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Abstract— Lots of constrained motion control schemes have
been proposed for robots. However, since constrained motion
demands fast tracking with smooth control, few of these schemes
are convenient in practice for many tasks, such as hand-control,
polishing, grinding, and assembly operations. In particular,
adaptive control is quite slow due to its overparametrization,
while first order sliding mode control cannot be implemented
because its chattering. On the other hand, second order sliding
mode control demands knowledge of upper bounds. Recently, to
ameliorate these limitations, the theoretical framework and sim-
ulations, a synergetic combination of adaptive and second order
sliding mode control has been proposed. This controller achieves
simultaneous exponential convergence of position/force tracking
errors with chattering-free control and without any knowledge of
upper bounds. Then, it stands as a viable control technique that
exhibits the best of adaptive and sliding mode control. In this
paper, the real-time, Linux RTAI-based, experimental results of
this controller is presented on a direct-drive robot manipulator
equipped with six axis JR3 force sensor. Comparative results
suggest its superior performance.

Index Terms— Adaptive Control, Second Order Sliding Mode
Control, Robot Manipulator, Constrained Motion.

I. INTRODUCTION

Passivity-based force/position adaptive controllers with and
without first order sliding mode control have been proposed
in literature. Those ones based only on adaptive control,
e.g. [5],[6], with no persistent excitation, present a slow
performance due to system introduced chain of integrators and
the parameter update, that is, only asymptotic convergence
of position and force tracking errors can be achieved. On
the other hand, the adaptive controllers based on first order
sliding modes allow exponential convergence of position
and force tracking errors, but the sliding mode introduces
high frequency components, thus, it becomes impossible to
implement in a real plant due to finite bandwidth of actuators.

Considering the above, Parra et. al ([1] ∼ [4]) proposed a
controller able to simultaneously control both position and
force variables with an effective combination of adaptive
control and sliding mode control. The error coordinate rep-
resentation induces a second order sliding mode and gives
rise to a robust exponential convergence. The holonomic
constraint is manipulated to derive two orthogonal subspaces
of position-velocity and integral-of-force tracking errors. This
way, the sliding modes arise on the tangential and normal
subspaces at the contact point for all time. In the constrained

motion case, orthogonalized sliding modes arises to ensure
the exponential convergence of position and force tracking
errors. The control structure can be seen as composed by two
control loops: an outer adaptive control loop compensates for
parametric uncertainty while an inner sliding mode control
gives the missing energy to yield the exponential convergence
robust performance. Since the second order sliding mode does
not introduce high frequency components, then we have a
continuous controller that can be implemented in a real plant.

A. Contribution

The contribution of this article is to validate experimentally
the theoretical framework [2],[4] on a two degree-of-freedom
direct-drive manipulator, provided with a six axis force sensor,
interacting with a highly rigid surface. The control system is
running over Linux-RTAI operating system.

B. Organization

The paper is organized as follows. In Section II, the system
model and its properties are presented. Section III gives the
proposed control law, while Section IV shows some remarks
about the control scheme. The experimental setup is described
in Section V, while experimental results are shown in Section
VI. Finally, conclusions are drawn in Section VII.

II. ROBOT DYNAMICS

The dynamic model of a robot manipulator when the end-
effector is in contact with an undeformable surface is given
as follows

H(q)q̈ + {B0 + C(q, q̇)}q̇ + g(q) = τ + JT
ϕ+λ (1)

ϕ(q) = 0 (2)

whereH(q) ∈ <n×n denotes a symmetric positive definite
inertial matrix, B0 ∈ <n×n stands for a diagonal positive
definite matrix composed of damping friction coefficients for
each joint, C(q, q̇) ∈ <n×n represents the Coriolis and cen-
tripetal torques, g(q) ∈ <n models the gravitational torques,
τ ∈ <n stands for the torque input, λ ∈ <r plays a role of
the constrained Lagrangian representing the magnitude of the
contact force (when r = 1 there is one contact point), JT

ϕ+ =
JT

ϕ+(q) = JT
ϕ (q)

(
Jϕ(q)JT

ϕ (q)
)−1 stands for the normalized

projection of the Jϕ(q) ∈ <1×n whose span is normal at
the tangent plane that arises at the contact point and Jϕ(q) =



