
A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task
Descriptions

Daniel Di Marco and Paul Levi
Department of Image Understanding

Universität Stuttgart, Germany
dimarco@ipvs.uni-stuttgart.de

Rob Janssen and René van de Molengraft
Department of Mechanical Engineering

Eindhoven University of Technology, The Netherlands

Alexander Perzylo
Department of Informatics

Technische Universität München, Germany

Abstract

We present an application of Hierarchical Task Network
(HTN) planning to create robot execution plans, that are
adapted to the environment and the robot hardware from ab-
stract task descriptions. Our main intention is to show that
different robotic platforms can make use of the same high
level symbolic task description.
As an off-the-shelf planning component, the SHOP2 HTN
planner is adopted. All the domain knowledge is encoded in
the Web Ontology Language (OWL) and stored in a world
wide accessible database, which allows multiple systems to
reuse and improve upon this knowledge. For task execution,
the execution plan is generated using the CRAM plan lan-
guage (CPL).
We demonstrate the functionality of the system in executing
a pick-and-place task in a simulated environment with two
different service robots, the TU/e Amigo robot prototype and
the Fraunhofer IPA Care-O-Bot 3. The experiment shows that
although the robots differ in hardware capabilities, the use of
HTN planning adds information that is crucial for success-
ful task execution and enables both systems to successfully
execute the instructed task.

Introduction
Autonomous task execution in unstructured environments is
an critical problem for service robotics. A lot of background
knowledge is required to solve this problem, not only about
the task to execute, but also on the robot itself and its en-
vironment. As there exists a wide range of different types
of service robots today, finding a way of exchanging this
knowledge is an interesting problem to solve.

In (Di Marco et al. 2012), we proposed a task execu-
tion system for abstract task descriptions. In the following
work, we describe an extension on the system described
there. To recap briefly, the previously proposed system is
built upon several open-source software packages and trans-
lates abstract task descriptions, represented in a high level
and stored on a global database into executable robot plans
for different robot platforms. To handle significant differ-
ences in robot hardware gracefully, the task descriptions are
annotated with capability requirements and matched with a

robot’s specific hardware. This way, only task descriptions
that are executable on a given robot platform at plan con-
struction time, are considered.

These abstract task descriptions are encoded as a se-
quence of hardware-agnostic actions and are represented as
concepts from a common ontology with semantic annota-
tions (Tenorth et al. 2012). The vision behind this approach
is that knowledge of how a robot can execute a specific
task, that is encoded on a high enough level can be used
by other robots (i.e. robots with different sensing or manip-
ulation hardware). A problem of this representation when
considered from the perspective of task execution is that the
high-level concepts need to be grounded in actual actions the
robot can execute. In the previous system, this was expected
to be done on the robot hardware layer. For example, in-
stances of the OWL concept “Translation-LocationChange“
are used to describe an agent’s intentional movement in the
environment. When elements of this type are encountered in
an abstract task description, they are translated into calls to
the robot’s respective base movement implementation.

Another consequence of this form of representation is that
certain low-level details required for task execution are ab-
stracted away. Therefore executing the task descriptions ne-
cessitates some form of reasoning. Consider for example the
task of picking up an object by a service robot with two
arms. The information on which manipulator to use is not
stored in the task description, because it should remain pos-
sible to execute the task on a robot with an arbitrary number
of arms, but which arm to use has to be inferred for each
specific situation again.

Finally, although there exists the possibility to provide
multiple task descriptions for a specific task, the system is
limited in the selection of the appropriate one by filtering
them according to the required robot capabilities. For in-
stance, while there might be task descriptions for passing
an open door and a closed door, the system has no means
of inferring on its own which task is appropriate for a given
situation.

