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Abstract— The theoretical framework and experimental vali-
dation of a new image-based position-force control is presented
in this paper. This scheme produces simultaneous convergence
of the constrained visual position and the contact force between
the end-effector and the constraint surface. Camera, robot and
jacobian parameters are considered uncertain. This approach is
based on a new formulation of the orthogonalization principle
used in force control, coined here visual orthogonalization
principle. This allows, under the framework of passivity, to yield
a synergetic scheme that fuses accordingly camera, encoder and
force sensor signals. Furthermore, notice that visual servoing
contact tasks are characterized by slow motion, and typically
with velocity reversals along the constrained surface due actual
technological limitations of the camera, thus, important prob-
lems of friction at the joint and contact point arise. Therefore,
in this paper, compensation of dynamic joint friction and
viscous contact friction are also studied. In order to prove the
effectiveness of the theoretical scheme, a Linux-RTAI real-time
OS experimental system is used to obtain a direct-drive robot
manipulator equipped with six axis JR3 force sensor and a
CCD commercial digital fixed camera. Results show an excellent
performance.

I. INTRODUCTION

Robot tasks that involve joint encoders, force sensors,
CCD cameras, proximity sensors, haptic interfaces, and
tactual devices pose a challenging problem in robotics due
to the the multisensor nature of the problem and the non-
linear dynamics of the robot. However, it is well known
that multisensor-based robot control approaches may offer
a solution to very important and relevant, but complex,
problems in robotics. In order to achieve sensor fusion-
based controller, a careful analysis of the dynamics, sensors
behavior, and tasks are required. Furthermore, since physical
parameters are in practice uncertain, robustness to parametric
uncertainties are an integral part of the control problem. One
example of such tasks, is the force-position control of a
robot using visual information, where force, joint encoders
and visual sensor have to be fused. In this paper, we focus
in the paradigm: ”design a controller that ensures tracking
of image-based trajectories of constrained robots subject to
uncertainties on camera, robot, contact and joint dynamic
friction parameters”. This task is very relevant in many
robotic applications. Therefore, for any practical impact,
robot, camera and friction uncertainties must be considered.

This problem has been elusive because it is not evident
how to deal with vision and force signals, despite lot of
the availability of schemes of vision or force. In this paper,
this problem is studied offering a formal solution, and its
experimental evaluation.

II. MOTIVATION AND CONTRIBUTION

A. Motivation

Image-based visual servoing schemes of robot manipu-
lators for free motion have been proposed recently, which
guarantee tracking, including the dynamic model in the
stability analysis. The task under study is that the robot
end effector tracks a visual trajectory along the surface
of an object, and at the same time, control the applied
force exerted in the surface by the end-effector, taking into
account that when two rigid surfaces are in contact, friction
is presented between them, and must be considered for any
practical application, see Fig. 1. However, for constrained
robot, there remains important open problems, essentially
because, from the theoretical viewpoint, it involves redundant
sensors, thus it is not evident how to handle sensor fusion in a
complex nonlinear dynamical system. From the experimental
viewpoint, besides that exhibits a multirate system due to the
slow latency of the camera, in comparison to the latency
of the encoder and force sensors, also, presents dynamic
friction at the joints and at least viscous contact friction.
Therefore, a theoretical constrained visual servoing scheme
must be accompanied with its experimental validation.1 In
this paper, a new scheme and its real time performance, are
proposed.

B. Friction

Friction is quite important to compensate because it is
a dominant dynamical force in slow and velocity reversal
regimes which are typical on visual servoing controls and
contact tasks. Nevertheless dynamic joint and contact friction

1Two points arise here: Notice that the static state of the camera is not a
generalized coordinate of the dynamical system, thus its slow latency is not
an issue; however, the generalized coordinates are required to be sampled
very fast, in comparison to its natural frequency. In this way, the system
can be treated in the time domain, even though its implementation is carried
out in the digital/discrete domain.
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Fig. 1. Robot Force-Vision Experimental System.

is usually neglected in motion control, and unfortunately, it
is not the exception in visual servoing literature. Therefore,
we consider the LuGre model2, which reproduces pre-sliding
regime at very small displacements and hard nonlinearities
for slow motion and velocity reversals. The problem com-
plicates because, although dynamic joint friction depends
on joint coordinates, in image-based control, contact friction
depends on image coordinates, therefore, interestingly, it is
required a visual friction compensator.