( ∂ϕ
∂q1

, ∂ϕ
∂q2

, . . . , ∂ϕ
∂qn

) denotes the gradient of the object surface.
The infinitely rigid surface is described by a geometric func-
tion ϕ(q1, . . . , qn) = ϕ∗(x1, x2, x3, w4, w5, w6) = 0 ∈ <6,
where x = (x1, x2, x3)T denotes the cartesian coordinates
(task coordinates) fixed at the inertial reference frame, and
w = (w4, w5, w6)T its associated Euler angles. Clearly, an
orthogonal projection of Jϕ(q) arises onto the tangent space
at the contact point between the end-effector and the surface
ϕ(q) = 0, as

Q(q) = I − JT
ϕ+(q)Jϕ(q)

where I denotes the n× n identity matrix. Therefore, while
the manipulator is moving along the p−dof on the constraint
surface spanned by the image of Q(q), there arises Q(q)q̇ =
q̇. Since both transformations Jϕ(q) and Q(q) are orthogonal,
we have the following useful properties: i)Jϕ(q)q̇ = 0,
ii)Q(q)JT

ϕ (q) = 0 and, iii)Q(q)JT
ϕ+(q) = 0. Now, equation

(1) can be parametrized linearly in terms of a nominal
reference (q̇r, q̈r)T ∈ <2n as follows

H(q)q̈r + {B0 + C(q, q̇)}q̇r + G(q) = YrΘ (3)

where the regressor Yr = Yr(q, q̇, q̇r, q̈r) ∈ <n×m is
composed of known nonlinear functions, and Θ ∈ <m is
assumed to represent m unknown but constant physical robot
parameters, with (q̇r, q̈r) to be defined yet. Then, adding and
subtracting (3) into (1), the open loop error equation arises,
where arguments are omitted for simplicity

HṠ = −(B0 + C)S − YrΘ + JT
ϕ+λ + τ (4)

where the extended error S = q̇ − q̇r carries out a change of
coordinates through (q̇r, q̈r). Let us now design (q̇r, q̈r).

A. Change of coordinates

Consider

q̇r = Q{q̇d − σ∆q + Sdp − γ1

∫ t

t0

sgn(Sqp(ς))dς}

+ βJT
ϕ {∆F − SdF + γ2

∫ t

t0

sgn(SqF (ς))dς} (5)

where ∆q = q − qd, ∆F =
∫ t

t0
(λ − λd)(ς)dς , σ, γ1 ∈

<n×n
+ and β, γ2 > 0. The subscript “d” denotes the desired

reference values, and sgn(x) stands for the discontinuous
signum function of x. Substituting (5) into S = q̇ − q̇r gives
rise to

S = QSvp − βJT
ϕ SvF (6)

where the orthogonal extended position and force manifolds
Svp and SvF , respectively, are defined by

Svp = Sqp + γ1

∫ t

t0

sgn(Sqp(ς))dς (7)

SvF = SqF + γ2

∫ t

t0

sgn(SqF (ς))dς (8)

with the following definitions

Sqp = Sp − Sdp SqF = SF − SdF

Sp = ∆q̇ + σ∆q SF = ∆F
Sdp = Sp(t0)e−κ1(t−t0) SdF = SF (t0)e−κ2(t−t0)

(9)

where κ1, κ2 > 0. Using (5) and its derivative into (3), the
open loop error equation (4) becomes

HṠ = −(B0 + C)S + τ + JT
ϕ+λ− YcontΘ− ξ (10)

where ξ = H(Qγ1Z1 − βJT
ϕ γ2Z2) stands as a bounded dis-

continuous term, and Ycont = Yr(q, q̇, q̇r, q̈cont) is continuous
as follows

q̈cont = Q̇{q̇d − σ∆q + Sdp − γ1

∫ t

t0

sgn(Sqp)}

+ Q{q̈d − σ∆q̇ + Ṡdp − γ1tanh(α1Sqp)}

+ βJ̇T
ϕ {∆F − SdF + γ2

∫ t

t0

sgn(SqF )}

+ βJT
ϕ {∆Ḟ − ṠdF + γ2tanh(α2SqF )} (11)

and

Z1 = tanh(α1Sqp)− sgn(Sqp)
Z2 = tanh(α2Sqf )− sgn(SqF )

tanh(x) is the hyperbolic tangent function of (x), and
α1, α2 > 0 are constants. Notice that Z1, Z2 are discontinu-
ous, but bounded and have the following useful properties
near the origin for subsequent stability analysis Z1,2 ≤
+1, ZSqp,SqF→0− = +1 Z1,2 ≥ −1, ZSqp,SqF→0+ = −1.

