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Abstract— A globally convergent visual feedback control
scheme is proposed for dynamical planar robot arms subject
to uncertain camera, robot, analytical Jacobian and dynamic
friction parameters. When complex friction arises, visual
servoing suffers to drive the robot to the desired trajectories,
in particular in slow motion and velocity reversals, which
are typical motion regime in visual servoing due to the
vision system properties. Moreover, dynamic friction is usually
neglected in motion control and it is not the exception in visual
servoing literature. In order to prove the theory described in
this paper, the real-time OS, Linux-RTAI, is used to obtain
experimental results of this controller on a direct-drive robot
manipulator. Results suggest its excelent performance.

Index Terms— Visual Servoing, Second Order Sliding Mode
Control, Adaptive Control, Unknown Jacobian, Dynamic
Friction.

I. I NTRODUCTION

Dynamic-based visual servoing schemes consider ex-
plicitly the robot dynamics, so as to compensate them to
achieve a better dynamic response. The obvious advantage
of this scheme is the fact that online compensation of
uncalibrated camera can be easily carried out along the con-
troller computation. Recently, uncalibrated spatial visual
servoing tasks have been proposed using adaptive control
for dynamic robot arms to guarantee local tracking subject
to parametric uncertainty [1]∼[4]. These schemes exploit
the fact that the rotation matrix is constant, and formal and
rigorous stability analysis support these results. However,
this works assume knowledge of the analytical Jacobian
matrix, and furthermore, these are singular at rotation angle
θ = π/2. For planar uncalibrated visual servoing tasks, [4]
propose a regulation scheme that removes the requirement
of the image Jacobian. Instead, to achieve position track-
ing, [6] propose a discontinuous first order sliding mode
controller. An improvement of this scheme is presented in
[7] wherein an excelent combination of adaptive control
and second order sliding mode control is used to avoid
chattering (introduced by the first order sliding mode) and
to overcome the parametric uncertainty of camera, robot
and Jacobian. However, none of the papers mentioned
before compensate for joint friction. Dynamic friction
provokes limit cycles and complex nonlinear behaviors

that may cause instability in mechanical systems [8]. This
phenomena deprives to obtain the required precision of
a physical system, particularly robot manipulators. Then,
joint friction is quite important to compensate because it is
a dominant dynamical force in slow and velocity reversal
regimes, which is a typical motion regime in robot tasks,
and moreover in visual servoing. Thus, the task under study
is that the robot end effector tracks avisual trajectory, i.e.
in image space (see Fig. 1). This task is very relevant
in many robotic applications. However, for any practical
impact, uncertainties must be considered.
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Fig. 1. Experimental Setup.

A. Contribution

In this paper an adaptive second order sliding mode
tracking visual feedback controller driven by image errors
is developed. It is assumed that camera, robot, Jacobian and
dynamic friction parameters are uncertain. As second order
sliding mode control does not introduce high frecuency
signals, it can be implemented in a real plant, unlike the
first order sliding mode. Also, as will be seen afterwards,
the sliding mode permits to achieve exponential fast con-
vergence of tracking errors. No acceleration is required,
and only the visual flow of one landmark is computed.



To illustrate the performance of the proposed controller
we present experimental results, that confirms the expected
behavior, on a direct-drive robot manipulator.

II. N ONLINEAR ROBOT DYNAMICS

The dynamics of a serialn-link rigid, non-redundant,
fully actuated robot manipulator can be written as follows

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ − F (q̇, ż, z) (1)

whereq ∈ <n is the vector of generalized joint displace-
ments,H(q) ∈ <n×n stands for the symmetric positive
definite manipulator inertia matrix,C(q, q̇)q̇ ∈ <n stands
for the vector of centripetal and Coriolis torques,g(q) ∈
<n is the vector of gravitational torques,F (q̇, ż, z) ∈ <n is
the joint dynamic friction1 andτ ∈ <n stands for the vector
of input torque control. Two important properties of robot
dynamics, useful for stability analysis, are the following

Property 1: With a proper definition ofC(q, q̇), Ḣ(q)−
2C(q, q̇) is skew-symmetric. Then

XT
[
Ḣ(q) − 2C(q, q̇)