Therefore our proposal is to try to improve on this static
grounding by using a state aware AI planning approach for
robot plan composition. In analogy with the described hier-

12



BringSomethingSomewhere

PickupSomething

NavigateToHandover

HandoverSomething

RetractArmToParking

already there?

door between?

default case

NAVIGATE-TASK ?robot ?goal

No Operation

NavInReachOfDoorHandle

PushDoorButton

NavigateToTarget

OpenDoor

MoveToPrimitive

Figure 1: Augmenting abstract task description elements
(left of the dashed line) with conditional decompositions
(right)

archical representation of action descriptions, it is reason-
able to try exploiting existing Hierarchical Task Network
(HTN) planners for this objective. We use the SHOP2 plan-
ner (Nau et al. 2003) as an off-the-shelf planning component
for this purpose. To encode the planning domain knowledge
in a semantically expressive and widely used representation,
the OWL web ontology language is employed. Fig. 1 shows
an example for a task description along with the new anno-
tations.

Related work
The problem of adding information for task execution of un-
derspecified task descriptions has been tackled by several
researchers before. The authors of (Beetz et al. 2011) de-
scribe the execution of a task for preparing pancakes, which
is described in natural language retrieved from an Internet
page. They extract an approximate task description using
natural language text processing and match the respective
action steps and the objects used to an ontology. By reason-
ing on the extracted structure along with semantic descrip-
tions, a rough execution plan is generated. During plan exe-
cution, the information missing in the plan is inferred using
different reasoning methods, using the CRAM framework
described in (Beetz, Mösenlechner, and Tenorth 2010). This
related work is especially interesting to this paper, as we rely
on some of the tools provided by Beetz et al.. However, our
goals differ: our interest is targeted on ways to instantiate
and execute reactive robot plans that are adapted to the envi-
ronment and on different hardware platforms, from abstract
representations encoded in a machine-readable way.

Another interesting approach to the problem is to run a
task execution in a simulated environment first. This allows a
realistic projection of the possible outcomes and side-effects
of task execution in a real environment, which is useful for
improving the execution plan in advance. It also helps avoid-
ing failures in task planning that occur through imperfect
symbolic modeling of the robot’s actions, like placing ob-
jects in a physically unstable way. The work described in
(Mösenlechner and Beetz 2009) aims at optimizing execu-
tion plans using a rigid body physics simulation to project

the behavior of a robot interacting with its environment.
They apply transformational planning to improve the ex-
ecution plans performance and robustness. A considerable
drawback of this approach in practice is that while physics
simulations provide good prospects on how a robot plan will
perform in a specific environment, they also assume a very
detailed description of the actors, and high computational
effort to be accurate.

A different approach that is using HTN planning meth-
ods as a layer above task execution is presented in (Har-
tanto 2011). This work describes a hybrid system that com-
bines OWL description logic reasoning techniques with
HTN planning in order to have the system automatically
omit superfluous information and keep the planning prob-
lem as small as possible. However, although they applied
their work on a real robot during the RoboCup@Home chal-
lenges, they do not explicitly address the possibility to con-
struct similar plans for systems with different hardware ca-
pabilities. Further, one goal of our work is the extension of
our previously published task execution system, which re-
quires the task descriptions to be formulated in the OWL
variant OWL Full as opposed to OWL DL, which is used in
the cited work.

In general terms of integrating knowledge represented in
OWL with the HTN planning approach, (Sirin 2006) pro-
vides some interesting insights. In this work, a HTN plan-
ning method that uses OWL-DL for its planning domain rep-
resentation is described. Its intended application is the auto-
mated composition of web services as opposed to creating
robot plans. In their earlier work (Sirin et al. 2004) the au-
thors describe a translation algorithm to create SHOP2 plan-
ning problems for web service composition using knowl-
edge encoded in the vocabulary of the OWL-S process on-
tology.

