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Abstract Safe operations of unmanned rotorcraft hinge on successfully accommo-
dating failures during flight, either via control reconfiguration or by terminating
flight early in a controlled manner. This paper focuses on autorotation, a common
maneuver used to bring helicopters safely to the ground even in the case of loss of
power to the main rotor. A novel nonlinear model predictive controller augmented
with a recurrent neural network is presented that is capable of performing an
autonomous autorotation. Main advantages of the proposed approach are on-line,
real-time trajectory optimization and reduced hardware requirements.
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Nomenclature

A Rotor disc area
C Constraint function
Cd Blade drag coefficient
Cd,0 Average blade drag coefficient
Cl Blade lift coefficient
Cl,a Lift curve slope
CT Thrust coefficient
E Neural network epoch size
fe Equivalent unit drag coefficient area
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fi Inflow velocity factor
fr Ratio of maximum to nominal rotor rpm
g Acceleration of gravity
IR Rotor moment of inertia
J Jacobian matrix
L Cost function
M Helicopter mass
Nc Control horizon
Ns Prediction horizon
R Rotor radius
T Thrust
t f Final time
ts Sampling period
u Action
v Velocity
vH Helicopter sink rate
w Weight factor
χ Auxiliary vector
x State
z Helicopter altitude
z0 Helicopter initial altitude

Greek Letters

γ Learning rate
θ Blade pitch at 3/4 of its length
κ Induced power correction factor
λ Inflow ratio
ρα Air density
σ Rotor solidity factor

 Rotor speed of rotation

0 Nominal rotor speed of rotation

Subscripts

h At hover
i Induced
M Maximum
m Minimum
s Steady-state

1 Introduction

Small unmanned rotorcraft are very attractive both in the military and the civilian
application domains mainly due to two key characteristics; maneuverability and
portability. Specifically helicopters can maneuver in tight spaces, hover over areas
of interest and can take-off from and land almost anywhere. On the other hand they
have been described as “ungainly, aerodynamic mavericks” [4], since they exhibit a
complex aerodynamic performance that is extremely difficult to accurately predict.



J Intell Robot Syst (2010) 57:351–369 353

Penetration of such systems into the market is contingent on resolution of safety
issues among others. This paper will not go into details on these issues, the interested
reader is referred to the literature [2, 5–7, 9, 10, 16]. Nevertheless, solution of such
issues will undoubtedly involve provisions to handle on-board failures in a manner
that minimizes the risks to the public and third party property to acceptable levels.
The focus of this work is on failures that would jeopardize or completely preclude
continued flight under manual control, but can be accommodated by an on-board
emergency flight controller. Such failures include loss of power or control to the tail
rotor and possibly main rotor.

In manned helicopters, a pilot faced with such a failure can employ the autoro-
tation maneuver to safely land the aircraft. Due to the aerodynamics of the main
rotor, even when no power is supplied to it, it is possible to maintain a steady rate
of descent. This is accomplished by using the air flowing through the rotor disk to
rotate the main rotor—the reverse process from normal flight. In this case the main
rotor acts as a parachute, breaking the helicopter. Just before touchdown the rotor
rpm is exchanged for a reduction in the descent rate thus allowing the helicopter to
land safely.

The proposed emergency controller is an independent system on-board un-
manned helicopters that is capable of performing the autorotation maneuver au-
tonomously. Its primary purpose is to minimize the probability of fatalities or injuries
to people on the ground. Secondary goals are to minimize the risk of collision with
other aircraft or stationary objects, as well as minimize the damage to the aircraft
itself. As a result, vertical autorotation is preferred in this case, to minimize the
airspace volume through which the helicopter will need to fly. Additionally the sink
rate is reduced during the last 3 m of descent to minimize the effects of impact even
if there are people in the area.

2 History and State of the Art of Autonomous Autorotation

In 1977, Johnson derived an autorotation model that includes vertical as well as
longitudinal movement [12]. The optimal control was derived using a cost function
that depended on horizontal and vertical speed at touchdown. The derivation of
the control law was based on iterative numerical integration forwards and then
backwards between the two boundary points and updating using the steepest descent
method. The results were then compared with the performance of a modified Bell
OH-58A carrying a High Energy Rotor System (HERS).

