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Abstract. We present algorithms to synthesize component-based systems that
are safe and deadlock-free using priorities, which define stateless-precedence
between enabled actions. Our core method combines the concept of fault-
localization (using safety-game) and fault-repair (using SAT for conflict resolu-
tion). For complex systems, we propose three complementary methods as
preprocessing steps for priority synthesis, namely (a) data abstraction to reduce
component complexities, (b) alphabet abstraction and �-deadlock to ignore com-
ponents, and (c) automated assumption learning for compositional priority
synthesis.

1 Introduction

Priorities [15] define stateless-precedence relations between actions available in
component-based systems. They can be used to restrict the behavior of a system in order
to avoid undesired states. They are particularly useful to avoid deadlock states (i.e., states
in which all actions are disabled), because they do not introduce new deadlock states and
therefore avoid creating new undesired states. Furthermore, due to their stateless prop-
erty and the fact that they operate on the interface of a component, they are relatively
easy to implement in a distributed setting [17,9]. In a tool paper [11], we presented the
tool VISSBIP1 together with a concept called priority synthesis, which aims to auto-
matically generate a set of priorities such that the system constrained by the synthesized
priorities satisfies a given safety property or deadlock freedom. In this paper, we explain
the underlying algorithm and propose extensions for more complex systems.

Priority synthesis is expensive; we showed in [12] that synthesizing priorities for
safety properties (or deadlock-freedom) is NP-complete in the size of the state space of
the product graph. Therefore, we present an incomplete search framework for priority
synthesis, which mimics the process of fault-localization and fault-repair (Section 3).
Intuitively, a state is a fault location if it is the latest point from which there is a way to
avoid a failure, i.e., there exists (i) an outgoing action that leads to an attracted state, a

1 Shortcut for Visualization and synthesis for simple BIP systems.
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state from which all paths unavoidably reach a bad state, and (ii) there exists an alterna-
tive action that avoids entering any of the attracted states. We compute fault locations
using the algorithm for safety games. Given a set of fault locations, priority synthesis
is achieved via fault-repair: an algorithm resolves potential conflicts in priorities gen-
erated via fault-localization and finds a satisfying subset of priorities as a solution for
synthesis. Our symbolic encodings on the system, together with the new variable or-
dering heuristic and other optimizations, helps to solve problems much more efficiently
compared to our preliminary implementation in [11]. Furthermore, it allows us to inte-
grate an adversary environment model similar to the setting in Ramadge and Wonham’s
controller synthesis framework [22].

Abstraction or compositional techniques are widely used in verification of infinite
state or complex systems for safety properties but not all techniques ensure that syn-
thesizing an abstract system for deadlock-freeness guarantees deadlock-freeness in the
concrete system (Section 4). Therefore, it is important to find appropriate techniques
to assist synthesis on complex problems. We first revisit data abstraction (Section 4.1)
for data domain such that priority synthesis works on an abstract system composed
by components abstracted component-wise [7]. Second, we present a technique called
alphabet-abstraction (Section 4.2), handling complexities induced by the composition
of components. Lastly, for behavioral-safety properties (not applicable for deadlock-
avoidance), we utilize automata-learning [3] to achieve compositional priority synthesis
(Section 4.3).

We implemented the presented algorithms (except connection with the data abstrac-
tion module in D-Finder [8]) in the VISSBIP tool and performed experiments to eval-
uate them (Section 5). Our examples show that the process using fault-localization and
fault-repair generates priorities that are highly desirable. Alphabet abstraction enables
us to scale to arbitrary large problems. We also present a model for distributed commu-
nication. In this example, the priorities synthesized by our engine are completely local
(i.e., each priority involves two local actions within a component). Therefore, they can
be translated directly to distributed control. We summarize related work and conclude
with an algorithmic flow in Section 6 and 7.

2 Component-Based Modeling and Priority Synthesis

2.1 Behavioral-Interaction-Priority Framework

The Behavior-Interaction-Priority (BIP) framework2 provides a rigorous component-
based design flow for heterogeneous systems. Rigorous design refers to the strict sepa-
ration of three different layers (behaviors, interactions, and priorities) used to describe a
system. A detailed description of the BIP language can be found in [6]. To simplify the
explanations, we focus on simple systems, i.e., systems without hierarchies and finite
data types. Intuitively, a simple BIP system consists of a set of automata (extended with
data) that synchronize on joint labels.

Definition 1 (BIP System). We define a (simple BIP) system as a tuple S = (C, Σ,P),
where

2 http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html?lang=en
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– Σ is a finite set of events or interaction labels, called interaction alphabet,
– C =

⋃m
i=1 Ci is a finite set of components. Each component Ci is a transition

system extended with data. Formally, Ci is a tuple (Li, Vi, Σi, Ti, l
0
i , e

0
i ):

• Li = {li1 , . . . , lin} is a finite set of control locations.
• Vi = {vi1 , . . . , vip} is a finite set of (local) variables with a finite domain. Wlog

we assume that the domain is the Boolean domain B = {True,False}. We
use |Vi| to denote the number of variables used in Ci. An evaluation (or assign-
ment) of the variables in Vi is a functions e : Vi → B mapping every variable
to a value in the domain. We use E(Vi) to denote the set of all evaluations over
the variables Vi. Given a Boolean formula f ∈ B(Vi) over the variables in Vi

and an evaluation e ∈ E(Vi), we use f(e) to refer to the truth value of f under
the evaluation e.

• Σi ⊆ Σ is a subset of interaction labels used in Ci.
• Ti is the set of transitions. A transition ti ∈ Ti is of the form (l, g, σ, f, l′),

where l, l′ ∈ Li are the source and destination location, g ∈ B(Vi) is called the
guard and is a Boolean formula over the variables Vi. σ ∈ Σi is an interaction
label (specifying the event triggering the transition), and f : Vi → B(Vi) is
the update function mapping every variable to a Boolean formula encoding the
change of its value.