C. Contribution

A sliding mode adaptive controller driven by constrained
image errors is proposed to solve by Ýrst time the prob-
lem possed above. The underlying reason that allows to
obtain this result is that a new image-based error mani-
fold is introduced to produce a visual-based orthogonalized
principle. Thus, similar results to the case of nonvisual-
based orthogonalized principle are obtained. The closed-loop
system guarantees exponential tracking of position and force
trajectories subject to parametric uncertainties. This scheme
delivers a smooth controller and presents formal stability
proofs. Moreover, its experimental validation is presented

We further extend our proposal to include visual compen-
sation of dynamic friction. Surprisingly, the control structure
is quite simple, in contrast, the proof is rather involved,
though straightforward. The simplicity of the controller en-
hances its practical applications since the desired task is
designed in image space, i.e., the user deÝnes the desired
task right from the image that sees3, see Fig. 1, wherein the
Ýxed camera supplies a perspective of the desired task.

III. BACKGROUND

Hybrid vision/force control approaches have been reported
[1]∼[4], and none of them shows robustness to uncertainties,
on robot parameters and camera parameters. In a different
path, the authors Xiao et al. [5], present an interesting scheme

2This dynamic friction is responsible for limit cycles.
3Provided that the Ýxed position of the camera is set to covers the

reachable space of the robot, in this way a task free of singularities is
ensured.

of hybrid vision force control in an uncalibrated environment,
but their approach does not deal with uncertainties of robot
parameters, and exhibits a very complex control law.

With respect to force control, Arimoto solved by Ýrst time
the simultaneous control of position and force using the
full nonlinear dynamics subject to parametric uncertainties
without coordinate partitioning. This was possible through
judicious design of extended error, that is based on the
orthogonalization principle [6]. Afterwards, several schemes
have been proposed based on the orthogonalization principle,
however these schemes have not been extended or combined
beyond constrained robots.

IV. NONLINEAR ROBOT DYNAMICS

A. Constrained robot dynamics

The constrained robot dynamics arises when its end effec-
tor is in contact to inÝnitely rigid surface. Considering the
generalized joint position q ∈ �2 and velocity coordinates
q̇ ∈ �2, this 2-DOF constrained robot system can be modeled
as follows: [6]

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT
ϕ+(q)λ − F (q̇, ż, z)

− JT (q)BtJ(q)q̇ (1)

ϕ(q) = 0 (2)

where H(q) ∈ �2×2 stands for the robot inertia matrix;
C(q, q̇)q̇ ∈ �2 stands for the vector of centripetal and
Coriolis torques; g(q) ∈ �2 is the vector of gravitational
torques, F (q̇, ż, z) is the dynamic friction4, Bt ∈ R2×2

+ , is
the viscous friction matrix, possibly not a diagonal matrix,
JT (q)BtJ(q)q̇ represents the tangential viscous friction at
the contact point, Jϕ+(q) = Jϕ

JϕJT
ϕ

is the constrained nor-

malized jacobian of the the kinematic constraint ϕ(q) = 0,
or rigid surface with continuous gradient, λ is the constrained
lagrangian, or contact force and τ ∈ �2 stands for the vector
of input torque control.

Adding and subtracting to (1) the linear parametrization
H(q)q̈r + C(q, q̇)q̇r + g(q) + JT (q)BtJ(q)q̇ = yrθb, where
the known regressor yr ∈ �2×p and the unknown constant
vector θb ∈ �p, produces the open loop error equation,

H(q)Ṡq = −C(q, q̇)Sq − JT (q)BtJ(q)Sq+

τ + JT
ϕ (q)λ − yrθb (3)

with joint error surface Sq is deÝned as:

Sq = q̇ − q̇r (4)

where q̇r stands for the nominal reference of joint velocities,
not yet deÝned.

V. CAMERA MODEL

The robot direct kinematics is deÝned as:

xb = f(q) (5)

4For a clear exposition, Ýrstly, F (q̇, ż, z) will be considered zero,
however in Section IX it will be treated.
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where xb ∈ �2 is the position of robot end effector. Then, the
differential kinematics, which relates velocities in cartesian
space ẋb ∈ �2 to joint space velocities q̇ ∈ �2, is deÝned
as follows:

ẋb = J(q)q̇ (6)

Now, the visual position xs ∈ �2 of robot end effector is
[7]:

xs = αhR (θ)xb + βs (7)

where αh = αsh, is the scale factor5, and R (θ) ∈ SO(2),
βs ∈ �2 that depends on intrinsic and extrinsic parameters
of camera6. The differential camera model is then

ẋs = αhR (θ) ẋb (8)

where ẋs ∈ �2 determines the visual robot end effector
velocity. Using equation (5)∼(7), equation (8) becomes

ẋs = αhR (θ)J(q)q̇ (9)

Thus, the inverse differential kinematics for robot manipula-
tor in terms of visual velocities7 becomes

q̇ = J (q)−1
R (θ)−1

α−1
h ẋs ⇒ q̇ = JRinvẋs (10)

This relation is useful to design the nominal reference of
joint velocities q̇r in the following section.