Another highly interesting approach in the context of our
work is presented in (Kaelbling and Lozano-Pérez 2011).
The paper proposes a hierarchical planning approach com-
bining symbolic and geometric planning as well as planning
and plan execution. Their planner decides early on one pos-
sible decomposition and selects suitable decompositions for
the sub-actions during execution time and is thus able to sig-
nificantly decrease the search space. Our system uses the
planning process to infer necessary actions from static in-
formation, like the robot hardware and environment descrip-
tion, and would thus not profit a direct application of this
approach. However, we consider this approach to be a very
promising direction for us to go in the future, when we adapt
our system for more dynamic environments.

The work published in (Joshi et al. 2012) describes a sys-
tem integrating stochastic planning with a reactive robot ar-
chitecture. Due to long planning times, the planner is run
off-line. It creates abstract policies that can be applied to op-
erate in a highly reactive way in different environments. In
contrast, our system creates one instantiation of a reactive
plan, but is faster in common cases, due to the simpler, non-
probabilistic HTN planning method employed.

13



Process Modules

RoboEarth
Cloud

Framework

SHOP2 Planner

Domain

Web Interface

KnowRob

Local Know-
ledge Base

Local 
World Model

Comm

Query Response

CRAM executive
CPL

Execution Plans

Simulated
Perception

User Command

Detections

Actionlib
Calls

ROS component 
layer

Problem

Planning Domain
Extraction

Query

Response

CPL Plan
Generation

SHOP2 Plan
Query Response

Semantic 
Maps

SRDL
Robot Descr.

Action
Recipes

Recipe HTN
Annotations

Figure 2: System overview

Contributions
The core idea presented in this work is to make use of HTN
planning to help instantiating task execution plans from ab-
stract task descriptions and tailor them to a given environ-
ment and robot. For the actual task execution, we build upon
the work on reactive plan execution provided by (Beetz,
Mösenlechner, and Tenorth 2010).

System Overview
The overall system architecture is shown in Fig. 2. The plan-
ning domain knowledge is formulated in OWL and stored
on the RoboEarth platform (Waibel et al. 2011), a database
globally accessible via the world wide web.

An useful property of the system is that it separates the
knowledge used. For instance, it makes use of four different
sources of information, which are all stored on the database
in OWL-based formats:

• Semantic maps encode a description of the environment.

• The robot hardware for different platforms is specified
in terms of the Semantic Robot Description Language
(SRDL) as proposed by (Kunze, Roehm, and Beetz 2011).

• Action recipes are abstract task descriptions, as men-
tioned in the previous section.

• Recipe HTN annotations are descriptions of task decom-
positions, i.e. preconditions for specific decompositions,
and effects for basic operators. The right side of Fig. 1
provides an example.

The OWL descriptions are downloaded from the database
and parsed by the KnowRob knowledge processing engine
(Tenorth and Beetz 2009). KnowRob is based on a Prolog in-
terpreter and can answer queries in Prolog syntax. It is used
to read the information from OWL files and to do symbolic
reasoning on the knowledge stored within. It can be eas-
ily connected to an object detection algorithm and a world
model for object tracking, as described in (Di Marco et al.
2012) and (Elfring et al. 2012).

The module implementing the ideas presented in this pa-
per communicates with the knowledge processing engine via
Prolog queries. Fig. 3 shows its basic plan creation process.

Symbolic Plan

CPL Execution
Plan

HTN Planner

Semantic 
Map

Recipe HTN
Annotations

HTN world state
description

HTN Planning
Domain

SRDL Robot 
Description

Action
Recipes

Figure 3: Plan generation process

The semantic map for the respective environment is used
together with the SRDL robot description to create the ini-
tial world state. It extracts a planning domain and problem
in SHOP2 planner syntax as described in the following sec-
tions and tries to find at least one feasible plan. If there are
multiple plans, the shortest plan (where the length is mea-
sured in terms of symbolic actions) is selected. The result-
ing plan is converted into an executable plan described in the
CRAM plan language (Beetz, Mösenlechner, and Tenorth
2010), which finally gets executed on the robot using the
ROS (Robot Operating System) framework1.