]
X = 0, ∀X ∈ <n (2)

Property 2: Robot dynamics are linearly parameterizable
in terms of a known regressorYb = Yb(q, q̇, q̈) ∈ <n×p and
an unknown vectorθb ∈ <p of robot parameters as follows

H(q)q̈ + C(q, q̇)q̇ + g(q) = Ybθb (3)

A. Open loop error equation

Adding and subtracting to (1) the following parametriza-
tion

H(q)q̈r + C(q, q̇)q̇r + g(q) = Yrθb (4)

where the known regressorYr = Yr (q, q̇, q̇r, q̈r) ∈ <n×p

and the unknown constant vectorθb ∈ <p, produces the
open loop error equation

H(q)Ṡq = τ − C(q, q̇)Sq − Yrθb (5)

with joint error surfaceSq defined as

Sq = q̇ − q̇r (6)

where q̇r stands for the nominal reference of joint veloci-
ties, not defined yet.

III. C AMERA MODEL

The static pin hole camera model is used, considering
thin lens without aberration [5]. To introduce the model,
first consider the robot direct kinematics

xb = f(q) (7)

wherexb ∈ <n represents the position of robot end effector
in cartesian space,q ∈ <n is the vector of generalized joint
displacements, andf (·) : <n → <n. Then, the differential
kinematics of robot manipulator, which relates velocitiesin
cartesian spacėxb ∈ <n to joint space velocitieṡq ∈ <n,
is defined as follows

ẋb = J(q)q̇ (8)

1For a clear exposition, firstly,F (q̇, ż, z) will be considered zero,
however in Section VII it will be treated.

Now, the visual positionxs ∈ <2 of robot end effector in
image space (screen) is given by [5]

xs = αR (θ)xb + β (9)

where α is the scale factor2, andR (θ) ∈ SO(3), β ∈
<2 and depends on intrinsic and extrinsic parameters of
camera3. The differential camera model is then

ẋs = αR (θ) ẋb (10)

where ẋs ∈ <2 determines the visual robot end effector
velocity, i.e.visual flow. Notice that the constant transfor-
mationαR (θ) maps statically robotcartesian velocitieṡxb

into visual flow ẋs. Using equation (7)∼(9), equation (10)
becomes

ẋs = αR (θ) J(q)q̇ (11)

Thus, the inverse differential kinematics for robot manip-
ulator in terms of visual velocities4 becomes

q̇ = J (q)
−1
R (θ)

−1
α−1ẋs ⇒ q̇ = JRinvẋs (12)

This relation is useful to design the nominal reference of
joint velocities q̇r in the following section.

IV. D EFINITION OF ERROR MANIFOLDS

According to (12), a nominal referencėqr in the joint
space is defined as follows

q̇r = JRinvẋr (13)

Notice that, we are also interested in designing an image
based servo visual force control without computing inverse
kinematics5, then nominal referencėqr must be designed in
terms of nominal visual reference. Consider now the next
nominal visual referenceof velocities

ẋr = ẋsd −α∆xs +Ssd − γs1

∫ t

t0

Ssδ − γs2

∫ t

t0

sign (Ssδ)

(14)
where ẋsd stands for desired visual velocity trajectory,
∆xs = xs−xsd is the visual position error, andγsi = γT

si ∈
<n×n

+ , for i = 1, 2. The visual error surface arises

Ssδ = Ss − Ssd ≡ (∆ẋs + α∆xs) − Ss (t0) e
−κst

where∆ẋs = ẋs−ẋsd defines visual velocity error,κs > 0
andα = αT ∈ <n×n

+ . Using equations (12), (13), and (14)
into (6), the visual joint error surface arises as follows

Sq = q̇ − q̇r

= JRinvẋs − JRinvẋr

= JRinvSvs (15)

2Without loss of generality,α can be considered as a scalar matrix
2 × 2.

3Focal distance, depth of field, translation of camera center to image
center, distance between optical axe to the robot base.

4With JRinv ∈ <n×n whose entries are functions of robot and camera
parameters.