VI. VISUAL ORTHOGONALIZATION PRINCIPLE

Since ϕ(q) = 0∀t, then its time derivative yields
d
dtϕ (q) = ∂ϕ(q)

∂q
dq
dt ≡ Jϕ (q) q̇ = 0. This means that Jϕ (q) is

orthogonal to q̇. That is, q̇ belongs to the orthogonal projec-
tion matrix Q = I −JT

ϕ+Jϕ of Jϕ (q) [6]. As we can see, Q
spans the tangent plane at the contact point, therefore, Jϕ and
Q are orthogonal complements. In other words, if the robot
end effector is in contact with the constraint surface, then
Qq̇ = q̇ → QQq̇ = Qq̇ ≡ q̇ ⇒ QJT

ϕ = 0. These properties
are fundamental to set the visual orthogonalization principle
as follows. Firstly consider q̇r in terms of orthogonal nominal
references of velocity q̇s and force q̇f , as follows

q̇r = q̇s + q̇f (11)

Notice that, engagingly, an image based servo visual force
control without computing inverse kinematics is designed8,
then nominal reference q̇r must be designed in terms of
nominal visual reference and nominal force reference as
follows

q̇r = QJRinvẋr + βJT
ϕ q̇rf (12)

Using (10) consider now the next nominal visual reference
of velocities

ẋr = ẋsd − α∆xs + Ssd − γs1

∫ t

t0

Ssδ − γs2

∫ t

t0

sign (Ssδ)

(13)

5Without loss of generality, α can be considered as a scalar matrix 2×2.
6Focal distance, depth of Ýeld, translation of camera center to image

center, distance between optical axe to the robot base.
7With JRinv ∈ �n×n whose entries are functions of robot and camera

parameters.
8to eliminate the inverse kinematics calculus and to reduce the control

law computational cost. This is also one byproduct of this scheme.

where ẋsd stands for desired visual velocity trajectory, and
∆xs = xs − xsd is the visual position error. for Ssδ =
Ss − Ssd ≡ (∆ẋs + α∆xs) − Ss (t0) e−κst, where ∆ẋs =
ẋs−ẋsd deÝnes visual velocity error, κs > 0 and γsi = γT

si
∈

�n×n
+ , i = 1, 2.
Now, let consider the nominal force reference as

q̇rf = ∆F −SdF +γF1

∫ t

t0

SFδ +γF2

∫ t

t0

sign (SFδ) (14)

for SFδ = SF − SFd ≡ ∆F − SF (t0) e−κF t, where ∆F =∫ t

t0
∆λ (ζ) dζ, ∆λ = λ−λd, λd is the desired contact force,

κF > 0, and γFi = γFi ∈ �n×n
+ , i = 1, 2.

Using equations (12), (13), (14) and (10) into (4), the
visual orthogonalized joint error surface is:

Sq = q̇ − q̇r ≡ Qq̇ − q̇r

= QJRinvẋs − QJRinvẋr − βJT
ϕ q̇rf

= QJRinvSvs − βJT
ϕ SvF (15)

with

Svs = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)

SvF = SFδ + γF1

∫ t

t0

SFδ + γF2

∫ t

t0

sign (SFδ)

where Svs stands for the visual manifold and SvF stands for
the force manifold.

Notice that Sq is composed of two orthogonal comple-
ments QJRinvSvs depending on image coordinate error, and
βJT

ϕ SvF depending of integral of contact force errors. Thus,
tracking errors ∆xs and ∆F can be controlled indepen-
dently, since they are mapped to orthogonal complements.