Remark 1. GETTING RID OF DISCONTINUITIES. The
manipulation over q̈r is obligated to avoid introducing any
high frequency components, that is the computation of q̈r

becomes

q̈r = Q{q̈d − σ∆q̇ + Ṡdp − γ1sgn(Sqp(ς))dς}

+ Q̇{q̇d − σ∆q + Sdp − γ1

∫ t

t0

sgn(Sqp(ς))dς}

+ βJT
ϕ {∆Ḟ − ṠdF + γ2sgn(SqF (ς))dς}

+ βJ̇T
ϕ {∆F − SdF + γ2

∫ t

t0

sgn(SqF (ς))dς} (12)

thus

Hq̈r + {B0 + C(q, q̇)}q̇r + G = YcontΘ + Hρ (13)

with ρ = (Qγ1Z1 − βJT
ϕ γ2Z2). This separates all discon-

tinuous, but bounded, signals to be casted as disturbances ξ
in (10). In this way, the controller τ does not have to deal
with the discontinuous regressor (12), but with the continuous
regressor (11).¥ Now we are ready to present the main result.



III. ADAPTIVE SECOND ORDER SLIDING MODE CONTROL

Consider the following continuous control law

τ = −KdS + YcontΘ̂ + JT
ϕ+{ηγ2

∫ t

t0

sgn(SqF )}+

JT
ϕ+{−λd + η∆F + γ2tanh(α2SqF )}

˙̂Θ = −ΓY T
contS (14)

for Kd = KT
+ ∈ Rn×n, Γ = ΓT

+ ∈ Rm×m, and Θ̂ stands for
the online estimation of the unknown parameters Θ. We now
have the following.

Theorem. Consider a constrained robot manipulator (1)-
(2) in closed-loop with the given control law (14). Then, the
robotic system yields a second order sliding mode regime
with local exponential convergence for position errors and
global exponential convergence for force errors under robot
parametric uncertainty.

Proof. An outline of the proof can be found in appendix.

IV. REMARKS

Remark 2. How to tune feedback gains: γi. Since γi

(i = 1, 2) depends on the norm of the derivative of the state
it is difficult to know a priori its value to induce a sliding
mode. Suppose γi is set to zero, in which case our controller
renders asymptotic stability (the controller collapses into [5]
if Sdp, SdF = 0). Constants γi can be increased gradually
until sliding modes arise. Note that this is not a high gain
result since larger γi do not mean a larger domain of stability.
Nevertheless, γi is small because the outer adaptive control
loop compensates for disturbances ξ. ¥

Remark 3. No persistent excitation condition: Most of
the adaptive controllers that attain exponential stability rely
on the persistent excitation condition of the regressor. Note,
that we have not assumed such condition. ¥

Remark 4. Robustness:. Parametric uncertainty is com-
pensated via the adaptive control loop and robust exponential
convergence is achieved via sliding mode, with smooth and
chattering free control signals. ¥

Remark 5. The integral term: The integral term in S
plays the role of compensating dynamically the effect of
parametric disturbances in terms of Svp and SvF . This integral
term and tanh(α2SqF ) are the key of the whole algorithm.
¥

Remark 6. Finite time convergence: Since sliding mode
exists for all time, the state is trapped into a lower order
manifold, which is invariant to system dynamics and robot
parameters, that is

Sqp = 0∀t → Sp = Sdp → ∆q̇ = −σ∆q + Sp(t0)e−κ1(t−t0)

SqF = 0∀t → SF = SdF → ∆F = SF (t0)e−κ2(t−t0)

Surprisingly, the above equations govern the closed-loop
sliding dynamics of the closed-loop trajectories, producing
exponential convergence. On the other hand, it is still pos-
sible to converge faster. It is possible to attain finite time

convergence of position tracking errors by means of well-
posed terminal attractors. Finite time convergence can be
tuned arbitrarily via a time-varying gain σ(t) so as to drive
smoothly ∆q(t) toward its equilibrium ∆q(t) = 0. Gain σ(t)
is tailored with a Time Base Generator (TBG), which may be
a fifth order polynomial that smoothly goes from 0 → 1. For
more details see [4] and [9]. ¥

Remark 7. Versus adaptive and first order sliding mode:
The proposed control scheme yields the adaptive controller
when γ1, γ2, Sdp, SdF are zero. In this case, the closed loop
system produces smooth control with slow trajectories. On
the other hand, when tanh(·) is substituted by sgn(·), it
produces first order discontinuous sliding modes, which is
only of academic interest, since there is not motor that can
commute at such high frequency, due to the finite inertia of
its rotor. ¥

V. EXPERIMENTAL STATION

Robot parameters and constant gains used in the exper-
iments are shown in Table 1, and a photograph of the
experimental setup is depicted in Fig. 2.