• l0i ∈ Li is the initial location and e0
i ∈ E(Vi) is the initial evaluation of the

variables.

– P is a finite set of interaction pairs (called priorities) defining a relation ≺ ⊆
Σ × Σ between the interaction labels. We require that ≺ is (1) transitive and (2)
non-reflexive (i.e., there are no circular dependencies) [15]. For (σ1, σ2) ∈ P , we
sometimes write σ1 ≺ σ2 to highlight the property of priority.

Definition 2 (Configuration). Given a system S, a configuration (or state) c is a tuple
(l1, e1, . . . , lm, em) with li ∈ Li and ei ∈ E(Vi) for all i ∈ {1, . . . , m}. We use CS to
denote the set of all reachable configurations. The configuration (l01, e

0
1, . . . , l

0
m, e0

m) is
called the initial configuration of S and is denoted by c0.

Definition 3 (Enabled Interactions). Given a systemS and a configuration c = (l1, e1,
. . . , lm, em), we say an interaction σ ∈ Σ is enabled (in c), if the following conditions
hold:

1. (Joint participation) ∀i ∈ {1, . . . , m}, if σ ∈ Σi, then ∃gi, fi, l
′
i such that (li, gi, σ,

fi, l
′
i) ∈ Ti and gi(ei) = True.

2. (No higher priorities enabled) For all other interaction σ̄ ∈ Σ satisfying joint
participation (i.e., ∀i ∈ {1, . . . , m}, if σ̄ ∈ Σi, then ∃(li, ḡi, σ̄, f̄i, l̄

′
i) ∈ Ti such

that ḡi(ei) = True), (σ, σ̄) �∈ P holds.

Definition 4 (Behavior). Given a system S, two configurations c = (l1, e1, . . . , lm,
em), c′ = (l′1, e

′
1, . . . , l

′
m, e′m), and an interaction σ ∈ Σ enabled in c, we say c′ is a

σ-successor (configuration) of c, denoted c
σ−→ c′, if the following two conditions hold

for all components Ci = (Li, Vi, Σi, Ti, l
0
i , e

0
i ):
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– (Update for participated components) If σ ∈ Σi, then there exists a transition
(li, gi, σ, fi, l

′
i) ∈ Ti such that gi(ei) = True and for all variables v ∈ Vi, e′i =

fi(v)(ei).
– (Stutter for idle components) Otherwise, l′i = li and e′i = ei.

Given two configurations c and c′, we say c′ is reachable from c with the interaction
sequence w = σ1 . . . σk , denoted c

w−→ c′, if there exist configurations c0, . . . , ck such
that (i) c0 = c, (ii) ck = c′, and (iii) for all i : 0 ≤ i < k, ci

σi+1−−−→ ci+1. We denote the set
of all configuration of S reachable from the initial configuration c0 byRS . The language
of a system S, denoted L(S), is the set {w ∈ Σ∗ | ∃c′ ∈ RS such that c0 w−→ c′}. Note
that L(S) describes the behavior of S, starting from the initial configuration c0.

In this paper, we adapt the following simplifications:

– We do not consider uncontrollable events (of the environment), since the BIP lan-
guage is currently not supporting them. However, our framework would allow us to
do so. More precisely, we solve priority synthesis using a game-theoretic version of
controller synthesis [22], in which uncontrollability can be modeled. Furthermore,
since we consider only safety properties, our algorithms can be easily adapted to
handle uncontrollable events.

– We do not consider data transfer during the interaction, as it is merely syntactic
rewriting over variables between different components.

2.2 Priority Synthesis for Safety and Deadlock Freedom

Definition 5 (Risk-Configuration/Deadlock Safety). Given a system S = (C, Σ,P)
and the set of risk configuration Crisk ⊆ CS (also called bad states), the system is safe
if the following conditions hold. (A system that is not safe is called unsafe.)

– (Deadlock-free) ∀c ∈ RS , ∃σ ∈ Σ, ∃c′ ∈ RS : c
σ−→ c′

– (Risk-state-free) Crisk ∩RS = ∅.

Definition 6 (Priority Synthesis). Given a system S = (C, Σ,P), and the set of risk
configuration Crisk ⊆ CS , priority synthesis searches for a set of priorities P+ such
that

– For P ∪ P+, the defined relation ≺P∪P+ ⊆ Σ × Σ is also (1) transitive and (2)
non-reflexive.

– (C, Σ,P ∪ P+) is safe.

Given a system S, we define the size of S as the size of the product graph induced by
S, i.e, |RS | + |Σ|. Then, we have the following result.

Theorem 1 (Hardness of priority synthesis [12]) Given a system S = (C, Σ,P),
finding a set P+ of priorities such that (C, Σ,P ∪ P+) is safe is NP-complete in the
size of S.

We briefly mention the definition of behavioral safety, which is a powerful notion to
capture erroneous behavioral-patterns for the system under design.

Definition 7 (Behavioral Safety). Given a system S = (C, Σ,P) and a regular lan-
guage L¬P ⊆ Σ∗ called the risk specification, the system is B-safe if L(S)∩L¬P = ∅.
A system that is not B-safe is called B-unsafe.
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It is well-known that the problem of asking for behavioral safety can be reduced to the
problem of risk-state freeness. More precisely, since L¬P can be represented by a finite
automaton A¬P (the monitor), priority synthesis for behavioral safety can be reduced
to priority synthesis in the synchronous product of the system S and A¬P with the goal
to avoid any product state that has a final state of A¬P in the second component.

3 A Framework of Priority Synthesis Based on Fault-Localization
and Fault-Repair

In this section, we describe our symbolic encoding scheme, followed by presenting our
priority synthesis mechanism using a fault-localization and repair approach.

3.1 System Encoding

Our symbolic encoding is inspired by the execution semantics of the BIP engine, which
during execution, selects one of the enabled interactions and executes the interaction. In
our engine, we mimic the process and create a two-stage transition: For each iteration,

– (Stage 0) The environment raises all enabled interactions.
– (Stage 1) Based on the raised interactions, the controller selects one enabled inter-

action (if there exists one) while respecting the priority, and updates the state based
on the enabled interaction.