Remark 1. The above deÝnition assumes exact knowledge
of JRinv . However, in practice, it stands as a very restricted
assumption. Therefore, we need to design a uncertain man-
ifold Sq taking into consideration the uncertainty of JRinv .
To this end, consider

̂̇qr = QĴRinvẋr + βJT
ϕ q̇rf (16)

with ĴRinv an estimated of JRinv , such that rank Ĵ−1 (q)
and ̂R−1

α (θ) are full rank ∀q ∈ Ω, where the ro-
bot workspace free of singularities is deÝned by Ω =
{q|rank (J (q)) = n, ∀q ∈ �n}, and ∀θ ∈ �. Thus, substi-
tuting (16) into (4), we have the uncalibrated joint error
surface

Ŝq = q̇ − ̂̇qr

= QJRinvẋs − QĴRinvẋr − βJT
ϕ q̇rf (17)

where Ŝq is available because q̇ and ̂̇qr are available. Adding
and subtracting QJRinvẋr to (17) we obtain:

Ŝq = QJRinvSvs − βJT
ϕ SvF − Q∆JRinvẋr

= Sq − Q∆JRinvẋr (18)

where ∆JRinv = ĴRinv − JRinv .
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VII. OPEN LOOP ERROR EQUATION

Using (16), the uncertain parametrization is: H(q) ̂̈qr +
C(q, q̇) ̂̇qr + g(q) + JT (q)BtJ(q)q̇ = yr θ̂b, where ̂̈qr =
f(ẍr, q̈fr), with

ẍr = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2sign(Ssδ) (19)

q̈rf = ∆Ḟ − ṠdF + γF1SFδ + γF2sign (SFδ) (20)

which introduces discontinuous terms. To avoid introduc-
ing high frequency discontinuous signals, add and subtract
tanh(vsSsδ) and tanh(vfSFδ), vf , vs > 0, to q̈r to separate
continuous and discontinuous signals as follows

̂̈qr = ̂̈qrcont + Qγs2zs − βJT
ϕ γF2zf (21)

with zs = tanh (vsSsδ) − sign (Ssδ) and
zf = tanh (vfSFδ) − sign (SFδ). Thus ycont =
yr

(
q, q̇, ̂̇qr, ̂̈qrcont

)
is continuous since

(̂̇qr, ̂̈qrcont

)
∈ C1,

where

̂̈qrcont = QĴRinvẍrcont + Q̇ĴRinvẋrcont + Q̂̇JRinvẋrcont

βJT
ϕ q̈rfcont + βJ̇T

ϕ q̇rfcont (22)

with

ẍrcont = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2 tanh(vsSsδ)
(23)

q̈rfcont = ∆Ḟ − ṠdF + γF1SFδ + γF2 tanh(vfSFδ) (24)

Therefore the uncertain parametrization becomes

H(q) ̂̈qr + C(q, q̇) ̂̇qr + g(q) + JT (q)BtJ(q) ̂̇qr =

ycontθ̂b + H(Qγs2zs − βJT
ϕ γF2zf ) (25)

Adding and subtracting (25) to (1), we obtain Ýnally the open
loop error in function of (q, q̇, ˆ̇qr, ˆ̈qrcont) as follows:

H(q)̂̇Sq = τ − C(q, q̇)Ŝq + JT
ϕ+(q)λ−

ycontθ̂b − JT (q)BtJ(q)Ŝq+

H(Qγs2zs − βJT
ϕ γF2zf ) (26)

Now we are ready to present the main result.

VIII. CONTROL DESIGN

Theorem 1 Assume that initial conditions and desired
trajectories belong to Ω, and consider the robot dynamics
(1) in closed loop with the following visual adaptive force-
position control law

τ = −KdŜq + ycontθ̂b + JT
ϕ+ (q) [−λd + η∆F ] +

βJT
ϕ (q) ∗

[
tanh (vF SFδ) + η

∫ t

to

sgn (SFδ)
]

(27)

˙̂
θb = −ΓyT

contŜq (28)

where γs1, γF1 > 0, Γ ∈ �p×p+
+ , Kd ∈

�2×2
+ , β, η > 0. If Kd is large enough and er-

ror of initial conditions are small enough, and if
γs2 ≥

∥∥∥ d
dt

{
Rα (θ)J (q)

[
Ŝq + (∆JRinv) ẋr

]}∥∥∥ , γF2 ≥

∥∥∥ d
dt

[(
JϕJT

ϕ (q)
)−1

JϕŜq

]∥∥∥, then exponential convergence
of visual and force tracking errors is guaranteed.

Proof: The proof can be found in the appendix.
Remark 2. Apparently there is problem with J(q(t))−1.

However, we have proved that J(q(t)) is not singular for all
time, because q(t) → qd(t) exponentially, without overshoot,
with desired trajectories belonging to robot workspace Ω,
thus J(q(t)) → J(qd(t)) within Ω and J(q(t))−1 is well-
posed ∀t.