Abstract Task Knowledge Representation
The RoboEarth language (Tenorth et al. 2012) is designed to
describe task specifications for service robots from a high
level view (i.e. without considering hardware or environ-
ment details which are not of interest for the task at hand). In
this context, recipes are composed of a set of parametrized
action primitives or other recipes. The structure is similar
to Hierarchical Task Networks in the sense that sub-tasks
might be decomposed recursively into other recipes. Recipes
are represented as OWL classes that have sub-actions and
parametrizations:

Class: PuttingSomethingSomewhere
SubClassOf:

Movement-TranslationEvent
TransportationEvent
subAction some PickingUpAnObject
subAction some CarryingWhileMoving
subAction some PuttingDownAnObject
orderingConstraints value ActionOrdering1
orderingConstraints value ActionOrdering2

...
Individual: ActionOrdering1

Types:
PartialOrdering-Strict

Facts:
occursBeforeInOrdering PickingUpAnObject
occursAfterInOrdering CarryingWhileMoving

1http://www.ros.org

14



We consider basic actions that are implemented in the
robot’s hardware abstraction layer in terms of structured re-
active controllers and thus are directly executable by the
robot to be called “skills”. Note that therefore the difference
on which OWL classes represent skills depends on the robot
platform used.

One advantage of having task descriptions represented
this way is that they can be used by a wide range of robot
platforms, provided that the basic action concepts refer-
enced are grounded in executable actions for the given robot.
While the task specifications are annotated with the require-
ments a robot needs to fulfill in order to be able to execute
the task, it is not explicitly stated which actions have to be
implemented by a robot platform as primitive skills. As a
consequence, a robot might provide all required low-level
primitive skills or it could replace a set of those skills with
a single, more complex implementation. Making this deci-
sion is up to the developer of the robot’s skill. This approach
adds flexibility and eases the adaption of robot platforms to
the system.

In this work, our intention is to continue the use of recipes
from the previous system (Di Marco et al. 2012) and to adopt
them as task decompositions for tasks in the HTN sense2.
A simplified visualization is shown in Fig. 1. The abstract
task description (depicted here without parameters) is on the
left of the dashed line. It is basically a sequence of OWL
concepts that refer to robot actions. The concepts can rep-
resent either basic actions like base navigation or grasping,
or they can refer to other task descriptions. In this way, they
can have different decompositions. However, the question
of when these decompositions can be applied is not repre-
sented. This is what the task description annotations provide.

We created a custom ontology to represent a large subset
of the functionality defined by the SHOP2 planning domain
description language (see (Nau et al. 2003)) as OWL con-
cepts. Currently supported are variables, predicates, axioms,
operators and methods. The HTN method definitions link to
the corresponding action recipe OWL identifier via an OWL
property.

The representation stays close to the SHOP2 planning
domain syntax. The basic building blocks are instances of
the PlannerPredicate class, which represent logical atoms
in the planning domain syntax, e.g. (robot-at ?robot
?place). Logical expressions (i.e. Or-, And- or Not-
Expressions) conjoin PlannerPredicate instances via the
hasOperand property.

Neither OWL nor the RoboEarth language have a concept
for variables that can have different values. In the task de-
scriptions, objects that are to be manipulated are described
as instances of OWL classes. They can be annotated with
properties to help identify them further.

The sub-task parametrizations in the action recipes are
implemented using OWL object properties which link to in-
stances of objects in the assertional box. Thus, we require
an explicit binding of the object properties in the recipes to

2To help distinguishing between HTN-style tasks and the more
generic word “task”, we will call the former “HTN-task” in the
remainder of this paper.

each of the variables referenced in the preconditions and ef-
fects in operators or HTN-tasks. These are implemented as
instances of the VariableMapping class, linking object prop-
erties to variable names in operator, method, or axiom de-
scriptions.
Individual: NavigateVarMapping

Types:
plan:VariableMapping

Facts:
plan:mappedFrom knowrob:toLocation
plan:mappedTo targetLocVar1

As robot hardware and thus robot capabilities can differ
significantly, we expect that not every robot can use the same
decompositions for the hierarchical task network. It there-
fore must be possible to define operators and HTN-tasks in
multiple ways, depending on the robot platform used. The
system allows for this by decoupling the ontology describ-
ing the operators and decompositions of HTN-tasks from
the action recipe definitions. To ensure a common vocab-
ulary, an ontology describing core concepts based on the
KnowRob ontology is used. Operators and HTN-Tasks are
mapped onto concepts from the common ontology.

