconnected active actor (for example, an irrelevantC3 actor), but in

the original FSMActor no transition other than the stationary move can be enabled, then the self loop
in Automaton2 would be executed and sends synchronizers!N2!N2 to notify port actors to perform a

7For other DE semantics where tokens can accumulate in the port, the CTA representation of a port automaton should (1) be limited with a
bounded buffer size and (2) provide an additional state for buffer overflow.
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Figure 9: CTA representation of real-time actors in Ptolemy II.

stationary move (the self loop with synchronizer?N2).
• If a tick is triggered by a connected active actor, but no transition other than the stationary move can be

enabled, then the synchronizer!N2 would notify the port machine to set up the token to be present.
• If a tick is triggered by a connected active actor, and a transition can be triggered, at this tick, the transition

has been decided. We thus let the port automaton stay in the absent stateSa, since when next tick starts,
the status is absent.

For example, when time is zero,C1 andC2 both send events with time stamp (0,0).P1 indicates the token to
be present and moves fromSa to Sp, while P2 stays inSa andAutomaton2 takes the transition and moves to
S6. Note that it is guaranteed not to take two transitions in (0,0) because inAutomaton2, transitions with the
synchronizer?tick are guarded witht > 0 (except the transition from the initial state; we thus need to introduce
an additional initial state). The next tick is (2,0), which is induced by the TimedDelay actor with t=0. At (2,0),
Automaton1 moves to stateS3.

4.2.2 Converting Real-time Actors into CTA

The conversion for real-time actor classes may vary due to their properties. We list out some actor classes currently
implemented, and use fig. 9 to describe the converted communicating timed automata. Without loss of generosity, we
assume the input isSin, the output isSout, and the notification signal for passive actors istick.

• A SingleEventactor sends an event at a time specified by the parametert. Fig. 9(a) is a SingleEvent actor with
t = 3.

• A Clockactor periodically sends an event to its output port with periodt for k times. Botht andk are specified
by parameters. The valuek can beINFINITY , meaning that it would continuously sends events without halting.
Fig. 9(b) is a Clock actor witht = 3 andk = INFINITY . Note that additional clockt′ must be used to capture
the fact that it sends the first event at time zero.

• A TimedDelayactor postpones an event with a time specified by the parametert. Another parameters is used to
specify the buffer size of the input port. Fig. 9(c) is a TimedDelay actor with buffer sizes = 1. When the actor
receives an event, it goes to stateS1. Note that the size of the buffer must be constrained by users, and more
clock variables will be introduced when the size of the buffer grows.

• A NonDeterministicTimedDelayactor postpones an event with time at mostt and guarantees the non-zero delay.
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Another parameters is used to specify the buffer size of the input port. Fig. 9(d) is a NonDeterministicTimed-
Delay actor with buffer size2. Note that translating the actor to CTA may lead to exponential growth for the
size of control locations, since the ordering of emitting signals can be arbitrary.

Based on statements described above, we are able to establish the conversion process which separately performs the
conversion for each component in the DE domain (preprocessing is needed to detect dependencies of ports) and form
the CTA with semantics preserved.

5 Designing for Verification

When the interactions between a verification model and its environment serve as a guide for how an implementation
model will interact with its sensors and actuators, the verification model can be reused as the basis of the implemen-
tation model, resulting in less work for the designer and less potential for errors. In this section, we explain this
methodology and give an example of how to follow it to design a model for both verification and implementation.

5.1 Methodology

Step 1: Evaluate RequirementsA designer is given a number of requirements for an embedded system, some of
which are safety critical which require verification. The first step is to identify safety critical requirements.

Step 2: Establish a Contract and Design the EnvironmentPhysical, continuous environments contain far too
much complexity for efficient verification, so in this step we establish an abstraction with the safety critical require-
ments of the system in mind. This abstraction, which should be rigorously defined, will establish a blueprint for the
model of the environment.

Step 3: Design and Verify a Controller In this step, the actual controller is modeled, connected to the environ-
ment, and verified as fulfilling all safety critical requirements.