IX. DYNAMIC FRICTION COMPENSATION

Now let us consider the dynamic friction into the model,
which represent a very realistic behavior when the robot is
moving along a rigid surface, in particular, driven by visual
servoing. In this case, the following LuGre [8] dynamic
friction model is very suitable to deÝne the joint friction

F (q̇, ż, z) = σ0z + σ1ż + σ2q̇
ż = −σ0h(q̇)z + q̇

h(q̇) = |q̇|
α0+α1exp−(q̇/q̇s)2

(29)

where matrix parameters σ1, σ2, σ3 ∈ �n×n are diagonal
deÝnite matrices, the state z ∈ R2 stands for the position
of the bristles, α0, α1 > 0, and q̇s > 0. This model involve
a very complex dynamics around the trivial equilibrium, for
bidirectional motion, and for very small displacements, the
forces that comes out from this model makes impossible
to reach the origin due to limit cycles induced and the
potentially unstable behavior. Substituting (29) into (1) yields

H(q)q̈ + C(q, q̇)q̇ + J(q)T BtJ(q)q̇ + σ12q̇+

g(q) + σ0z − σ01h(q̇)z = τ + JT
ϕ (q)λ (30)

where σ01 = σ0σ1 and σ12 = σ1 + σ2. Now, we need
to organize the parametrization in terms of two regres-
sors: H(q)ˆ̈qcont + (C(q, q̇) + Ĵ(q)T BtĴ(q) + σ12)ˆ̇qr +
g(q) = YcontΘ̂b and the virtual continuous regressor
σ01α01

α0
|q̇|tanh(ξfSq) + σ0α01tanh(ξfSq) = YfΘf , where

α01 = α0+α1, tanh(q) is the continuous hyperbolic tangent
function, and ξf > 0. Now, If we add and subtract the
above regressors to (30) yields the following open-loop error
dynamics with dynamic friction

H(q) ˆ̇Sq = −(C(q, q̇) + J(q)T BtJ(q)Ŝq + σ12)Ŝq+

τ −F − Y Θ̂ + JT
ϕ (q)λ − σ0z + σ01h(q̇)z

+ H(Qγs2zs − βJT
ϕ γF2zf ) (31)

where F = σ0z +σ0 +σ0α0
−1σ1|q̇| −σ0σ1|q̇|zαe, σx =

α01tanh(λfSq), αe = (α0 + α1exp−(q̇/q̇b)
2
)
−1

, Y =
[Ycont, Yf ], and Θ̂ = [Θ̂T

b ,ΘT
f ]T . Finally, consider the

following control law

τ = −KdŜq + Y Θ̂ + JT
ϕ (q) [−λd + η∆F ]

+ βJT
ϕ (q)

[
tanh (µSqF ) + η

∫
sgn (sFδ)

]
(32)

˙̂Θ = −ΓY T Ŝq (33)
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where Γ ∈ Rp×p
+ ,Kd ∈ Rn×n

+ , β, η > 0. We now have the
following result.

Theorem 2 Assume that initial conditions and de-
sired trajectories belong to Ω, and consider the con-
troller (32)-(33). If Kd is large enough and a er-
ror of initial conditions are small enough, and if
γs2 ≥

∥∥∥ d
dt

{
Rα (θ)J (q)

[
Ŝq + ∆JRinvẋr

]}∥∥∥, γF2 ≥∥∥∥ d
dt

[(−βJϕJT
ϕ (q)

)−1
JϕŜq

]∥∥∥, then exponential conver-
gence of visual and force tracking errors is guaranteed.

Proof: The proof can be found in the appendix.
Remark 3. Important properties of this control scheme

have to be highlighted: Is an Image-based dynamical control
scheme for constrained robots that fuses visual, encoder
and force signals. This control law presents, for first time
in literature, compensation of dynamic friction by means of
visual feedback.

X. EXPERIMENTAL STATION

Robot parameters and constant gains used in the exper-
iments are shown in Table I, and an image of the ex-
perimental setup is depicted in Fig. 2, meanwhile, camera
parameters are: αs = 79729.0 pixels/m, h = −0.006 m,
βs = Osi + αhR (θ)Ovb, Ovb = [0.257, 0.017] m,Osi =
[347, 266] pixels, θ = π

2 rad. The robot and camera para-
metric uncertainty is 10% for each parameter, i.e., l1, l2, αs,
etc. The robot is initialized with a high gain PD since the
vector Θ̂ (t0) equals zero. Thus, friction parameters are not
required to be known, because these ones are included in Θ̂
(see eq.(31), and the subsequent deÝnition of Θ̂).

TABLE I

PARAMETERS (Par) OF THE ROBOT, AND FEEDBACK GAINS.