Given a system S = (C, Σ,P), we use the following sets of Boolean variables to
encode S:

– {stg, stg′} is the stage indicator and its primed version.
–

⋃
σ∈Σ{σ, σ′} are the variables representing interactions and their primed version.

We use the same letter for an interaction and the corresponding variable, because
there is a one-to-one correspondence between them.

–
⋃

i=1...m Yi ∪ Y ′
i , where Yi = {yi1, . . . , yik} and Y ′

i = {y′
i1, . . . , y

′
ik} are the

variables and their primed version, respectively, used to encode the locations Li.
(We use a binary encoding, i.e., k = log|Li|�). Given a location l ∈ Li, we use
enc(l) and enc′(l) to refer to the encoding of l using Yi and Y ′

i , respectively.
–

⋃
i=1...m

⋃
v∈Vi

{v, v′} are the variables of the components and their primed
version.

We use Algorithm 1 and 2 to create transition predicates Tstage0 and Tstage1 for Stage 0
and 1, respectively. Note that Tstage0 and Tstage1 can be merged but we keep them
separately, in order to (1) have an easy and direct way to synthesize priorities, (2) allow
expressing the freedom of the environment, and (3) follow the semantics of the BIP
engine.

– In Algorithm 1, Line 2 computes for each interaction σ the predicate Pσ repre-
senting all the configurations in which σ is enabled in the current configuration. In
Line 3, starting from the first interaction, Tstage0 is continuously refined by con-
joining σ′ ↔ Pσ for each interaction σ, i.e., the variables σ′ is true if and only if
the interaction σ is enabled. Finally, Line 4 ensures that the system configuration
does not change in stage 0.
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Algorithm 1. Generate Stage-0 transitions
input : System S = (C, Σ,P)
output: Stage-0 transition predicate Tstage0
begin

for σ ∈ Σ do
let predicate Pσ := True1

for σ ∈ Σ do
for i = {1, . . . , m} do

if σ ∈ Σi then Pσ := Pσ ∧
∨

(l,g,σ,f,l′)∈Ti
(enc(l) ∧ g)2

let predicate Tstage0 := stg ∧ ¬stg′

for σ ∈ Σ do
Tstage0 := Tstage0 ∧ (σ′ ↔ Pσ)3

for i = {1, . . . , m} do
Tstage0 := Tstage0 ∧

∧
y∈Yi

y ↔ y′ ∧
∧

v∈Vi
v ↔ v′

4

return Tstage0
end

Algorithm 2. Generate Stage-1 transitions
input : System S = (C, Σ,P)
output: Stage-1 transition predicate Tstage1
begin

let predicate Tstage1 := False
for σ ∈ Σ do

let predicate Tσ := ¬stg ∧ stg′

for i = {1, . . . , m} do
if σ ∈ Σi then

Tσ := Tσ ∧
∨

(l,g,σ,f,l′)∈Ti
(enc(l)∧ g ∧σ ∧σ′ ∧ enc′(l′)∧

∧
v∈Vi

v′ ↔ f(v))1

for σ′ ∈ Σ, σ′ �= σ do
Tσ := Tσ ∧ σ′ = False2

for i = {1, . . . , m} do
if σ �∈ Σi then Tσ := Tσ ∧

∧
y∈Yi

y ↔ y′ ∧
∧

v∈Vi
v ↔ v′

3

Tstage1 := Tstage1 ∨ Tσ

for σ1 ≺ σ2 ∈ P do
Tstage1 := Tstage1 ∧ ((σ1 ∧ σ2) → ¬σ1

′)4

return Tstage1
end

– In Algorithm 2, Line 1, 2, 3 are used to create the transition in which interaction σ
is executed (Line 2 ensures that only σ is executed; Line 3 ensures the stuttering
move of unparticipated components). Given a priority σ1 ≺ σ2, in configurations in
which σ1 and σ2 are both enabled (i.e., σ1 ∧ σ2 holds), the conjunction with Line 4
removes the possibility to execute σ1 when σ2 is also available.

3.2 Step A. Finding Fix Candidates Using Fault-Localization

Synthesizing a set of priorities to make the system safe can be done in various ways, and
we use Figure 1 to illustrate our underlying idea. Consider a system starting from state
c1. It has two risk configurations c6 and c7. In order to avoid risk using priorities, one
method is to work on the initial configuration, i.e., to use the set of priorities {e ≺ a, d ≺
a}. Nevertheless, it can be observed that the synthesized result is not very desirable, as
the behavior of the system has been greatly restricted.
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a

d
e

c1
c2

c4

c3 c5

Attr(Crisk)

Crisk

c6

c7
b

a

c8

c

b
a

c9

Reach({c1})

g

Fig. 1. Locating fix candidates

Alternatively, our methodol-
ogy works backwards from the
set of risk states and finds states
which is able to escape from
risk. In Figure 1, as states c3, c4,
c5 unavoidably enter a risk state,
they are within the risk-attractor
(Attr(Crisk)). For state c2, c8,
and c9, there exists an interac-
tion which avoids risk. Thus, if
a set of priorities P+ can ensure
that from c2, c8, and c9, the system can not enter the attractor, then P+ is the result of
synthesis. Furthermore, as c9 is not within the set of reachable states from the initial
configuration (Reach({c1}) in Figure 1), then it can be eliminated without considera-
tion. We call {c2, c8} a fault-set, meaning that an erroneous interaction can be taken to
reach the risk-attractor.

Under our formulation, we can directly utilize the result of algorithmic game solv-
ing [16] to compute the fault-set. Algorithm 3 explains the underlying computation: For
conciseness, we use ∃Ξ (∃Ξ ′) to represent existential quantification over all umprimed
(primed) variables used in the system encoding. Also, we use the operator SUBS
(X, Ξ, Ξ ′) for variable swap (substitution) from unprimed to primed variables in X :
the SUBS operator is common in most BDD packages.