Step 4: Follow the Contract to Design Sensors and ActuatorsThe controller has only been verified to handle
certain value ranges, so when it is used as an implementation controller it can only be expected to handle those
abstracted values. In this step, the contract defined in Step 2 will help define wrappers for the sensors and actuators.
These wrappers will translate the raw data used by sensors and actuators to the discrete data values which the controller
has been verified to handle. Once complete, the controller is disconnected from the environment and connected to the
sensors and actuators.

Step 5: Add Non-critical RequirementsThe non-critical requirements are now added to the controller, so all
requirements are fulfilled.

Step 6: Automatic Code GenerationTo complete the process, code is generated for the controller and the sensors
and actuators and then put on the target platform.

5.2 Example: Hill-Climbing Robotic Design

A robot is an embedded system consisting of sensors, actuators and controls, that tries toachievea certain goal. [29]
is a good introduction to robotics. In this example, we illustrate the above design strategy by constructing a robot
capable of climbing a fixed width slope (fig. 10(a)). iRobot Create [24] is our target platform. The robot has two
sensors: edge detectors in the front half, and a two dimensional accelerometer (fig. 10(c)). We strive to design the
system and generate real control software such that (1) the robot never falls from the edge of the slope, (2) the robot
reaches the flat surface above the slope, (3) the robot’s LEDs blink, and (4) its speaker makes sound.
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Figure 10: A robot climbing a hill (a), the accelerometer attached to the robot (b), the hypothetical inner structure in
the 2-D accelerometer (c), and the abstracted signal emissions for all robot heading directions (d).

Step 1: Evaluate RequirementsThat the robot never falls off the edge and that it reaches the top of the slope are
safety critical, and should be verified. Blinking LEDs and noisy speakers can be added later.

Step 2: Establish a Contract and Define the EnvironmentIn order to perform verification, we must discretize
the environment at a manageable granularity. The environment sends data to the robot’s sensors based on the robot’s
location and orientation, both of which need to be discretized. Examining the iRobot and its edge detectors, we
discover that moving in 1 cm increments will ensure that the robot will never jump from safety to danger in one time
step. To discretize orientation, we think of the 2-D accelerometer as two 1-D accelerometers placed orthogonally,
each of which can be viewed as a point mass attached to a spring. When horizontal, the spring has no compression
or extension; when upward facing, the gravitational force compresses it; when downward facing, the gravitational
force stretches it. Therefore, the robot can only face eight directions, defined by the accelerometer readings shown in
(fig. 10(d)). For example, when upward facing, both springs are compressed (fig. 10(c)).

For verification, we use an FSMActor to represent the environment. The location and the angle of the robot are
stored as inner variables of the FSMActor, with initial values defined in the parameter set. When a signal is sent by
the controller, like driveForward, the inner variables and state of the environment are updated, and new information is
sent to the controller. The environment sends the controller a warning with anL or R (for left or right, respectively)
when it is close to an edge and a pair from the set{C,N, S} for orientation.

The following is our contract:
• The robot is only able to rotate in place or drive in a straight line.
• The robot drives either 1 cm if horizontal or vertical, or 1 cm horizontally and 1 cm vertically if diagonal.
• The robot always faces one of eight directions, defined by pairs of values from the set{C,N, S}.
Step 3: Design and Verify a ControlWe next design the controller. When complete, we link the controller to the

environment, apply automatic conversion, and perform verification on the system.
Step 4: Follow the Contract to Design Sensors and ActuatorsOnce the controller is verified to satisfy the

specifications, we generate wrappers for sensors and actuators, making sure they satisfy the requirements of the con-
tract. We then disconnect the controller from the environment used for verification and attach it to the wrappers. The
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wrappers will convert raw data to values the controller understands as follows:
• The reading of an actual 1-D accelerometer is a real number which we lump into ranges corresponding to the

set{C,N, S}.
• A Drive signal sent to the wheels causes the robot to drive 1 cm if it is horizontal or vertical or

√
2 cm if diagonal.