A few years later in Stanford, Allan Yeow-Nam Lee improved on Johnson’s work
by introducing state inequality constraints that were converted to equality using slack
variables [13]. The controller was derived by numerical parameter optimization using
the Sequential Gradient Restoration technique (an iterative method).

Although Johnson and Lee derived optimal autorotation trajectories, the issue of
autonomous autorotation was not addressed until almost a decade later. In Japan,
Hazawa et al. [11] derived two autorotation models (one linear and one non-linear)
and used a PI controller to land a small unmanned helicopter.

In a continuation of the work of Johnson and Lee, Aponso et al. presented their
own method to optimize the trajectory and control inputs for a full-size helicopter
during an autorotation landing [3]. The goal of their work was to ensure the survival



354 J Intell Robot Syst (2010) 57:351–369

of sensitive sensors and data stored on board the helicopter in the case of non-
catastrophic failures. A significant drawback of their method is that it precalculates
the control inputs and the trajectory before entering the autorotation maneuver and
as a result is not robust with respect to modeling errors and outside interference.
Because of this mismatch between model and simulation a flare law was necessary,
that forces the flare to occur at 30 ft. Their work was evaluated against a high fidelity
Bell 206 simulator.

During 2008, two groups presented results for autonomous autorotation using
machine learning techniques. In the first approach [1], the controller was trained
using pre-recorded pilot reference autorotations that provided a model of the
aircraft and the “ideal” trajectory. The landing itself was achieved by forcing the
helicopter to hover at 0.5 m. The performance of the controller was demonstrated
using a small unmanned helicopter (XCell Tempest). The second approach was a
straightforward application of reinforcement learning to train a controller using the
Johnson model, cost function and experimental data.The final state-action space has
10 dimensions and was covered using RBFs, whose parameters were updated using
backpropagation. After 9000 epochs the number of RBFs was about 19,000 and the
success rate around 80%.

3 Proposed Approach

Current applications for unmanned helicopters typically require hovering at rela-
tively low altitudes of a few hundred meters. Since the sink rate during autorotation
can be significant, the whole maneuver may take only a few seconds to complete mak-
ing manual intervention difficult if not impossible. Furthermore, on-board processing
capacity of small unmanned helicopters is limited, which in turn puts bounds on the
computational complexity of the controller if real-time operation is to be achieved.
To meet these performance requirements the use of a nonlinear, model-predictive
controller augmented by a recurrent neural network is proposed.

The idea behind model predictive control is to start with a fixed prediction
horizon (Ns), using the current state of the plant as the initial state. An optimal
control sequence of length Nc (Ns ≥ Nc) is then obtained that minimizes an objective
function while at the same time satisfying posed constraints. After applying the first
element of that sequence as an input to the plant, the new state is observed and used
as an initial state repeating the process.

Model predictive control is used extensively for the control of production
processes and the properties of linear model predictive controllers are well un-
derstood. In the case of nonlinear problems, linearization techniques are usually
preferred because NMPC suffers from the same issues as any nonlinear optimization
approach; convergence, stability and computational complexity. Nevertheless many
NMPC-based solutions to various nonlinear problems have been proposed in the
literature, with encouraging results.

The NMPC problem can be expressed as an optimization problem, specifically:

minL(u, x) s.t. C(u, x) ≤ 0 (1)

where a control sequence u is determined that minimizes the objective function
L and satisfies the inequality constraints C. This optimization problem needs to
be solved each time a new state is observed. To solve such problems, Xia et al.
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have proposed a series of recurrent neural networks [17–20]. The idea behind their
approach is to build a neural network that models an ODE whose equilibrium
point is the optimal solution to the problem (1). This approach has two major
advantages; guarantied exponential convergence in the case of convex problems and
fast execution speed when using hardware that can perform parallel computations.