Par Value
m1 6.72 Kg
m2 2.03 Kg
l1 0.4 m
l2 0.3 m

Gain Value Gain Value
Kd diag(20,1.65) β 0.1

γs1,2 diag(0.1) γF1,2 0.01
α diag(5.0) η 0.3
Γ diag(0.01) κ1, κ2 20

X

Y

Z

2DOF Robot

Restriction Surface

Force Sensor

Fig. 2. Experimental setup.
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Fig. 3. Fast closed loop of dynamic state vs slow static visual transforma-
tion.

A. The Hardware, Software and Firmware

Fig. 3 shows the experimental system conÝguration. Block
A is composed by a 2.2 GHz personal computer, running over
Linux-RTAI OS. This, implements two real-time parallel
processes. The Ýrst one, sets communication, at a sample
rate of 30Hz, with the Block C, SONY VFW-V500 camera
via IEEE1394 protocol and controls the image processing
in order to acquire the robot end-effector position in image
space. The second process, Block D, runs with a sampling
rate of 1KHz, reads the force sensor and encoders signals
computing the torque output for Block B, where the direct-
drive Yaskawa AC servomotors SGM-08A314 and SGM-
04U3B4L with 2048 pulse encoders are directly coupled
to the links of the 2-dof arm. The Block B is also in-
tegrated by two digital drives Yaskawa servopacks (SGD-
08AS and SGDA-04AS), and a six-axis force-moment sensor
67M25A-I40-200N12 by JR3 Inc., provided with a DSP
Based Interface System for PCI bus. The force sensor is
mounted to the end effector of the robot with a rigid
aluminum probe with a bearing in its tip, as is shown in
Fig.2. Communication between processes is done by real-
time shared memory allocation. Low level programming in
the Block A provides the interface to a Sensoray 626 I/O
card which contains internal quadrature encoder interface,
with 14 bit analog resolution outputs and digital I/O. The
user designs the desired image based trajectory, directly form
the image displayed in the Block A, and sets the desired force
proÝle. Velocity is computed using a dirty Euler numerical
differentiation formula Ýltered with a lowpass second order
Butterworth Ýlter, with a cutoff frequency of 20Hz.

B. The Task

The robot task is to move its tool-tip along a speciÝed
image-based trajectory over the steel surface while at the
same time exerts a speciÝed proÝle of force normal to the
surface. The robot is initialized with a high gain PD. The
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inertial frame of the whole system is at the base of the robot
and the contact surface is at y = 136 pixel rendering a XZ
plane.

The experiment is performed as follows:

1) From t = 0 s to t = 3 s. The end effector is requested
to move, in free motion, i.e, JT

ϕ = 0, Q = I9, from its
initial condition until it makes contact with the surface.
The end effector lasts 2 more seconds static.

2) From time t = 5 s to t = 8 s. Once the tool-tip is
in contact with the surface, the control force term is
switched on and the tool-tip exerts a desired proÝle of
force normal to the surface (0 to 5 N) while moving
along X axis from 230 pixels to 299 pixels

3) From t = 8 s to t = 12 s. The exerted force is
incremented from 5 to 7.5 Newtons, while moving
along X axis from 299 pixels to 230 pixels, as can
be seen in Fig. 4 and Fig. 5 & 6.

C. Results

Fig. 9 shows the input torques. It can be observed that
there are not saturation problems and the smooth behavior.
Fig. 8 depicts the tracking of real toward the desired trajec-
tories in the cartesian plane. The seemingly high frequency
is due this tasks requires very precise control, and due to the
sensor resolution is limited to 1pixel.
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Fig. 4. Force Tracking
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Fig. 5. End effector x position in image space (pixels).

9It is rather easy to prove that this scheme is stable for unconstrained
motion
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Fig. 6. End effector position in image space (pixels).
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XI. CONCLUSIONS

This paper introduces a novel scheme for adaptive image
based visual servoing for force control tasks in constrained
dynamical robots. The main feature is the ability to fuse
image coordinates into an orthogonal complement of
joint velocities, and contact forces. This allows to yield
exponential convergence for image-based position-velocity
and contact forces even when robot parameters, camera
parameters, contact viscous friction and analytical jacobian
are considered unknown. Additionally, a compensator of
uncertain joint dynamic friction is also presented. Notice that
the stability is preserved even when the robot end-effector
motion switches from free motion to constrained motion due
to its passivity properties, under a set of conditions [13].
Experimental results comply with the theoretical properties.
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APPENDIX