Step 5: Add Non-critical RequirementsTo ensure that the robot starts with the orientation specified as an initial
condition, a pre-operation of theInit state performs in place rotation. We also add functionality for blinking LEDs and
noisy speakers.

Step 6: Automatic Code GenerationWith an implementation controller that has passed critical verification and
fulfils all requirements, we generate code for the target platform.

6 Implementation

6.1 MathematicalModelConverter Actor

We test our concepts in the Ptolemy II architecture, and develop algorithms to perform the conversion process. For
the SR domain, we translate models into formats acceptable by Cadence SMV (also NuSMV)8; for the DE domain,
we translate models into formats acceptable by RED [37]. An experimentalMathematicalModelConverteractor class
allows users to input temporal formula and perform one-click conversion and verification.

Limitations In our current implementation, there are some existing restrictions in the MathematicalModelCon-
verter actor class.

• When the conversion process is applied in the SR domain, an actor must be either an FSMActor or an ModalModel.
Otherwise it would be automatically translated as an external signal which is present at every tick.

• The freedom of design is constrained by the name-matching of ports.
• The introduction ofgt andls is only experimented in the SR domain; in the DE conversion process users must

understand the domain for inner variables.
• We do not experiment with the hierarchical conversion in the DE domain.

However, our current work is still complete for a subset of system construction. We would add up functionalities to
surpass the above limitations soon.

6.2 Integrating Model Checkers using the EmbeddedCActor

By incorporating external verification software into Ptolemy II, the entire process of model design, verification, and
code generation can be done through Ptolemy II. Using the EmbeddedCActor, an actor that allows the execution of
arbitrary C or C++ code in a model, we can incorporate any verification software written in C or C++.

We incorporate the NuSMV software into an EmbeddedCActor, thereby incorporating the entire verification pro-
cess into Ptolemy II. The steps for incorporating verification software are as follows:

Step 1: Create a static libraryFor NuSMV, the desired function is the main function. To make the main function
easily accessible, we wrap its contents as a new function in a separate file, then add that file to the static library
that NuSMV automatically creates and links to the main file. We also face the difficulty of conflicting files called
config.h , which we overcome by renaming NuSMV’sconfig.h to NuSMVconfig.h .

Step 2: Link the library to an EmbeddedCActor By linking the library to an EmbeddedCActor and including
the headers needed by the library, the code in the EmbeddedCActor can access the contents of the library.

8Since these tools support modular construction and verification, our latest implementation utilizes this benefit.
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Step 3: Access the generated notation fileWhen verifying a model, the model is translated into a formal mathe-
matical notation which is stored in a separate file; the file name can either be passed to the EmbeddedCActor through
a port, or can be set in a parameter. We choose to set a parameter with the path to the file.

Step 4: Prepare argumentsIn some cases, this step may be trivial, but because we use the NuSMV main function,
we need to simulate calling the function from the command line, which requires some preparation. We need to decide
which command line options to use, then create artificialargc andargv variables to pass to the verification function.

Step 5: Call the desired functionsFor NuSMV, we simply have to call the function containing the content of the
original main function. NuSMV prints its output, so after calling the function we calledfflush(0) to ensure that
the output from verification shows up on the console.

The total procedure takes very little code.
• Wrapping the main function involves copying the existing code into a new file; only a few lines of code are

needed.
• Changing the name ofconfig.h requires changing one line of code in many files, which was easily accom-

plished using search and replace.
• The EmbeddedCActor itself comprise approximately 50 lines, including those needed to include headers and

link to libraries.

7 Case Studies

7.1 Traffic Light System with Hierarchical Structures

In the case study, the traffic light model specified in [7] is investigated. We construct a simplified traffic light system
in the SR domain, where the system consists of one car light and one pedestrian light. Our design should make it
impossible to have the car light and pedestrian light be green at the same time (this might lead to accidents). We
perform the automatic conversion of the SR system, and are able to test whether our design satisfies the specification:

!EF (TrafficLight.CarLightNormal.state = Cgrn &
TrafficLight.PedestrianLightNormal.state = Pgreen )

The result provided by the model checker SMV indicates the satisfiability of the specification.