5To eliminate the inverse kinematics calculus and to reduce thecontrol
law computational cost. This is also one byproduct of this scheme.



with

Svs = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)

whereSvs stands for the visual manifold.
Remark 1. The above definition assumes exact knowl-

edge ofJRinv. However, in practice, it stands as a very
restricted assumption. Therefore, we need to design a
uncertain manifoldSq taking into consideration the uncer-
tainty of JRinv. To this end, consider

̂̇qr = ̂JRinvẋr (16)

with ̂JRinv an estimated ofJRinv, such that rankĴ−1 (q)
and R̂−1

α (θ) are full rank ∀q ∈ Ω, where the ro-
bot workspace free of singularities is defined byΩ =
{q|rank (J (q)) = n,∀q ∈ <n}, and ∀θ ∈ <. Thus, sub-
stituting (16) into (6), we have theuncalibrated joint error
surface

Ŝq = q̇ − ̂̇qr

= JRinvẋs − ̂JRinvẋr (17)

where Ŝq is available becausėq and ̂̇qr are available.
Adding and subtractingJRinvẋr to (17) we obtain

Ŝq = JRinvSvs − ∆JRinvẋr

= Sq − ∆JRinvẋr (18)

where∆JRinv = ̂JRinv − JRinv.

V. OPEN LOOP ERROR EQUATION

Using (16), the uncertain parametrizationYr θ̂b becomes

H(q) ̂̈qr + C(q, q̇) ̂̇qr + g(q) = Yrθb (19)

wherê̈qr = f(ẍr), with

ẍr = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2sign(Ssδ) (20)

which introduces discontinuous terms. To avoid introducing
high frequency discontinuous signals, add and subtract
tanh(vsSsδ), vs > 0, to q̈r, in order to separate continuous
and discontinuous signals as follows

̂̈qr = ̂̈qrcont + γszs (21)

with zs = tanh (vsSsδ) − sign (Ssδ). Thus Ycont =

Yr

(
q, q̇, ̂̇qr, ̂̈qrcont

)
is continuous since

(
̂̇qr, ̂̈qrcont

)
∈ C1,

where
̂̈qrcont = ̂JRinvẍrcont + ˙̂JRinvẋr

with

ẍrcont = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2 tanh(vsSsδ)
(22)

Therefore (19) becomes

H(q) ̂̈qr + C(q, q̇) ̂̇qr + g(q) = Ycontθb +Hγs2zs (23)

Adding and subtracting (23) to (1), we finally obtain the
open loop error in function of(q, q̇, ˆ̇qr, ˆ̈qrcont) as follows:

H(q)̂̇Sq = τ − C(q, q̇)Ŝq − Ycontθb −H(q)γs2zs (24)

Now we are ready to present the main result.

VI. CONTROL DESIGN

Theorem 1. Assume that initial conditions and desired
trajectories belong toΩ, and consider the robot dynamics
(1) in closed loop with the following visual adaptive second
order visual servoing control law

τ = −KdŜq + Ycontθ̂b (25)
˙̂
θb = −ΓY T

contŜq (26)

whereΓ ∈ <p×p
+ andKd ∈ <n×n

+ . If Kd is large enough
and error of initial conditions are small enough, and if

γs2 ≥

∥∥∥∥
d

dt

{
Rα (θ)J (q)

[
Ŝq + (∆JRinv) ẋr

]}∥∥∥∥
then exponential convergence of visual and force tracking
errors is guaranteed.

Proof. The closed loop dynamics between (25)∼(26) and
(24) yields

H (q) ̂̇Sq = −{Kd + C(q, q̇)} Ŝq − Ycont∆θb −H(q)γs2zs

(27)

∆θ̇b = ΓY T
contŜq (28)

with ∆θb = θb − θ̂b. The proof is organized in two parts.