– In the beginning, we create Pini for initial configuration, Pdead for deadlock (no
interaction is enabled), and Prisk for risk configurations.

– In Part A, adding a stage-0 configuration can be computed similar to adding the
environment state in a safety game. In a safety game, for an environment configu-
ration to be added, there exists a transition which leads to the attractor.

– In Part A, adding a stage-1 configuration follows the intuition described earlier. In
a safety game, for a control configuration c to be added, all outgoing transitions
of c should lead to the attractor. This is captured by the set difference operation
PointTo \ Escape in Line 5.

– In Part B, Line 7 creates the transition predicate entering the attractor. Line 8 cre-
ates predicate OutsideAttr representing the set of stage-1 configuration outside
the attractor. In Line 9, by conjuncting with OutsideAttr we ensure that the al-
gorithm does not return a transition within the attractor.

– Part C removes transitions whose source is not within the set of reachable states.

3.3 Step B. Priority Synthesis via Conflict Resolution – From Stateful to
Stateless

Due to our system encoding, in Algorithm 3, the return value Tf contains not only
the risk interaction but also all possible interactions simultaneously available. Recall
Figure 1, Tf returns three transitions, and we can extract priority candidates from
each transition.

– On c2, a enters the risk-attractor, while b, g, c are also available. We have the fol-
lowing candidates {a ≺ b, a ≺ g, a ≺ c}.
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Algorithm 3. Fault-localization
input : System S = (C, Σ,P), Tstage0 , Tstage1
output: Tf ⊆ Tstage1 as the set of stage-1 transitions starting from the fault-set but entering the risk attractor
begin

let Pini := stg ∧
∧

i=1...m(enc(l0i ) ∧
∧

v∈Vi
v ↔ e0

i (v))

let Pdead := ¬stg ∧
∧

σ∈Σ ¬σ

let Prisk := ¬stg ∧
∨

(l1,e1,...,lm,em)∈Crisk
(enc(l1) ∧

∧
v∈V1

v ↔ e1(v) ∧ . . .

enc(lm) ∧
∧

v∈Vm
v ↔ em(v))

// Part A: solve safety game
let Attrpre := Pdead ∨ Prisk , Attrpost := False
while True do1

// add stage-0 (environment) configurations
Attrpost,0 := ∃Ξ′ : (Tstage0 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))2
// add stage-1 (system) configurations
let PointTo := ∃Ξ′ : (Tstage1 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))3
let Escape := ∃Ξ′ : (Tstage1 ∧ SUBS((∃Ξ′ : ¬Attrpre), Ξ, Ξ′))4
Attrpost,1 := PointTo \ Escape5
Attrpost := Attrpre ∨ Attrpost,0 ∨ Attrpost,1; // Union the result6
if Attrpre ↔ Attrpost then break; // Break when the image saturates
else Attrpre := Attrpost

// Part B: extract Tf

PointTo := Tstage1 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))7
OutsideAttr := ¬Attrpre ∧ (∃Ξ′ : Tstage1 )8
Tf := PointTo ∧ OutsideAttr9

// Part C: eliminate unused transition using reachable states
let Reachpre := Pini , Reachpost := False
while True do10

Reachpost := Reachpre ∨ SUBS(∃Ξ : (Reachpre ∧ (Tstage0 ∨ Tstage1 )), Ξ′, Ξ)

if Reachpre ↔ Reachpost then break; // Break when the image saturates
else Reachpre := Reachpost

return Tf ∧ Reachpost11
end

– On c2, g enters the risk-attractor, while a, b, c are also available. We have the fol-
lowing candidates {g ≺ b, g ≺ c, g ≺ a}3.

– On c8, b enters the risk-attractor, while a is also available. We have the following
candidate b ≺ a.

From these candidates, we can perform conflict resolution and generate a set of prior-
ities that ensures avoiding the attractor. For example, {a ≺ c, g ≺ a, b ≺ a} is a set of
satisfying priorities to ensure safety. Note that the set {a ≺ b, g ≺ b, b ≺ a} is not a le-
gal priority set, because it creates circular dependencies. In our implementation, conflict
resolution is performed using SAT solvers: In the SAT problem, any priority σ1 ≺ σ2 is
presented as a Boolean variable σ1 ≺ σ2, which can be set toTrueorFalse. If the gen-
erated SAT problem is satisfiable, for all variables σ1 ≺ σ2 which is evaluated to True,
we add priority σ1 ≺ σ2 to P+. The synthesis engine creates four types of clauses.

3 Notice that at least one candidate is a true candidate for risk-escape. Otherwise, during the
attractor computation, c2 will be included within the attractor.
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1. [Priority candidates] For each edge t ∈ Tf which enters the risk attractor using σ
and having σ1, . . . , σe available actions (excluding σ), create clause
(
∨

i=1...e σ ≺ σi)4.
2. [Existing priorities] For each priority σ ≺ σ′ ∈ P , create clause (σ ≺ σ′).
3. [Non-reflective] For each interaction σ used in (1) and (2), create clause (¬σ ≺ σ).
4. [Transitive] For any three interactions σ1, σ2, σ3 used in (1) and (2), create clause

((σ1 ≺ σ2 ∧ σ2 ≺ σ3) ⇒ σ1 ≺ σ3).

When the problem is satisfiable, we only output the set of priorities within the priority
candidates (as non-reflective and transitive clauses are inferred properties). Admittedly,
here we still solve an NP-complete problem. Nevertheless,

– The number of interactions involved in the fault-set can be much smaller than Σ.
– As the translation does not involve complicated encoding, we observe from our

experiment that solving the SAT problem does not occupy a large portion (less than
20% for all benchmarks) of the total execution time.

3.4 Optimization
c2

Attr(Crisk)

Crisk

b
a

c1 b
a

Fig. 2. A simple scenario where con-
flicts are unavoidable on the fault-set

Currently, we use the following optimization tech-
niques compared to the preliminary implementa-
tion of [11].