Proof of Theorem1 : The closed loop dynamics be-
tween (27)∼(28) and (26) yields

H (q) ̂̇Sq = −{Kd + C(q, q̇)} Ŝq − ycont∆θb+

JT
ϕ+ (q) [∆λ + γF tanh (µSFδ)]+

ηJT
ϕ+ (q)

[
∆F + γF

∫
sgn (SFδ)

]
(34)

∆θ̇b = ΓyT
contŜq (35)

with ∆θb = θb − θ̂b. The proof is organized in three parts.
Part I. Boundedness of Closed Loop Trajectories. Con-

sider the time derivative of the following Lyapunov candidate
function

V =
1
2

[
ŜT

q H (q) Ŝq + βST
vF SvF + ∆θT

b Γ−1∆θb

]
(36)

along the solutions of (34)-(35) as

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ (37)

where ψ is a functional depending on the state and error
manifolds, similarly to [10]. Now if Kd and β are large
enough and the initial errors are small enough, we conclude
the seminegative deÝniteness of (37) outside of hyperball
ε0 =

{
Ŝq|V̇ ≤ 0

}
centered at the origin, such as the

following properties of the state of closed loop system arise

Ŝq, SvF ∈ L∞ → ‖Svs‖, ‖SvF ‖ ∈ L∞ (38)

Then,
(
Ssδ,

∫
sign (Ssδ)

) ∈ L∞, and since desired trajecto-
ries are C2 and feedback gains are bounded, we have that( ̂̇qr, ̂̈qr

)
∈ L∞. The right hand side of (26) shows that

ε1 > 0 exists such that
∥∥∥̂̇Sq

∥∥∥ ≤ ε1. This result shows only

local stability of Ŝq and ̂̇Sq . Now we prove that the sliding
modes arises.

Rewriting (18) in terms of two orthogonal vectors, we
obtain

Ŝq = Q {JRinvSvs − ∆JRinvẋr} − βJT
ϕ {SvF } (39)

Since Ŝq ∈ L2, and JRinv and Q are bounded, then
QJRinvSvs is bounded and, due to ϕ (q) is smooth and
lies in the reachable robot space and SvF → 0, then

βJT
ϕ SvF → 0. Now, taking into account that ̂̇Sq is bounded,

then d
dtJRinvQSvs and d

dtβJT
ϕ SvF are bounded (this is pos-

sible because J̇T
ϕ is bounded and so Q̇ is). All this chains

of conclusions proves that there exists constants ε2 > 0 and
ε3 > 0 such that ∣∣∣Ṡvs

∣∣∣ < ε2,
∣∣∣ṠvF

∣∣∣ < ε3

Remark 4. Since the continuous tanh(∗) is substituted
instead of sign(∗), upper bounds ε2 and ε3 are greater.
To induce the second order sliding mode, and therefore
exponential convergence of tracking errors, it suffices to tune
γs2 and γF2 to a larger value. Now, we have to prove that
for a proper selection of feedback gains γs1, γs2 and γF1,
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γF2 then trajectories of visual position and force converges
to zero. This is possible if we can prove that sliding modes
are established in the visual position subspace Q and in
the subspace of force JT

ϕ (q). Considering that operator
QJRinv spans the vector Ŝq as the direct sum of its image
im {QJRinv (Svs)} ≡ Sim

vs and im
{
βJT

ϕ (SvF )
} ≡ Sim

vF ,
see (39), this implies that

Ŝq = Q {JRinvSvs − ∆JRinvẋr} − βJT
ϕ {SvF }

= (Sim
vs − im {∆JRinvẋr}) − Sim

vF (40)

where Sim
vs −im {∆JRinvẋr} and Sim

vF belongs to orthogonal
complements, that means

〈
Sim

vs − im {∆JRinvẋr} , Sim
vF

〉
=

0. That is, we are able to analyze the Sim
vs − im {∆JRinvẋr}

dynamics independently of Sim
vF , because Sim

vF belongs to the
kernel of Q. This is veriÝed if we multiply (40) by QT , that
is

QT Ŝq = QT Q {JRinvSvs − ∆JRinvẋr} − βQT JT
ϕ SvF

= Sim
vs − im {∆JRinvẋr} (41)

since Q is idempotent. It is important to notice that if Ax =
Ay for any square nonsingular matrix A and any couple of
vectors x, y, then x ≡ y. Thus, equation (41) means that
Ŝq = Q {JRinvSvs − ∆JRinvẋr} is valid within span of Q.
Now, if we multiply Ŝq by Jϕ+ we obtain

Jϕ+ Ŝq = Jϕ+Q {JRinvSvs − ∆JRinvẋr} − βJϕ+JT
ϕ {SvF }

= −βSvF (42)