The update rule of the recurrent neural network used in this paper was adapted
from [20] and is given by:

d
(

u
χ

)
= γ

⎛
⎝−u +

(
u − dL

du
− dC

du
χ

)+

−χ + (χ − C(u))
+

⎞
⎠ (2)

where γ is a learning rate parameter, (·)+ is an activation function and χ is an
auxiliary vector with size equal to the number of constraints.

3.1 Vertical Autorotation Model

The vertical autorotation model used for the controller is given by:
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where Eq. 3 is derived from the balance of the three forces acting on the helicopter;
the thrust provided by the main rotor, the aerodynamic drag from moving through
the air and the weight of the aircraft. Similarly Eq. 5 is obtained from a torque
balance between the torque added or subtracted by the inflow and torque subtracted
due to blade drag. For the detailed derivation of these equations the reader is
referred to [13].

Since the inflow dynamics are generally not measurable during flight, the model
used internally by the controller will be simplified to include only the measurable
states namely vH, z and 
. As a result the controller assumes a steady-state inflow
velocity, that is:

vi = vi,s = vi,h fi (6)

where vi,h =
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The control input is scaled to the [0, 1] range, while the model equations are non-
dimensionalized using the nominal rotor angular velocity 
0 and the rotor radius R:

τ = 
0t
100

⇒ d
dt

= 
0

100

d
dτ

(7)

x1 = 100vH


0 R
⇒ vH = 
0 R

100
x1 (8)

x2 = z
10R

⇒ z = 10Rx2 (9)

x3 = 



0
⇒ 
 = 
0x3 (10)

x4 = 100vi,s


0 R
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100
x4 (11)

u = θ + θm

θM − θm
⇒ θ = u(θM − θm) + θm (12)

The final controller model equations are:
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There are three types of constraints imposed on the controller. The first concerns
the physical limits of the actuator:

θm ≤ θ ≤ θM ⇒ 0 ≤ u ≤ 1 (16)

This type of constraint is easily handled by appropriate design of the neural network
activation function. In this case the activation function is a saturation function that
limits the input to the range [0, 1], so that the control sequence is always within the
actuator limits:

(·)+ = min(1, max(·, 0)) (17)

The second constraint is incorporated to avoid blade stall:
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8
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2
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The last constraint is designed to protect the main rotor from mechanical stress.
This is because for very low blade pitch the rotor angular velocity may increase above
nominal, possibly damaging the rotor assembly.


 ≤ fr
0 ⇒ x3 ≤ fr (19)

where from the literature fr typically takes values between 1.05 and 1.25 [3, 14].

3.2 Simulation Model

As mentioned earlier the inflow dynamics and the ground effect phenomenon are
ignored by the controller. Nevertheless both are taken into account by the simulator
developed to test the controller. The response of the induced velocity to thrust
changes is not instantaneous but exhibits a dynamic behavior. This behavior can
be modeled using an inertia model with an apparent mass equal to 63.7% that of
a sphere of air with the same radius as that of the rotor (ma = 0.637ρα

4
3π R3) [15]. As

a result the thrust will be given by:

T = mav̇i + 2ρα Avi(vi − vH)

= 0.849ρα ARv̇i + 2ρα Avi(vi − vH) (20)

In steady-state conditions the thrust is given by

T = 2ρα A(vi − vH)vi (21)

which when combined with Eq. 20 produces:
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]
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R

(
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) (
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)
(22)

where vi,s is the steady state induced velocity typically calculated from empirical
models as a function of vH . It is obvious that the derived equation has two possible
steady state solutions; vi = vi,s and vi = vH − vi,s although only the former is of
interest. To overcome this problem, it is assumed that vivH � vi,svH and as a result
the final induced velocity model is given by:

v̇i = −2.356

R

(
vi

2 − vi,s
2
)

(23)

An additional correction factor is required for hovering near the ground, due to
a phenomenon called ground effect. Because the rotor wake meets the ground the
pressure below the rotor rises resulting in higher thrust generation for the same
power. There are several empirical models of ground effects, the one used in this
work is given by: [