(Handling Unsatisfiability). In the resolution
scheme in Section 3.3, when the generated SAT
problem is unsatisfiable, we can redo the process
by moving some states in the fault-set to the at-
tractor. This procedure is implemented by select-
ing a subset of priority candidates and annotate to the original system. We call this
process priority-repushing. E.g., consider the system S = (C, Σ,P) in Figure 2.
The fault-set {c1, c2} is unable to resolve the conflict: For c1 the priority candidate is
a ≺ b, and for c2 the priority candidate is b ≺ a. When we redo the analysis with
S = (C, Σ,P ∪ {a ≺ b}), this time c2 will be in the attractor, as now c2 must re-
spect the priority and is unable to escape using a. Currently in our implementation, we
supports the repushing under fixed depth to increase the possibility of finding a fix.

(Variable Ordering Heuristics). As we use BDDs to compute the risk-attractor, a good
initial variable ordering can greatly influence the total required time solving the game.
We adapt the concept in the FORCE heuristic [2] where in the variable ordering, an
interaction is placed approximately on the center-of-gravity of all participated compo-
nents. This heuristic enables our solver to solve much larger problems. In addition, we
allow the user to provide an initial variable ordering, such that FORCE heuristic can be
applied more efficiently.

(Dense Variable Encoding). The encoding in Section 3.1 is dense compared to the en-
coding in [11]. In [11], for each component Ci participating interaction σ, one separate

4 In implementation, Algorithm 3 works symbolically on BDDs and proceeds on cubes of the
risk-edges (a cube contains a set of states having the same enabled interactions and the same
risk interaction), hence it avoids enumerating edges state-by-state.
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variable σi is used. Then a joint action is done by an AND operation over all variables,
i.e.,

∧
i σi. This eases the construction process but makes BDD-based game solving

very inefficient: For a system S, let Σuse1 ⊆ Σ be the set of interactions where only
one component participates within. Then the encoding in [11] uses at least 2|Σ \Σuse1|
more BDD variables than the dense encoding.

4 Handling Complexities

In verification, it is standard to use abstraction and modularity to reduce the complexity
of the analyzed systems. Abstraction is also useful in synthesis. However, note that if
an abstract system is deadlock-free, it does not imply that the concrete system is as
well (see the extended report [10] for examples). In the following, we propose three
techniques.

4.1 Data Abstraction

Data abstraction techniques presented in the previous work [7] and implemented in the
D-Finder tool kit [8] are deadlock preserving, i.e., synthesizing the abstract system to
be deadlock free ensures that the concrete system is also deadlock free. Basically, the
method works on an abstract system composed by components abstracted component-
wise from concrete components. For example, if an abstraction preserves all control
variables (i.e., all control variables are mapped by identity) and the mapping between
the concrete and abstract system is precise with respect to all guards and updates (for
control variables) on all transitions, then it is deadlock preserving. For further details,
we refer interested readers to [7,8].

4.2 Alphabet Abstraction
a

b

ca b ef e f . . .

C1 C2 C3 Cm

l11 l12

l13

l21

l22

l31

l32

a

b

ca b �� � � . . .

C1Φ C2Φ C3Φ CmΦ

l11 l12

l13

l21

l22

l31

l32

� �

S

SΦ

i h

Fig. 3. A system S and its �-abstract system SΦ,
where ΣΦ = Σ \ {a, b, c}

Second, we present alphabet abstrac-
tion, targeting to synthesize priorities to
avoid deadlock (but also applicable for
risk-freeness with extensions). The un-
derlying intuition is to abstract concrete
behavior of components out of concern.
All proofs are listed in our extended
report [10].

Definition 8 (Alphabet Transformer). Given a set Σ of interaction alphabet. Let
ΣΦ ⊆ Σ be abstract alphabet. Define α : Σ → (Σ \ ΣΦ) ∪ {�} as the alphabet
transformer, such that for σ ∈ Σ,

– If σ ∈ ΣΦ, then α(σ) := �.
– Otherwise, α(σ) := σ.

Definition 9 (Alphabet Abstraction: Syntax). Given a system S = (C, Σ,P) and
abstract alphabet ΣΦ ⊆ Σ, define the �-abstract system SΦ to be (CΦ, (Σ \ ΣΦ) ∪
{�},PΦ), where

– CΦ =
⋃

i=1...m CiΦ, where CiΦ = (Li, Vi, ΣiΦ, TiΦ, l0i , e
0
i ) changes from Ci by

syntactically replacing every occurrence of σ ∈ Σi to α(σ).
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– P =
⋃

i=1...k σi ≺ σ′
i changes to PΦ =

⋃
i=1...k α(σi) ≺ α(σ′

i), and the relation
defined by PΦ should be transitive and nonreflexive.

The definition for a configuration (state) of a �-abstract system follows Definition 2.
Denote the set of all configuration of SΦ reachable from c0 as CSΦ . The update of
configuration for an interaction σ ∈ Σ \ ΣΦ follows Definition 3. The only difference
is within the semantics of the �-interaction.

Definition 10 (Alphabet Abstraction: Semantics for �-interaction). Given a config-
uration c = (l1, v1, . . . , lm, vm), the �-interaction is enabled if the following conditions
hold.

1. (≥ 1 participants) Exists i ∈ {1, . . . , m} where � ∈ ΣiΦ, ∃ti = (li, gi, �, fi, l
′
i) ∈

TiΦ such that g(vi) = True.
2. (No higher priorities enabled) There exists no other interaction σ� ∈ Σ, (�, σ�) ∈

PΦ such that ∀i ∈ {1, . . . , m} where σ� ∈ Σi, ∃ti� = (li, gi�, σi�, fi�, l
′′
i ) ∈ Ti,

gi�(vi) = True.