Part I. Boundedness of Closed Loop Trajectories.
Consider the time derivative of the followingLyapunov
candidate function

V =
1

2

[
ŜT

q H (q) Ŝq + ∆θT
b Γ−1∆θb

]
(29)

along the solutions of (27)-(28) as

V̇ ≤ −ŜT
q KdŜq + ‖Ŝq‖ψ (30)

where Property 1 has been used, and|γs2| |H(q)| |zs| ≤
ψ, for ψ > 0 is a constant. Now ifKd is large enough
and the initial errors are small enough, we conclude the
seminegative definiteness of (30) outside of hyperballε0 ={
Ŝq|V̇ ≥ 0

}
centered at the origin, such that the following

properties of the state of closed loop system arise

Ŝq ∈ L∞ → ‖Svs‖ ∈ L∞ (31)

Then,
(
Ssδ,

∫
sign (Ssδ)

)
∈ L∞, and since desired trajec-

tories areC2 and feedback gains are bounded, we have
that

(
̂̇qr, ̂̈qr

)
∈ L∞. The right hand side of (24) shows

that ε1 > 0 exists such that
∥∥∥̂̇Sq

∥∥∥ ≤ ε1

This result shows global stability of̂Sq and ̂̇Sq. Now we
prove that the sliding modes arises. Rewriting (18)

Ŝq = JRinvSvs − ∆JRinvẋr (32)

Since Ŝq ∈ L2, and JRinv is bounded, thenJRinvSvs is

bounded. Now, taking into account that̂Ṡq is bounded,
thend

dtJRinvSvs is bounded. All this chains of conclusions
proves that there exists a constantε2 > 0 such that

∣∣∣Ṡvs

∣∣∣ < ε2



Now, we have to prove that for a proper selection of
feedback gainsγs1, γs2, trajectories of visual position
converges to zero. This is possible if we can prove that
sliding modes are established in the visual position space.

Part II: Second Order Sliding Mode. If we multiply
(18) byRα (θ)J (q)6, we have

Rα (θ)J (q) Ŝq = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)−

Rα (θ)J (q) {∆JRinvẋr} (33)

Taking the time derivative of (33), and multiplying it by
ST

sδ produces

ST
sδṠsδ = −γs2S

T
sδsign (Ssδ) − γs1S

T
sδSsδ+

ST
sδ

d

dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinvẋr

)]

≤ −µs |Ssδ| − γs1 ‖Ssδ‖
2 (34)

where µs = γs2 − ε4, and ε4 =
d
dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinvẋr

)]
, and γs1 > 0.

Thus, we obtain the sliding condition ifγs2 > ε4, such
thatµs > 0 of (34) guarantees the sliding mode atSsδ = 0
at ts = |Ssδ(t0)|

µs
. Notice that for any initial condition

Ssδ (t0) = 0, then ts = 0, which implies that the sliding
mode atSsδ (t) = 0 is guaranteed for all time [13]. This
implies the global exponential convergence of image-based
tracking errors with smooth control effort

Ssδ = 0∀t→ Ss = Ssd → ∆ẋ = −α∆x+ Ss (t0) e
−κst

Remark 2. How to tune feedback gain:γs2. Since
γs2 depends on the norm of the derivative of the state it is
difficult to know apriori its value to induce a sliding mode.
Supposeγs2 is set to zero, in which case our controller
renders asymptotic stability. Constantγs2 can be increased
gradually until sliding modes arise. Note that this is not
a high gain result since largerγs2 do not mean a larger
domain of stability. Nevertheless,γs2 is small because the
outer adaptive control loop compensates for disturbances.

Remark 3. Well-posed Jacobian:Apparently there is
problem with J(q(t))−1. However, we have proved that
J(q(t)) is not singular for all time, becauseq(t) → qd(t)
exponentially, without overshoot, with desired trajectories
belonging to robot workspaceΩ, thusJ(q(t)) → J(qd(t))
within Ω andJ(q(t))−1 is well-posed∀t.

VII. D YNAMIC FRICTION COMPENSATION

The following LuGre [8] dynamic friction model is
considered

F (q̇, ż, z) = σ0z + σ1ż + σ2q̇
ż = −σ0h(q̇)z + q̇

h(q̇) = |q̇|

α0+α1exp−(q̇/q̇s)2

(35)

where matrix parametersσ1, σ2, σ3 are diagonal definite
matricesn×n, the statez ∈ <n stands for the position of
the bristles,α0, α1 > 0, and q̇s > 0. This model exhibits

6Remember the equality:JRinv = J−1 (q) R−1
α (θ).

the following complex dynamic friction effects (see [8] for
more details on this model).