Environment and Hardware Information
To generate a useful execution plan for a specific environ-
ment, information on the environment is necessary. E.g. the
types or the expected initial positions of objects to interact
with, a semantic map as defined in (Tenorth et al. 2012) is
used.

Our simulation example in the next section considers a
task of navigation. More specifically, the task is to infer that
a command to navigate between rooms might also mean to
traverse a door. For this purpose, we extended the semantic
map to incorporate a simple kind of topological map by de-
scribing regions in space that are adjacent and are thus con-
nected to each other. For example the semantic map contains
the information that the region in front of the first cabinet is
adjacent to the region where the door button is located. Note
that this information could as well be generated automati-
cally.

In order to generate plans for manipulation actions, the
system also needs to take the robot’s hardware setup into ac-
count, e.g. a description of the available manipulators and
their initial configurations. The system thus requires a se-
mantic description of the robot platform, which is available
in the previously described system (Tenorth et al. 2012). The
robot’s physical and cognitive capabilities are being rep-
resented using the Semantic Robot Description Language
(SRDL) (Kunze, Roehm, and Beetz 2011) and stored on the
web database. In order to get rid of the tedious work of man-
ually editing the SRDL description, we developed a conver-
sion tool that automatically converts robot descriptions cre-
ated with the help of the Uniform Robot Description Frame-
work (URDF) into SRDL. In addition to the mere kinematic
structure present in the URDF description, the SRDL docu-
ment subsumes the structural parts under component groups,
e.g. arms (this is done automatically by reading in configu-
ration files for the manipulation planner, which defines plan-
ning groups for each arm). Furthermore, the capabilities of

15



the robot can be explicitly advertised. This knowledge is
used to check whether a robot provides the prerequisites for
executing a given task with its specific requirements for sen-
sors, actuators or software algorithms.

For our experiment described in section Simulation Ex-
periment we generate SRDL descriptions for the Amigo
(Lunenburg et al. 2012) and the Care-O-Bot 3-4 (Parlitz
et al. 2008) robots. Fig. 4 depicts an example for the
Amigo robot. The capabilities needed to run the exper-
iment are GraspingCapability, gripper action, move arm
and move base, which notify the system that the robot is
able to control a gripper, move its arm and its base and to
grasp something. The OWL individual AmigoLeftArm de-
scribes the links and joints, which form the left arm of the
robot, by defining the base link and the tip links of the kine-
matic chain of the arm.

Executable Robot Plan Instantiation
The task plan generated by SHOP2 is a sequence of opera-
tor calls parametrized by the symbols described in the initial
world state. It is not immediately possible to execute this
kind of plan on a robot. We use the CRAM plan language
(CPL) to specify the generated robot execution plans. The
plans consist of calls to reactive execution plans provided
in a manually crafted plan library specific to the respective
robot platform, also written using CPL. CPL builds on the
Common Lisp programming language and provides several
interesting features to facilitate the problem of writing reac-
tive robot execution plans.

CPL allows the definition of process modules that allows
grouping different robot functionality (e.g. for navigating
the robot base) and provide a common interface to differ-
ent underlying hardware drivers. In our system, we manu-
ally aligned the calls of process modules with the defined
operators.