Then for a configuration c = (l1, v1, . . . , lm, vm), the configuration after taking an
enabled �-interaction changes to c� = (l�1, v

�
1, . . . , l

�
m, v�

m):

– (May-update for participated components) If � ∈ Σi, then for transition ti =
(li, gi, �, fi, l

′
i) ∈ TiΦ such that gi(vi) = True, either

1. l�i = l′i, v�
i = fi(vi), or

2. l�i = li, v�
i = vi.

Furthermore, at least one component updates (i.e., select option 1).
– (Stutter for unparticipated components) If � �∈ Σi, l�i = li, v�

i = vi.

Lastly, the behavior of a �-abstract system follows Definition 4. In summary, the above
definitions indicate that in a �-abstract system, any local transitions having alphabet
symbols within ΣΦ can be executed in isolation or jointly. Thus, we have the following
result.

Lemma 1 Given a system S and its �-abstract system SΦ, define RS (RSΦ) be the
reachable states of system S (corresponding �-abstract system) from from the initial
configuration c0. Then RS ⊆ RSΦ .

As alphabet abstraction looses the execution condition by overlooking paired interac-
tions, a �-abstract system is deadlock-free does not imply that the concrete system is
deadlock free. E.g., consider a system S′ composed only by C2 and C3 in Figure 3.
When Φ = Σ \ {b}, its �-abstract system S′

Φ is shown below. In S′, when C2 is at lo-
cation l21 and C3 is at location l31, interaction e and f are disabled, meaning that there
exists a deadlock from the initial configuration. Nevertheless, in S′

Φ, as the �-interaction
is always enabled, it is deadlock free.

In the following, we strengthen the deadlock condition by the notion of �-deadlock.
Intuitively, a configuration is �-deadlocked, if it is deadlocked, or the only interaction
available is the �-interaction.
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Definition 11 (�-deadlock). Given a �-abstract system SΦ, a configuration c ∈ CSΦ is
�-deadlocked, if �σ ∈ Σ \ ΣΦ, c′ ∈ CSΦ such that c

σ−→ c′.

In other words, a configuration c of SΦ is �-deadlocked implies that all interactions
labeled with Σ \ ΣΦ are disabled at c.

Lemma 2 Given a system S and its �-abstract system SΦ, define D as the set of dead-
lock states reachable from the initial state in S, and D� as the set of �-deadlock states
reachable from the initial state in SΦ. Then D ⊆ D�.

Theorem 2 Given a system S and its �-abstract system SΦ, if SΦ is �-deadlock-free,
then S is deadlock-free.

(Algorithmic issues) Based on the above results, the use of alphabet abstraction and the
notion of �-deadlock offers a methodology for priority synthesis working on abstraction.
Detailed steps are presented as follows.

1. Given a system S, create its �-abstract system SΦ by a user-defined ΣΦ ⊆ Σ. In
our implementation, we let users select a subset of components Cs1 , . . . , Csk

∈ C,
and generate ΣΦ = Σ \ (Σs1 ∪ . . . ∪ Σsk

).
– E.g., consider system S in Figure 3 and its �-abstract system SΦ. The abstrac-

tion is done by looking at C1 and maintaining Σ1 = {a, b, c}.
– When a system contains no variables, the algorithm proceeds by eliminateing

components whose interaction are completely in the abstract alphabet. In Fig-
ure 3, as for i = {3 . . .m}, ΣiΦ = {�}, it is sufficient to eliminate all of them
during the system encoding process.

2. If SΦ contains �-deadlock states, we could obtain a �-deadlock-free system by syn-
thesizing a set of priorities P+, where the defined relation ≺+⊆ ((Σ\ΣΦ)∪{�})×
(Σ \ ΣΦ) using techniques presented in Section 3.

– In the system encoding, the predicate P�dead for �-deadlock is defined as stg =
False ∧

∧
σ∈Σ\ΣΦ

σ = False.
– If the synthesized priority is having the form � ≺ σ, then translate it into a set

of priorities
⋃

σ′∈ΣΦ
σ′ ≺ σ.

4.3 Assume-Guarantee Based Priority Synthesis

We use an assume-guarantee based compositional synthesis algorithm for behavior
safety. Given a system S = (C1 ∪ C2, Σ,P) and a risk specification described by a
deterministic finite state automaton R, where L(R) ⊆ Σ∗. We use |S| to denote the
size of S and |R| to denote the number of states of R. The synthesis task is to find a
set of priority rules P+ such that adding P+ to the system S can make it B-Safe with
respect to the risk specification L(R). This can be done using an assume-guarantee rule
that we will describe in the next paragraph.

We first define some notations needed for the rule. The system S+ = (C1∪C2, Σ,P∪
P+) is obtained by adding priority rules P+ to the system S. We use S1 = (C1, Σ,P ∩
Σ × Σ1) and S2 = (C2, Σ,P ∩ Σ × Σ2) to denote two sub-systems of S. We further
partition the alphabet Σ into three parts Σ12, Σ1, and Σ2, where Σ12 is the set of inter-
actions appear both in the sets of components C1 and C2 (in words, the shared alphabet
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of C1 and C2), Σi is the set of interactions appear only in the set of components Ci (in
words, the local alphabet of Ci) for i = 1, 2. Also, we require that the decomposition of
the system must satisfy that P ⊆ Σ × (Σ1 ∪ Σ2), which means that we do not allow a
shared interaction to have a higher priority than any other interaction. This is required
for the soundness proof of the assume-guarantee rule, as we also explained in the ex-
tended report [10] that we will immediately lose soundness by relaxing this restriction.
For i = 1, 2, the system Si+ = (Ci ∪ {di}, Σ, (P ∩ Σ × Σi) ∪ Pi) is obtained by (1)
adding priority rules Pi ⊆ Σ × Σi to Si and, (2) in order to simulate stuttering transi-
tions, adding a component di that contains only one location with self-loop transitions
labeled with symbols in Σ3−i (the local alphabet of the other set of components). Then
the following assume-guarantee rule can be used to decompose the synthesis task into
two smaller sub-tasks:

L(S1+) ∩ L(R) ∩ L(A) = ∅ (a) L(S2+) ∩ L(A) = ∅ (b)
L(S+) ∩ L(R) = ∅ (c)

The above assume-guarantee rule says that S+ is B-Safe with respect to L(R) iff there
exists an assumption automaton A such that (1) S1+ is B-Safe with respect to L(R) ∩
L(A) and (2) S2+ is B-Safe with respect to L(A), where A is the complement of A,
P+ = P1∪P2 and no conflict in P1 and P2. The above rule is both sound and complete
for behavior safety verification (see [10]). However, it is unsound for deadlock freeness.
An example can be found at the beginning of Section 4.