• Backslash.
• Viscous friction.
• Stiction and static friction.
• Stribeck effect.
• Elastic and plastic deformation.
• Pre-sliding regime.

These effects involve a very complex dynamics around
the trivial equilibrium, and for bidirectional motion, andfor
very small displacements, the forces that comes out from
this model makes impossible to reach the origin due to the
limit cycles induced and the potentially unstable behavior.
Substituting (35) into (1) yields

H(q)q̈+C(q, q̇)q̇+σ12q̇+g(q)+σ0z−σ01h(q̇)z = τ (36)

whereσ01 = σ0σ1 and σ12 = σ1 + σ2. Substituting the
uncalibrated nominal reference (16) in (36), just like (19),
lies the next equation

H(q)̂̈q+C(q, q̇)̂̇q+σ12
̂̇q+g(q)+σ0z−σ01ĥ(q̇)z = τ (37)

Similar to [9], only the part of the equation (37) that
is linear in parameters (LP) is rewritten in terms of the
uncalibrated nominal reference( ̂̇qr, ̂̈qr)T ∈ <2n as follows

H(q)ˆ̈qr +C(q, q̇)ˆ̇qr +σ12
ˆ̇qr + g(q) = YrΘ̂b +σ12

ˆ̇qr (38)

Notice thatYrθb 6= YrΘb. To be able to cast the problem of
non-LP of equation (35) as a disturbance rejection problem,
[9] proposes a discontinuous virtual regressor, which in
turn yields chattering, with harmful consequences to real
physical systems. To avoid chattering the following virtual
continuousregressor is introduced

σ01α01

α0
|q̇|tanh(ξf Ŝq)+σ0α01tanh(ξf Ŝq) = YfΘf , (39)

whereα01 = α0+α1, tanh(q) is the continuous hyperbolic
tangent function, andξf > 0. If we add and subtract (38)
and (39) to (36), the following parametrization arises

H(q)̂̇Sq +C(q, q̇)Ŝq + σ12Ŝq = τ −F − Y Θ̂−H(q)γszs

(40)
with

F = σ0

{
z + α01tanh(ξf Ŝq)

+ α0
−1σ1α01|q̇|tanh(ξf Ŝq) (41)

− σ1|q̇|z(α0 + α1exp
−(q̇/q̇s)2)

−1}

where Y = [Yr, Yf ], and Θ̂ = [Θ̂T
b ,Θ

T
f ]T . Finally,

solving (40) forH(q)̂̇Sq, yields the following open-loop
visual error dynamics subject to dynamic friction and robot
parametric uncertainties

H(q)̂̇Sq = −C(q, q̇)Ŝq −σ12Ŝq +τ−F−Y Θ̂−H(q)γszs

(42)



Finally, consider the following visual adaptive force-
position control law

τ = −KdŜq + Y Θ̂ (43)
̂̇Θ = −ΓY T Ŝq (44)

whereΓ ∈ <p×p
+ , Kd ∈ <n×n

+ . We now have the following
result.

Theorem 2 Assume that initial conditions and desired
trajectories belong toΩ, and consider the controller (43)-
(44). If Kd is large enough and a error of initial conditions
are small enough, and if

γs2 ≥

∥∥∥∥
d

dt

{
Rα (θ)J (q)

[
Ŝq + ∆JRinvẋr

]}∥∥∥∥

then exponential convergence of visual tracking errors is
guaranteed.

Proof: With the very same Lyapunov function ofThe-
orem 1, we obtain the following time derivative, along
trajectories of the closed loop of (43)-(44) and (42),

V̇ ≤ −ŜT
q KdŜq + ‖Ŝq‖ψ − V̇f (45)

where

V̇f = σ0Ŝ
T
q [z + σ01tanh(ξf Ŝq)] − σ01Ŝq[−zh(ẋ)

+ α0
−1σ01|ẋ|tanh(ξf Ŝq)]. (46)

In [11], [12] it was proved thatV̇f > 0, and
∣∣∣V̇f

∣∣∣ < ε4,

ε4 > 0. Then,V̇f is positive definite outside the hyperball

ρ0 = ρ0(Ŝq) =
{
Ŝq|Vf ≤ 0

}
with ‖ρ0‖ ≤ ρ, for ρ >

0. Thus, if we chooseξf large enough, preventing that
the mechatronic system does not introduce high frequency
from the termtanh(ξf Ŝq), then (45) becomes