Also, CPL supplies the concept of designators. These are
symbolic descriptions that specify more detailed informa-
tion about actions, describing e.g. objects and locations. As
was proposed by (Beetz, Mösenlechner, and Tenorth 2010),
we use them to encode information that is to be resolved
during plan execution time. Our system generates a desig-
nator for each object and location for each symbol that was
created for describing the initial world state while omitting
symbols that are not used in the actual, generated SHOP2
plan. E.g. the statement (in-center-of coke1-pose
coke1) in the initial world state gets converted into the lo-
cation designator

(coke1-pose
(location ‘((in-center-of ,coke1))))

using the knowledge defined in the semantic map that
“coke1” is an object and “coke1-pose” is a location. The
designator definition is added before the plan definition, as
can be seen in Fig. 8. Robot parts to be used in the task, like
manipulators or actuated sensors, are also added as object
designators. They are used for e.g. specifying which arm to
use. Designators representing robot hardware are resolved in
the process module for the corresponding platform.

Figure 5: Simulated world used in the experiment.

As designators are basically Common Lisp variables that
can depend on each other, we need to make sure that they are
defined in the right order. We extract the corresponding de-
pendency graph and apply a topological sorting algorithm to
ensure a proper definition order. Object designators that de-
scribe robot parts or general concepts are currently resolved
in the process modules. E.g. object-state-closed
is used for stating that the gripper should be closed and
cobarm refers to the KUKA manipulator of the Care-O-
Bot robot. Object designators get resolved by querying the
knowledge processing system. In the current implementa-
tion, objects and their poses are resolved by their type only.
Note that this can lead to problems in environments with
several instances of the same object type. However, the sys-
tem can be extended to use a globally unique identifier for
objects provided an object tracking system capable of iden-
tifying objects consistently.

The integration of perception is a highly important and
challenging problem in generating robust executable robot
plans. For this work, we simulated a simple passive percep-
tion which steadily publishes object detection results into the
KnowRob system, as long as the object is approximately in
line of sight of the robot. Thus, the robot execution plan is
limited to actuation commands.

Simulation Experiment
To demonstrate our system a simplified simulation environ-
ment has been created, in which both the TU/e Amigo and
the Fraunhofer Care-O-Bot will perform the task of trans-
porting a drink from one area to another, see Fig. 5. The
simulation experiment is run in the Gazebo simulator3.

The main goal of the experiment is to demonstrate that al-
though the two systems differ in hardware topology (i.e. two
arms for the Amigo robot versus one arm for the Care-O-
Bot), they are both capable of performing the same task by
allowing different task decompositions. The main challenge

3http://gazebosim.org

16



Class: Amigo
SubClassOf:

knowrob:Robot,
(srdl2-cap:hasCapability some srdl2-cap:GraspingCapability)
and (srdl2-cap:hasCapability some srdl2-cap:gripper_action)
and (srdl2-cap:hasCapability some srdl2-cap:move_arm)
and (srdl2-cap:hasCapability some srdl2-cap:move_base)

...
Individual: AmigoArmLeft

Annotations:
srdl2-comp:endLinkOfComposition amigo:amigo_finger1_left,
srdl2-comp:endLinkOfComposition amigo:amigo_finger2_left,
srdl2-comp:baseLinkOfComposition amigo:amigo_shoulder_yaw_joint_left

Types:
srdl2-comp:ComponentComposition,
PhilippsArm

Figure 4: Excerpt of the semantic description of the Amigo robot used in the experiment

both robots will have to overcome is to open the door that
separates the two areas. This can be achieved by touching
one of the buttons next to it. The door will then stay open
for 45 seconds.

To start the process, a human operator has to specify the
task to be executed, its parameters (i.e. the object to operate
on), the robot and the environment in terms of OWL identi-
fiers. Note that the latter two could in theory inferred auto-
matically.

Amigo
The “opening the door” action is implemented as a HTN
task and part of one possible decomposition of the “navi-
gate” HTN task (so it could be more accurately named “pass
a closed door”). Other decompositions for the latter are “no
operation” (NOP) (in case the robot’s current pose matches
the goal pose), moving the base to the goal via an corre-
sponding operator if the current base pose and the target
pose are adjacent in the topology of the environment and
a recursion step for chaining multiple navigation steps.