T
T∞

]
P=const

= 1

1 − σClλi
4CT

( R
4z

)2 (24)
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4 Controller Derivation

The vertical autorotation model can be expressed as a general SIMO nonlinear affine
in the control problem given by:

ẋ = f (x) + g(x)u

min
u∈U

∫ t f

0
L(x, u)

which in discrete time becomes:

x(t + 1) = x(t) + ts f (x(t)) + ts g(x(t))u(t) (25)

min
u(i)∈U

t f∑
i=0

L(x(i), u(i)) (26)

To find the optimal sequence using the recurrent neural network of Eq. 2, the dL
du ,

C(u) and dC
du quantities need first be calculated.

Taking into account that actions can only affect future states and don’t depend on
past or future actions:

dx(k)
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du(i)
=

{
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0 otherwise
(27)

Differentiating Eq. 25 with respect to a control action u(i):
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du(i)
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Using Eqs. 28 and 27 the following update rule for calculating the dx(t)
du(i) from the

previous prediction step is obtained:

dx(t)
du(i)

=

⎧⎪⎨
⎪⎩
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If an objective function of the following form is assumed:

L =
Ns∑
j=1

L∗(x( j)) + wuT u (30)

where L∗ is a function of the state and w is a positive weight factor, then:

dL
du

=
Ns∑
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(
∂L∗

∂x(i)
dx(i)
du

)
+ 2wu (31)
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The constraints in the vector form required by the recurrent neural network are
given by:

C(u) =

⎡
⎢⎢⎣
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Finally differentiating Eq. 33 with respect to the control sequence gives dC
du :
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Although Eq. 29 requires that each dx(i)
du , i ∈ [1, 2, . . . , Ns] is computed in se-

quence, Eqs. 31–34 are independent and can be calculated in parallel. Furthermore

Fig. 1 Block diagram of the controller. With the exception of the shaded block, the other operations
can be run in parallel. Inside the shaded block a cascaded connection is used to calculate dx(i)

du from
dx(i−1)

du
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the rest of the neural network also allows parallel computations as can be seen in
Fig. 1.

5 Results

The controller was tested using a model of the OH-58A helicopter with high energy
rotor system (HERS). Although this helicopter does not represent a small rotorcraft,
this model was chosen because it has been used extensively in the literature thus
facilitating comparison with other developed controllers. The model parameters used
are summarized in Table 1. For this paper a simple objective function was used:

L∗ = 0.05 (max(vH, 5.5) − 0.5)2 e1−1.25 min(z,1) (35)

This corresponds to an objective of lowering the sink rate to 0.5 m s−1 for the last 3 m
of the descent.

5.1 Baseline Scenario

The baseline simulation was carried out modeling a descent from an initial altitude
of 120 m using a prediction horizon of Ns = 10 and a control horizon of Nc = 5. The
simulation is performed at an update rate of 1kHz while the controller is run at 10Hz.
The neural network parameters are E = 150 and γ = 0.08.

The results, presented in Fig. 2, show that the helicopter accomplished the stated
objective, without violating the thrust coefficient and rpm constraints. The whole
maneuver lasts for about 14 s, although about half of it corresponds to the last 4 m of
the descent. The sudden jump in blade pitch at an altitude of about 60 m is due to the
big drop required in the sink rate so that the 
-constraint is not violated. A smoother
transition is also possible, but at the expense of either violating the constraint or
requiring a longer prediction horizon.