TABLE I
DIMENSION PARAMETERS (Par) OF THE ROBOT ARM, AND FEEDBACK

GAINS.

Par Value
m1 6.72 Kg
m2 2.03 Kg
l1 0.4 m
l2 0.3 m

Gain Value Gain Value
Kd diag(20,1.65) β 0.1
γ1 diag(0.1) γ2 0.01
σ diag(5) η 0.3
Γ diag(0.001) κ1, κ2 20

Fig. 1. Dimension parameters (Par) of the robot arm, and feedback gains.

Fig. 2. Experimental setup.

A. The Hardware

A 2-dof arm is integrated using aluminum A60 for the
whole mechanical structure. Direct-drive Yaskawa AC servo-
motors SGM-08A314 and SGM-04U3B4L with 2048 pulse



encoders are directly coupled to the links. Digital drive
electronics from the Yaskawa servopacks (SGD-08AS and
SGDA-04AS for each motor, respectively) are integrated
through some additional custom made optoelectronic circuits
to yield additional isolated coupling. A six-axis force-moment
sensor 67M25A-I40-200N12 by JR3 Inc., provided with a
DSP Based Interface System for PCI bus, is mounted at the
end effector of the robot. The sensor has a maximum rating of
±200N in the XY axes and twice in the Z axis. While the arm
is in free motion the actual environmental electronic noise in
the force sensor readings in the range of 0.1N − 0.5N . The
tool used in the experiments is a rigid aluminum probe with
a bearing in its tip, implanted to reduce contact friction, as
shown in Fig. 3. The robot task is to move its tool-tip along
a specified trajectory over the steel surface while at the same
time exerts a specified profile of force normal to the surface.

Fig. 3. Rigid aluminum tool-tip.

B. The firmware and software

The control system is running in real-time with a sampling
rate of 1 KHz on a PC over Linux-RTAI operating system.
Low level programming provides the interface to a Sensoray
626 I/O card which contains internal quadrature encoder inter-
face, 14 bit resolution analog outputs and digital I/O. Velocity
is computed using a dirty Euler numerical differentiation
formula filtered with a lowpass second order Butterworth
filter, with a cutoff frecuency of 20Hz.

VI. RESULTS

The robot is initialized with a high gain PD since the
parametric uncertainty is 100%. The inertial frame of the
whole system is at the base of the robot and the contact
surface is at x = 0.495 m rendering a Y Z plane. The
experiment is performed as follows (see Fig. 4):

1) From t = 0 s to t = 5 s, the end effector is requested
to move, in free motion, from its initial condition until
it makes contact with the surface. The end effector lasts
2 more seconds (from 5 to 7 seconds)

2) From time t = 7 s to t = 18 s the tool-tip exerts a
desired profile of force normal to the surface (0 to 5 N)
while moving along Y axis from 0.1 to -0.03 m

3) From t = 18 s to t = 28 s the exerted force is
incremented from 5 to 7.5 Newtons, while moving
along Y axis from -0.03 to 0.1 m, as can be seen in
Fig. 6 and Fig. 7.

Free Motion

Constrained Motion

Transition from Free Motion

to Constrained Motion

Planar Robot

Free Motion

Constrained Motion

Rigid surface

Fig. 4. The desired task.

Both desired position and force are designed with Φ(t) =
P (t) [Xf −Xi]+Xi, where P (t) is a fifth order polynomial
that satisfy P (ti) = 0, P (tf ) = 1 and Ṗ (ti) = Ṗ (tf ) =
0. The subscript ‘i’ and ‘f’ denote initial and final stages,
respectively. At the first stage of the experiment, the control
law (14) is used with the force part set to zero, i.e. JT

ϕ = 0 and
Q = I . It is rather easy to prove that this scheme is stable for
unconstrained motion. Once the tool-tip is in contact with the
surface the control force term is switched on. Fig. 5 shows the
input torques. It can be observed that there are not saturation
problems and the smooth behavior. Fig. 7 depicts the real and
desired trajectories in the cartesian plane. The results for the
tracking errors can be seen in Fig. 8 for joint coordinates and
in Fig. 9 for Cartesian coordinates. As a comparison with the
proposed controller, it is presented the experimental results
of an Adaptive force/position control. The adaptive control is
easily obtained considering Remarks 2 and 7.