For the task of transporting a drink the task for Amigo
decomposes into

• navigating to an approach pose in front of the drink,

• picking up the drink with one arm,

• navigating to the door,

• operating the door button with another arm,

• navigating to the drop-off location,

• dropping off the drink.

These steps are visually depicted in Fig. 6. The system
provided two similar plans, that only differed in the manip-
ulators used. E.g. in the first plan the robot used the right
manipulator to pick up the target object and the left to oper-
ate the door button, while in the second plan the order was
reversed. In cases like this, where there is no apparent ad-
vantage of multiple plans, the system arbitrarily selects the
first one.

Figure 6: Plan execution steps performed by Amigo.

Care-O-Bot 3-4
The Care-O-Bot differs from the Amigo robot in that it has
only one arm. To solve the scenario described above, we
chose the solution of having the Care-O-Bot use its mov-
able tray to temporarily place the drink upon, while it is ma-
nipulating the door button with its manipulator. It is note-
worthy that the button could in theory be operated with the
object in the gripper. However, our intention is to simulate
opening a real door, so the experiment setting assumes that
the arm has to be free. This is implemented in the plan-
ning domain by two additional HTN tasks. The first is called
FreeArmForGrasping, which decomposes into NOP if

17



Figure 7: Plan execution steps performed by Care-O-Bot.

at least one arm is free (i.e. not attached to any object), and
into an operator to put an object from the gripper on the tray
if a tray is available and no arm is free. The other HTN task
is called PrepareNavigation, which clears the carry-
ing tray and puts the arms in parking position if necessary.
PrepareNavigation is defined recursively, as it can be neces-
sary to execute more than one of the mentioned actions.

A visual overview of the steps involved for the Care-O-
Bot is shown in Fig. 7.

Conclusion
We presented a system to create robot execution plans for
heterogeneous robot platforms by HTN planning on knowl-
edge encoded in OWL. The system makes use and extends
former work that was geared towards encoding task descrip-
tions in an abstract, hardware-agnostic way. We showed its
functionality by having two distinct robots execute the same
task description and coping with their difference in hardware
setup.

An useful feature that was inherited and extended from
the former, static task execution component, is that different
kinds of knowledge are kept separate. For instance, knowl-
edge about the robot hardware is kept separate from knowl-
edge on HTN task decompositions or the environment. This
allows for easy replacement of parts and greater applicabil-
ity in new environments or for new robots. Also, symbols
and concepts from the underlying OWL knowledge repre-
sentation are aligned in the whole chain from planning to
execution; and this can be used for further reasoning during
execution time.

On the other hand, the additional overhead necessary for
fully describing the planning domain in OWL is signifi-

(def-cram-function generated-plan nil
(with-designators

((bed1
(object
’((name bed1)

(type bed--piece-of-furniture))))
(cobtray
(object
’((name cobtray)

(type component-composition))))
(object-state-closed
(object ’((name object-state-closed))))

(door1
(object
’((name door1) (type door))))

(bed1-reachable-space
(location
‘((in-reach-of ,bed1)

(connected-to ,door1))))
...
(object-state-open
(object ’((name object-state-open)))))

(achieve-operator
‘(!move-to-operator ,cob3-4-robot1

,icetea1-reachable-space))
(achieve-operator
‘(!change-gripper-state-operator ,cobarm

,object-state-open))
(achieve-operator
‘(!move-arm-to-operator ,cobarm

,icetea1-pose))
...))

Figure 8: Excerpt from the generated plan for the Care-O-
Bot robot

cant compared to the previous approach of only represent-
ing high level actions; the given example domain encoded in
RDF/XML required for instance around 4000 lines of XML.

In the future, we will try to apply the approach in more
difficult environments and on more diverse robots. Another
interesting further direction would be to use or even learn
additional information in the environment, like how long the
door will stay open after the button has been triggered. In
the scenario described the robot has no knowledge about
how long the door will stay open after the button has been
pressed.