V̇ ≤ −ŜT
q Kf Ŝq + ‖Ŝq‖ψ + ρ. (47)

where |γs| |H(q)| |zs| ≤ ψ, for ψ > 0 is a constant.
Then, if Kd is large enough and the initial errors are
small enough, we conclude the seminegative definiteness
of (30) outside of hyperballε0 =

{
Ŝq|V̇ ≥ 0

}
centered at

the origin. Afterwards, we proceed exactly as in proof of
theorem 1 (part I and part II), and it is therefore omitted.
QED.

Remark 4. Important properties of this control scheme
have to be highlighted: Is an Image-based dynamical con-
trol scheme that presents, for first time in literature, com-
pensation of dynamic friction, based on visual information
feedback.

VIII. E XPERIMENTAL STATION

Robot parameters and constant gains used in the ex-
periments are shown in Table I, and an image of the
experimental setup is depicted in Fig. 2.

TABLE I

DIMENSION PARAMETERS(Par) OF THE ROBOT ARM, AND FEEDBACK

GAINS.

Par Value
m1 6.72 Kg
m2 2.03 Kg
l1 0.4 m
l2 0.3 m

Gain Value
Kd diag(20,1.65)
γ1 diag(0.1)
α diag(5)
Γ diag(0.001)

Fig. 2. The two-link planar arm.

A. The Hardware

Direct-drive Yaskawa AC servomotors SGM-08A314
and SGM-04U3B4L with 2048 pulse encoders are directly
coupled to the links of the 2-dof arm. Digital drive electron-
ics from the Yaskawa servopacks (SGD-08AS and SGDA-
04AS) are integrated.as shown in Fig. 2. The fixed camera
used is the SONY DFW-V500 CCD.

B. The firmware and software

The control system is running on a 2.2 GHz PC over
Linux-RTAI operating system. The control is composed
by two real time parallel processes. The first process sets
communication with the SONY DFW-V500 canera via
IEEE1394 protocol and controls the acquisition of the
robot end effector position in image space. This process
runs with sampling rate of 30 Hz. The second process,
computes the torque output for the servopacks and runs
with a sampling rate of 1 KHz. Communication between
process is done by shared memory allocation. Low level
programming provides the interface to a Sensoray 626 I/O
card which contains internal quadrature encoder interface,
14 bit resolution analog outputs and digital I/O. Velocity
is computed using a dirty Euler numerical differentiation
formula filtered with a lowpass second order Butterworth
filter, with a cutoff frecuency of 20Hz.

IX. EXPERIMENTAL RESULTS

The robot is initialized with a high gain PD since
the parametric uncertainty is 100%. The inertial frame
of the whole system is at the base of the robot. The



end effector is requested to draw a circle in the cartesian
space (transformed into image space) centered in (0.55,-
0.0) degrees, with a radius of 0.1 m and with anω = 0.628
rad/s (the circle is done in 10 seconds). The experiment
lasts 30 seconds.

A. Results

Fig. 3 depicts the robot performance in image space
and visual tracking errors. Notice the exponentially fast
convergence of visual tracking errors to the minimum
error that can be achieved: 1 pixel. Fig. 4 shows the real
and desired tracking in joint coordinates. Finally, Fig. 5
shows input torques. It can be observed that there are not
saturation problems and the smooth behavior.
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X. CONCLUSIONS

A fast trajectory tracking and smoooth controller is ex-
perimentally validated. The adaptive controller is designed
over a second order sliding mode error coordinate system
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Fig. 5. Applied torques.

to attain exponential convergence, and enhanced parameter
stability. Exponential convergence arises for image-based
position even when the robot parameters, camera para-
meters, and analytical Jacobian are considered unknown.
Additionally, it is proposed a compensator of uncertain
dynamic friction, which is usually neglected in visual
servoing, but it is of particularly concern in visual motion
tasks, because the motion regime is slow with velocity
reversals. Experimental results validate the predicted theo-
retical performance.
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