It should also be noted that although a sink rate of 0.5 m s−1 is achieved, towards
the end of the maneuver an increase in the sink rate is observed. This is due to the
rapid loss of inertial energy in the rotor and the onset of stall in the blades that

Table 1 Vertical autorotation
model parameters for a
modified OH-58A helicopter
with high energy rotor system

Source: [8, 13]

Helicopter mass (M) 1,360 kg
Rotor moment of inertia (IR) 911 kg m2

Solidity factor (σ ) 0.048
Rotor disc radius (R) 5.37 m
Mean drag coefficient (Cd) 0.008,7
Lift coefficient (Cl) 5.73 rad−1

Equivalent unit drag coefficient area ( fe) 2.32 m2

Induced power correction factor (κ) 1.13
Nominal rotor speed (
0) 354 rpm or 37 rad s−1

Air density (ρα) 1.225 kg m−3

Minimum main rotor pitch −2◦
Maximum main rotor pitch 16◦
Maximum main rotor rpm 1.15
0
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Fig. 2 The sink rate, rotor rpm and control input of the OH-58A for a descent from an initial altitude
of 120 m (Ns = 10, Nc = 5). The shaded regions represent the posed constraints. The scale on the
right side of the graphs has been altered to show the last stage of the descent in higher detail

requires checking the rate of increase of the blade pitch. Nevertheless, and despite
the increase, the velocity at touchdown remains within mechanical tolerances of the
landing gear, since the latter is typically designed for sink rates up to 3 m s−1.
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Figure 2 also presents the resulting trajectories for E = 1500. It is obvious that
despite the tenfold increase in the time available to the neural network, the output is
not significantly different and the results are comparable.

Fig. 3 The effect of different initial altitudes on the performance of the controller
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5.2 Initial Altitude

The initial altitude can influence the state of the helicopter at the final stage of the
descent and specifically the rotational energy available in the rotor to reduce the sink
rate. For initial altitudes exceeding 90 m the helicopter will have time to reach the
limit of the allowable rotor rpm. As a result in each case it will reach the flare altitude
with 
 � 1.15
0 and vH � 15 m s−1.

Conversely in the occasions were the initial altitude is lower than 90 m, the kinetic
energy stored in the rotor will be lower. The sink rate can be lower than 15 m s−1

if the helicopter failed at a very low altitude (< 10 m) or higher for intermediate
altitudes. Figure 3 presents the trajectories for three simulations that feature an initial
altitude of 120 m, 60 m and 30 m. In the last instance and although the output of
the controller does not deviate significantly from that of the other simulations, the
target sink rate is achieved only centimeters above the ground. This is because of the
thrust coefficient constraint and the lower energy stored in the rotor. To improve
the performance in this case, either the prediction horizon would need to be
increased or the thrust coefficient constraint be relaxed.

5.3 Noise

To investigate the impact of sensor noise on controller performance, two simulations
were carried out using different noise levels. The noise is assumed to be zero-mean,
gaussian with varying standard deviation. The noise levels are summarized in Table 2.

Figure 4 shows the simulation results for the first noise level scenario. The
trajectory is not significantly changed and the only thing affected is the controller
output during the 
-controlled descent. The latter occurs because of the design of
the controller that tries to maintain constant rpm and becomes more pronounced
as the noise in the rpm measurements increases as shown in Fig. 5. As the noise
level increases the vH-controlled region starts to get affected as well. This is because
the controller is required to maintain a constant velocity in the face of noisy
measurements. It should be noted that in the second case the simulation is terminated
early. This is because according to the information available to the controller, the
helicopter has reached the ground and the simulation terminated.

5.4 Execution Speed

An additional parameter that is important in this problem is the execution speed
of the controller. To determine this, the execution time of a single iteration was
calculated for different prediction and control horizons. Since a single iteration is
very fast, its execution time was estimated by measuring the total time required for
2,000 iterations. The tests were carried out using a single-core Athlon XP 3200+

Table 2 Sensor noise levels Standard deviation

Level 1 Level 2

Sink rate (m s−1) 0.2 0.5
Altitude (m) 0.25 0.75
Rotor speed (RPM) 7 10.5
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Fig. 4 The trajectory of the helicopter with and without noise under the second noise level. The top
graphs present the absolute error of the sensor measurement as a function of time
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Fig. 5 The trajectory of the helicopter with and without noise under the third noise level. The top
graphs present the absolute error of the sensor measurement as a function of time
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Fig. 6 The variance of the neural network output with respect to time and helicopter sink rate
for four values of the learning rate parameter. Larger circles mean larger variance while variances
smaller than 10−4 are not shown. For comparison purposes the thrust coefficient at the corresponding
time is also provided
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(model of 2005) CPU, throttled to a frequency of 1 GHz running a 32-bit version of
Debian Linux. No parallelization or off-line optimization was used to improve the
execution time. The cost of the EKF was also calculated under the same conditions
and was found to be approximately 128 μs.