Notice that (1) the complexity of a synthesis task is NP-complete in the number of
states in the risk specification automaton product with the size of the system and (2)
|S| is approximately equals to |S1| × |S2|5. Consider the case that one decomposes the
synthesis task of S with respect to L(R) into two subtasks using the above assume-
guarantee rule. The complexity original synthesis task is NP-complete in |S| × |R| and
the complexity of the two sub-tasks are |S1| × |R| × |A| and |S2| × |A|6, respectively.
Therefore, if one managed to find a small assumption automaton A for the assume-
guarantee rule, the complexity of synthesis can be greatly reduced. We propose to use
the machine learning algorithm L* [3] to automatically find a small automaton that is
suitable for compositional synthesis. Next, we will first briefly describe the L* algo-
rithm and then explain how to use it for compositional synthesis.

The L* algorithm works iteratively to find a minimal deterministic automaton rec-
ognizing a target regular language U . It assumes a teacher that answers two types of
queries: (a)membership queries on a string w, where the teacher returns true if w is in
U and false otherwise, (b)equivalence queries on an automaton A, where the teacher
returns true if L(A) = U , otherwise it returns false together with a counterexample
string in the difference of L(A) and U . In the i-th iteration of the algorithm, the L* al-
gorithm acquires information of U by posing membership queries and guess a candidate
automaton Ai. The correctness of the Ai is then verified using an equivalence query. If
Ai is not a correct automaton (i.e., L(A) �= U ), the counterexample returned from the
teacher will be used to refine the conjecture automaton of the (i + 1)-th iteration. The
learning algorithm is guaranteed to converge to the minimal deterministic finite state

5 This is true only if the size of the alphabet is much smaller than the number of reachable
configurations.

6 Since A is deterministic, the sizes of A and its complement A are identical.
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Fig. 4. The flow of the assume-guarantee priority synthesis

automaton of U in a polynomial number of iterations7. Also the sizes of conjecture
automata increase strictly monotonically with respect to the number of iterations (i.e.,
|Ai+1| > |Ai| for all i > 0).

The flow of our compositional synthesis is in Figure 4. Our idea of compositional
synthesis via learning is the following. We use the notations S+

i to denote the system
Si equipped with a stuttering component. First we use L* to learn the language L(S+

2 ).
Since the transition system induced from the system S+

2 has finitely many states, one
can see that L(S+

2 ) is regular. For a membership query on a word w, our algorithm
simulates it symbolically on S+

2 to see if it is in L(S+
2 ). Once the L* algorithm poses an

equivalence query on a deterministic finite automaton Ai, our algorithm tests conditions
L(S+

1 ) ∩ L(R) ∩ L(Ai) = ∅ and L(S+
2 ) ∩ L(Ai) = ∅ one after another. So far,

our algorithm looks very similar to the compositional verification algorithm proposed
in [14]. There are a few possible outcomes of the above test

1. Both condition holds and we proved the system is B-Safe with respect to L(R) and
no synthesis is needed.

2. At least one of the two conditions does not hold. In such case, we try to synthesize
priority rules to make the system B-Safe (see the details below).

3. If the algorithm fails to find usable priority rules, we have two cases:
(a) The algorithm obtains a counterexample string ce in L(S+

1 ) ∩ L(R) \ L(Ai)
from the first condition. This case is more complicated. We have to further test
if ce ∈ L(S+

2 ). A negative answer implies that ce is in L(Ai) \ L(S+
2 ). This

follows that ce can be used by L* to refine the next conjecture. Otherwise, our
algorithm terminates and reports not able to synthesize priority rules.

(b) The algorithm obtains a counterexample string ce in L(S+
2 ) \ L(Ai) from the

second condition, in such case, ce can be used by L* to refine the next conjec-
ture.

The deterministic finite state automata R, Ai, and also its complement Ai can be treated
as components without data and can be easily encoded symbolically using the approach

7 In the size of the minimal deterministic finite state automaton of U and the longest counterex-
ample returned from the teacher.
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in Section 3.1. Also the two conditions can be tested using standard symbolic reacha-
bility algorithms.

Compositional Synthesis. Recall that our goal is to find a set of suitable priority rules
via a small automaton Ai. Therefore, before using the ce to refine and obtain the next
conjecture Ai+1, we first attempt to synthesis priority rules using Ai as the assumption
automaton. Synthesis algorithms in previous sections can then be applied separately to
the system composed of {S+

1 , R, Ai} and the system composed of {S+
2 , Ai} to obtain

two non-conflicting priority rules P1i ⊆ (Σ1∪Σ12)×Σ1 and P2i ⊆ (Σ2∪Σ12)×Σ2.
Then P1i ∪ P2i is the desired priority for S to be B-Safe with respect to R. To be more
specific, we first compute the CNF formulae f1 and f2 (that encode all possible priority
rules that are local, i.e., we remove all non-local priority candidates) of the two systems
separately using the algorithms in Section 3, and then check satisfiability of f1 ∧ f2.
The priority rules P1i and P2i can be derived from the satisfying assignment of f1∧f2.