7.2 Extended Experiment in the DE Domain

Buffer overflow detection has been an important issue in the design of embedded systems. Our conversion process
enables us to configure parameters of buffer size for each component, and use the model checker RED to detect the un-
desired behavior. More precisely, thebuffer overflow detectionproperty can be stated as thereachabilityproperty of the
system by the following formula (specified in the language acceptable by RED)exists i:i>=1, (Overflow[i]) .
We can also describe more interesting properties using TCTL.

However, we find that our converted model poses great challenges for real time model checkers. RED is a memory
efficient and relatively fast tool, but the computation time for small examples converted by our algorithm remains
large. Since for BDD-like structures, variable ordering is important, it may require a tight integration between the
conversion process and lower layer verification engine so that the converted model can have smaller memory space
during the verification process.
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7.3 Designing the Robotic Controller Satisfying Hill Climbing and Edge Avoidance Prop-
erties

For the example in section 5.2, we perform model checking on the model and the environment. One desired spec-
ification is the eventuality of the robot to reach the top surface. The specification can be described as follows.
AF(Slope.state = Goal ). The result indicates that our tool is applicable for large scale conversion. We later
follow the process and generate the control software for the robot9.

8 Related Work

In academia, algorithmic model checking began by checking the correctness of hardware and then moved to software.
Advances in real code verification include JavaPathFinder [18], BLAST [21], CBMC [10] and SLAM [3].

Researchers primarily focus on verification algorithms in the domain of embedded and real time systems, leading
to models based on theoretical units rather than engineering units. For example, hybrid automata [19] are commonly
studied for modeling and verifying embedded systems. Uppaal [25], among other tools based on mathematical models,
is capable of modeling and verifying real time systems using timed automata.

Giotto [20], Metropolis [4], and BIP [5] are languages or design environments capable of modeling embedded
systems developed in academia.

Various tools have emerged from industry. STATEMATE [34] is based on hierarchical state charts and is capable
of verifying state machine systems. The SCADE Suite [31], a mature tool developed by Esterel-Technologies, uses
synchronous reactive language for the design of safety critical systems. The Simulink Design Verifier [32] can perform
formal analysis on Simulink and Stateflow models.

[26] and [23], two positional papers on design challenges in Cyber Physical Systems and embedded systems,
respectively, are important as guidance for future work.

9 Conclusion and Future Work

We summarize our main contributions as follows.
• Our concept of applied verification narrows the gap between designing systems and verifying them by shielding

designers from the details of verification. Simultaneously, designers become more productive and errors become
less common.

• We have developed a mapping between commonly used Ptolemy II actors and mathematical models used in
verification, allowing for the automatic conversion of some Ptolemy II models in the SR and DE domains.

• We describe our methodology of designing for verification, which allows for models under verification to be
reused for final implementation.

• We describe our strategy for integrating verification engines into Ptolemy II.
By combining the existing simulation framework in Ptolemy II with a system for automatically converting simulation
models to mathematical models, we offer the beginning of a solution for checking the correctness of heterogenous
system design: correctness of data can be established by running simulations, while control flow can by checked using
formal verification.

Our work reveals interesting problems for future study:

9We adapt the existing code generation framework in the SDF [27] domain to generate C++ code; SR and SDF are the same in this example.
Nevertheless, we need to slightly modify the control without changing the functionality to perform SDF code generation. For example, we change
EdgeLeftisPresent and NoEdgeLeftisPresent in every guardExpression in the control into EdgeLeft==1 and EdgeLeft==0, and later remove the
port NoEdgeLeft.
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• By providing the foundations for relating Ptolemy II models to mathematical models used for verification, we
open the doors for applying more powerful verification techniques. For example, we could use rate control
analysis for parametric safety analysis.

• Our analysis technique is powerful enough to use for other models of computation, e.g. thedistributed discrete
event(DDE) domain. We also hope to use hybrid automata as our underlying mathematical models, giving us
more expressive power.

• We expect to use more compact description language to describe the behavior of the environment (e.g., Ptylon),
and investigate possibilities applying Giotto to describe contracts of the environment.
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