Finally, we realize that the separation of plan generation
and execution reduces the robustness of the system. Future
work will focus on integrating the plan generation more
deeply into plan execution. To achieve that, we also will
need to adapt the representation of the planning domain to
be less dependent on the SHOP2 planner.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. The research leading to these results has received
funding from the European Union Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement no 248942
RoboEarth.

18



References
Beetz, M.; Klank, U.; Kresse, I.; Maldonado, A.;
Mösenlechner, L.; Pangercic, D.; Rühr, T.; and Tenorth, M.
2011. Robotic Roommates Making Pancakes. In 11th IEEE-
RAS International Conference on Humanoid Robots.
Beetz, M.; Mösenlechner, L.; and Tenorth, M. 2010. CRAM
- a cognitive robot abstract machine for everyday manipula-
tion in human environments. In Intelligent Robots and Sys-
tems (IROS), 2010 IEEE/RSJ International Conference on,
1012–1017. IEEE.
Di Marco, D.; Tenorth, M.; Häussermann, K.; Zweigle, O.;
and Levi, P. 2012. Roboearth action recipe execution. In
12th International Conference on Intelligent Autonomous
Systems.
Elfring, J.; van den Dries, S.; Molengraft, M.; and Steinbuch,
M. 2012. Semantic World Modeling Using Probabilistic
Multiple Hypothesis Anchoring. Robotics and Autonomous
Systems. accepted / in press.
Hartanto, R. 2011. A hybrid deliberative layer for robotic
agents: fusing DL reasoning with HTN planning in au-
tonomous robots, volume 6798. Springer.
Joshi, S.; Schermerhorn, P.; Khardon, R.; and Scheutz, M.
2012. Abstract planning for reactive robots. In Robotics
and Automation (ICRA), 2012 IEEE International Confer-
ence on, 4379–4384. IEEE.
Kaelbling, L., and Lozano-Pérez, T. 2011. Hierarchical task
and motion planning in the now. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, 1470–
1477. IEEE.
Kunze, L.; Roehm, T.; and Beetz, M. 2011. Towards se-
mantic robot description languages. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
5589–5595. IEEE.
Lunenburg, J.; van den Dries, S.; Elfring, J.; Janssen, R.;
Sandee, J.; and van de Molengraft, M. 2012. Tech United
Eindhoven Team Description 2012. In RoboCup Team De-
scription Papers 2012.
Mösenlechner, L., and Beetz, M. 2009. Using physics- and
sensor-based simulation for high-fidelity temporal projec-
tion of realistic robot behavior. In 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS’09).
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research (JAIR) 20:379–
404.
Parlitz, C.; Hägele, M.; Klein, P.; Seifert, J.; and Dauten-
hahn, K. 2008. Care-obot 3 - rationale for human-robot in-
teraction design. In Proceedings of 39th International Sym-
posium on Robotics (ISR), Seoul, Korea.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
HTN planning for web service composition using SHOP2.
Web Semantics: Science, Services and Agents on the World
Wide Web 1(4):377–396.
Sirin, E. 2006. Combining description logic reasoning with
AI planning for composition of web services. Ph.D. Disser-
tation, University of Maryland.

Tenorth, M., and Beetz, M. 2009. Knowrob—knowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, 4261–4266. IEEE.
Tenorth, M.; Perzylo, A.; Lafrenz, R.; and Beetz, M. 2012.
The RoboEarth language: Representing and Exchanging
Knowledge about Actions, Objects, and Environments. In
Robotics and Automatic (ICRA), 2012, IEEE International
Conference on.
Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, J.;
Galvez-Lopez, D.; Häussermann, K.; Janssen, R.; Montiel,
J.; Perzylo, A.; et al. 2011. Roboearth. Robotics & Automa-
tion Magazine, IEEE 18(2):69–82.

19