5 Evaluation

We implemented the presented algorithms (except connection the data abstraction mod-
ule in D-Finder [8]) in the VISSBIP8 tool and performed experiments to evaluate them.
To observe how our algorithm scales, in Table 1 we summarize results of synthesizing
priorities for the dining philosophers problem9. Our preliminary result in [11] fails to
synthesize priorities when the number of philosophers is greater than 15 (i.e., a total
of 30 components), while currently we are able to solve problems of 50 within rea-
sonable time. By analyzing the bottleneck, we found that 50% of the execution time
are used to construct clauses for transitive closure, which can be easily parallelized.
Also the synthesized result (i) does not starve any philosopher and (ii) ensures that each
philosopher only needs to observe his left and right philosopher, making the resulting

Table 1. Experimental results

Time (seconds) # of BDD variables
Problem NFM1Opt.2 Ord.3 Abs.4 NFM Opt. Ord. Abs. Remark
Phil. 10 0.813 0.303 0.291 0.169 202 122 122 38 1 Engine based on [11]
Phil. 20 - 86.646 0.755 0.166 - 242 242 38 2 Dense var. encoding
Phil. 25 - - 1.407 0.183 - - 302 38 3 Initial var. ordering
Phil. 30 - - 3.740 0.206 - - 362 38 4 Alphabet abstraction
Phil. 35 - - 5.913 0.212 - - 422 38 - Timeout/Not evaluated
Phil. 40 - - 10.210 0.228 - - 482 38
Phil. 45 - - 18.344 0.213 - - 542 38
Phil. 50 - - 30.384 0.234 - - 602 38

DPU v1 5.335 0.299 x x 168 116 x x R Priority repushing
DPU v2 4.174 0.537 1.134R x 168 116 116R x x Not evaluated

Traffic x x 0.651 x x x 272 x

8 Available for download at http://www6.in.tum.de/˜chengch/vissbip
9 Evaluated under Intel 2.93GHz CPU with 2048Mb RAM for JVM.

http://www6.in.tum.de/~chengch/vissbip
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priority very desirable. Contrarily, it is possible to select a subset of components and
ask to synthesize priorities for deadlock freedom using alphabet abstraction. The exe-
cution time using alphabet abstraction depends on the number of selected components;
in our case we select 4 components thus is executed extremely fast. Of course, the syn-
thesized result is not very satisfactory, as it starves certain philosopher. Nevertheless,
this is unavoidable when overlooking interactions done by other philosophers. Except
the traditional dining philosophers problem, we have also evaluated on (i) a BIP model
(5 components) for data processing in digital communication (DPU; See [10] for de-
scription) (i) a simplified protocol of automatic traffic control (Traffic). Our preliminary
evaluation on compositional priority synthesis is listed in [10].

6 Related Work

For deadlock detection, well-known model checking tools such as SPIN [18]
and NuSMV [13] support deadlock detection by given certain formulas to specify the
property. D-Finder [8] applies compositional and incremental methods to compute in-
variants for an over-approximation of reachable states to verify deadlock-freedom au-
tomatically. Nevertheless, all the above tools do not provide any deadlock avoidance
strategies when real deadlocks are detected.

Synthesizing priorities is subsumed by the framework of controller synthesis
proposed by Ramadge and Wohnham [22], where the authors proposed an automata-
theoretical approach to restrict the behavior of the system (the modeling of environ-
ment is also possible). Essentially, when the environment is modeled, the framework
computes the risk attractor and creates a centralized controller. Similar results using
centralized control can be dated back from [5] to the recent work by Autili et al [4] (the
SYNTHESIS tool). Nevertheless, the centralized coordinator forms a major bottleneck
for system execution. Transforming a centralized controller to distributed controllers
is difficult, as within a centralized controller, the execution of a local interaction of a
component might need to consider the configuration of all other components.

Priorities, as they are stateless, can be distributed much easier for performance and
concurrency. E.g., the synthesized result of dining philosophers problem indicates that
each philosopher only needs to watch his left and right philosophers without considering
all others. We can continue with known results from the work of Graf et al. [17] to
distribute priorities, or partition the set of priorities to multiple controllers under layered
structure to increase concurrency (see work by Bonakdarpour et al. [9]). Our algorithm
can be viewed as a step forward from centralized controllers to distributed controllers,
as architectural constraints (i.e., visibility of other components) can be encoded during
the creation of priority candidates. Therefore, we consider the work of Abujarad et
al.[1] closest to ours, where they proceeds by performing distributed synthesis (known
to be undecidable [21]) directly. In their model, they take into account the environment
(which they refer it as faults), and consider handling deadlock states by either adding
mechanisms to recover from them or preventing the system to reach it. It is difficult to
compare two approaches directly, but we give hints concerning performance measure:
(i) Our methodology and implementation works on game concept, so the complexity of
introducing the environment does not change. (ii) In [1], for a problem of 1033 states,
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Priority synthesis via localization and repair

Data abstraction
(connecting w. D-Finder)

Alphabet
abstraction

Compositional
reasoning

input

output

S
S
P+

Choice 2Choice 1

Handling Complexity

Fig. 5. The framework of priority synthesis presented in this paper, where the connection with the
D-Finder tool [8] is left for future work

under 8-thread parallelization, the total execution time is 3837 seconds, while resolving
the deadlock of the 50 dining philosophers problem (a problem of 1038 states) is solved
within 31 seconds using our monolithic engine.

Lastly, the research of deadlock detection and mechanisms of deadlock avoidance
is an important topic within the community of Petri nets (see survey paper [20] for
details). Concerning synthesis, some theoretical results are available, e.g., [19], but ef-
ficient implementation efforts are, to our knowledge, lacking.

7 Conclusion

In this paper, we explain the underlying algorithm for priority synthesis and propose ex-
tensions to synthesize priorities for more complex systems. Figure 5 illustrates a poten-
tial flow of priority synthesis. A system can be first processed using data abstraction to
create models suitable for our analysis framework. Besides the monolithic engine, two
complementary techniques are available to further reduce the complexity of problem
under analysis. Due to the stateless property and the fact that they preserve deadlock-
freedom, priorities can be relatively easily implemented in a distributed setting.
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