For Ns = 10 and Nc = 5 a controller iteration required 0.88 ms whereas for
Ns = 12 and Nc = 6 this time increased to 1.23 ms. If an update rate of 10 Hz is
chosen, under the aforementioned conditions the maximum epoch length is 113 and
81 respectively. For higher prediction and control horizon the number of possible
iterations drops considerably, down to 30 for Ns = 20 and Nc = 10.

5.5 Learning Rate and Convergence

To investigate the effect of the learning rate parameter as well as the convergence
characteristics of the neural network, four simulations were carried out for different
values of γ . Higher values of the latter parameter are typically used to improve the
convergence speed. On the other hand, such values can lead to over-corrections and
oscillations. This is exacerbated by constraint enforcement and results in producing
the opposite of the desired effect. The influence of the effect of the controller design
parameter γ was evaluated using the variance in the neural network output during
the last 20% of the repetitions of each cycle. If the neural network has converged,
low output variance is expected. The results summarized in Fig. 6 show that high
variance is exhibited mainly in regions where the helicopter transitions from one
mode to another. This is expected because the cost and constraint derivatives take
their higher values there. Additionally for learning rates 0.12 and above, variance is
exhibited first in the region of deceleration and then in the entire velocity-controlled
region.

6 Conclusions and Future Work

Current proposed automated autorotation methods have one or more significant
drawbacks that don’t allow them to be incorporated as they are in current and future
aircraft:

– The trajectory is not calculated on-line because the calculations cannot be
carried out in real-time. This is significant because any discrepancies between
the model and the actual aircraft as well as any external disturbances can lead
to accumulating error. This error can be significant by the time the aircraft
approaches touchdown and may lead to a catastrophic accident.

– The objective of the autorotation maneuver is typically chosen to be zero vertical
and horizontal velocity at zero height. Nevertheless, especially in the case of
unmanned helicopters the foremost objective should be to minimize human
injuries and fatalities.

– Autonomous autorotation is based on training using pre-recorded attempts by
an expert. This can be problematic since the limitations of a human pilot are
incorporated into the design and the performance will be as good as a human
pilot. Furthermore it does not allow for different objectives and large deviations
from the conditions under which the experiments were recorded.
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– The controller is designed as a black box, trained through repeated, simulated
trial and error. In this approach the accuracy of the simulation model used is very
important. Furthermore the controller needs to be repeatedly trained under all
possible conditions.

On the other hand the controller presented in this paper is capable of real-
time, on-line trajectory optimization using different objective functions without
a requirement for training beforehand. Due to the characteristics of the NMPC
approach, it is robust to sensor errors and the introduction of a recurrent neural
network simplifies the non-linear optimization and significantly improves the speed
with which the optimal control sequence is obtained. The convergence speed may be
further improved utilizing specialized hardware, that allows parallel computations.

Future work in this area will entail further testing of the controller with different
helicopter models, different scenarios (e.g. wind) as well as testing against com-
mercial flight simulators. Gain scheduling or alternate objective functions need to
be investigated to determine if it possible to overcome the convergence problems
encountered in the regions where the helicopter rapidly changes state. Furthermore
better tuning of the objective function and NMPC and neural network parameters is
planned, along with an investigation of their impact on the controller performance
in terms of both accuracy and speed. Long-term goals include an investigation of
the convergence characteristics of the neural network; whether convergence can be
guarantied and under what conditions.

In the future, it is envisioned that this controller will be a part of larger emergency
system that will be capable of handling a multitude of failures from detection to
resolution. Such a system would undoubtedly improve the safety performance of
unmanned helicopters in general and pave the way for further integration of such
systems into the national airspace system.
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