Part II: Second Order Sliding Modes.
Part II.a: Sliding modes for the velocity subspace. Ac-

cording to QT Ŝq = Q {JRinvSvs − ∆JRinvẋr} then Ŝq ≡
JRinvSvs−∆JRinvẋr in the image subspace of Q, however
notice that Q is not full rank, then this equivalence is valid
locally, not globally. In this local neighborhood, if we multi-
ply Ŝq = Q {JRinvSvs − ∆JRinvẋr} by Rα (θ)J (q)10, we
have

Rα (θ)J (q) Ŝq = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)−
Rα (θ)J (q) {∆JRinvẋr} (43)

Taking the time derivative of (43), and multiply it by ST
sδ

produces

ST
sδṠsδ = −γs2S

T
sδsign (Ssδ) − γs1S

T
sδSsδ+

ST
sδ

d

dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinvẋr

)]
≤ −µs |Ssδ| − γs1 ‖Ssδ‖2 (44)

where µs = γs2 − ε4, and ε4 =
d
dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinvẋr

)]
. Thus, we obtain

the sliding condition if γs2 > ε4, such as µs > 0 of (44)
guarantee the sliding mode at Ssδ = 0 at ts = |Ssδ(t0)|

µs
.

However, notice that for any initial condition Ssδ (t0) = 0,

10Remember the equality: JRinv = J−1 (q) R−1
α (θ).

then ts = 0, which implies that the sliding mode at
Ssδ (t) = 0 is guaranteed for all time.

Part II.b: Sliding modes for the force subspace. Simi-
larly, if we multiply (42) by

(
JϕJT

ϕ (q)
)−1

, we obtain(
JϕJT

ϕ (q)
)−1

JϕŜq = −βJϕJT
ϕ {SvF } (45)

J#
ϕ (q) Ŝq = SFδ + γF1

∫ t

t0

SFδ + γF2

∫ t

t0

sign (SFδ)

(46)

where J#
ϕ (q) =

(−βJϕJT
ϕ (q)

)−1
Jϕ. Derivating (46) and

multiply it by ST
Fδ becomes

ST
FδṠFδ = −γF2 |SFδ| − γF1S

T
FδSFδ + ST

Fδ

d

dt

(
J#

ϕ (q) Ŝq

)
(47)

≤ −µF |SFδ| − γF1 ‖SFδ‖2 (48)

where µF = γF2 − ε5, and ε5 = d
dt

[(
JϕJT

ϕ (q)
)−1

JϕŜq

]
.

If γF2 > ε5, then a sliding mode at SFδ (t) = 0 is induced
at tf ≤ |SF δ(t0)|

µF
, but SFδ (t0) = 0, thus SFδ(t0) = 0 is

guaranteed ∀t.

Part III: Exponential convergence of tracking errors.
Part III.a: Visual tracking errors. Since a sliding mode

exists for all time at Ssδ (t) = 0, then, we have

Ss = Ssd∀t → ∆ẋs = −α∆xs + Ss (t0) e−κst

this implies that the visual tracking errors locally tends to
zero exponentially fast, implying that the robot end-effector
converges to the desired image xsd, with given velocity ẋsd.

Part III.b: Force tracking errors. Since a sliding mode
at SFδ (t) = 0 is induced for all time, this means ∆F =
∆F (t0) e−κF t. Moreover, in [10] it is shown that the
convergence of force tracking errors arises, thus λ → λd

exponentially fast. QED.

Proof of Theorem2 : With the very same Lyapunov
function of Theorem 1, we obtain the following time deriv-
ative, along trajectories of the closed loop of (32)-(33),

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ − V̇f (49)

where

V̇f = σ0Ŝ
T
q [z + σ01tanh(ξf Ŝq)] − σ01Ŝq[−zh(q̇)

+ α0
−1σ01|q̇|tanh(ξf Ŝq)]. (50)

In [11], [12] it was proved that V̇f > 0, and
∣∣∣V̇f

∣∣∣ < ε4,

ε4 > 0. Then, V̇f is positive deÝnite outside the hyperball

ρ0 = ρ0(Ŝq) =
{

Ŝq|Vf ≥ 0
}

with ‖ρ0‖ ≤ ρ, for ρ > 0.
Thus, if we choose ξf large enough, preventing that the
mechatronic system does not introduce high frequency from
the term tanh(ξf Ŝq), then (49) becomes

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ + ρ0. (51)

Afterwards, we proceed exactly as in proof of theorem 1,
and it is therefore omitted. QED.
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