VII. CONCLUSIONS

A fast trajectory tracking and smooth controller is exper-
imentally validated. It is argue that such stability properties
are very convenient to constrained motion tasks, in partic-
ular, when there is contact to rigid objects. The adaptive
controller is designed over a second order sliding mode



error coordinate system to attain exponential convergence,
and enhanced parameter stability. This result represents a
systematic combination of model-based adaptive control and
chattering-free sliding mode control for constrained motion
robots. Experimental results validate the predicted theoretical
performance. Worth to mention is that the system stability
remains even when the robot end-effector motion switches
from free motion to constrained motion due to its passivity
properties, under a set of conditions [10]. Experimental results
comply dully to the theoretical stability properties.

APPENDIX

The formal proof ([2]) firstly proves that all closed loop
signals are bounded, using the following Lyapunov function

V =
1
2
(ST HS + βST

vF SvF + ∆ΘT Γ−1∆Θ) (15)

for scalar β > 0, and ∆Θ = Θ − Θ̂ produces the total
derivative of Lyapunov

V̇ = −ST (Kd + B0)S − βηST
vF SvF

− ST HQγ1Z1 + ST HβJT
ϕ γ2Z2

≤ −ST KdS − βηST
vF SvF

+ γ1‖ST HQ‖+ βγ2‖ST HJT
ϕ ‖

≤ −ST KdS − βηST
vF SvF

+ γ1‖H‖‖Q‖‖S‖+ βγ2‖H‖‖JT
ϕ ‖‖S‖

≤ −ST KdS − βηST
vF SvF + ε1‖S‖+ ε2‖S‖ (16)

Thus, if Kd, β and η are large enough such that S converges
into a neighborhood ε = f1(ε1) + f2(ε2) > 0 centered in the
equilibrium S = 0, namely

S → ε as t →∞
This result stands for local stability of S provided that the
state is near the desired trajectories for any initial condition,
and that ∆Θ ∈ L∞. This boundedness leads to the existence
of the constants ε3 > 0 and ε4 > 0 such that

|Ṡvp| < ε3, (17)

|ṠvF | < ε4 (18)

where |X| stands for
∑n

i=1 |Xi|.
Secondly, it proves that sliding modes, and therefore expo-

nential tracking, are induced. It follows that if we multiply
the derivative of Sqp in (7) by ST

qp, we obtain

ST
qpṠqp = −γ1|Sqp|+ ST

qpṠvp

≤ −γ1|Sqp|+ |Sqp||Ṡvp| (19)

Substituting (17) into (19) yields

ST
qpṠqp ≤ −(γ1 − ε3)|Sqp| (20)

where γ1 must be chosen such that γ1 > ε3. The equation (20)
is precisely the condition for the existence of a sliding mode
at Sqp(t) = 0 [8]. The sliding mode is established in a time
t ≤ |Sqp(t0)|/(γ1 − ε3) and, according to (9), Sqp(t0) = 0

implies that Sqp(t) = 0 ∀t, therefore the position tracking
converge exponentially towards the desired trajectory qd(t).
Similarly, i f we multiply the derivative of SqF in (8) by ST

qF ,
we obtain

ST
qF ṠqF = −γ2|SqF |+ ST

qF ṠvF ≤ −γ2|SqF |+ |SqF ||ṠvF |
(21)

substituting (18) into (21) yields

ST
qf Ṡqf ≤ −(γ2 − ε4)|Sqf | (22)

where γ2 must be chosen such that γ2 > ε4. The equation
(22) is precisely the condition for the existence of a sliding
mode at SqF (t) = 0 [8]. The sliding mode is established
in a time t ≤ |SqF (t0)|/(γ2 − ε4) and, according to (9),
SqF (t0) = 0 implies that SqF (t) = 0 ∀t, which implies that
λ → λd exponentially fast. ¥
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Fig. 6. End effector force.
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Fig. 7. Trajectories in Cartesian space.
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Fig. 8. Tracking errors in joint coordinates.
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Fig. 9. Tracking errors in Cartesian coordinates.


