F2010-C-123

SIMULATION ENVIRONMENT
FOR THE DEVELOPMENT OF PREDICTIVE SAFETY SYSTEMS

Dirndorfer, Tobias Roth, Erwin,!Neumann-Cosel, Kilian von,
AWeiss, Christiantknoll, Alois
TU Miinchen, GermanyAudi AG, Germany

KEYWORDS - simulation, predictive safety, pre-csiltn-phase, pre-crash-scenarios, test
and optimization

The continuously growing vehicle density on Europezads leads to a higher risk for traffic
participants to be involved in accidents. In oremitigate this risk both for vehicle occu-
pants as well as unprotected traffic participathis,automotive industry seeks for solutions in
the intelligent combination of active and passiatey systems towards an integral approach.

Safety applications like an active emergency bthkécan reduce the consequences of an
accident or even avoid a crash completely and ptigdipassive safety systems that feature
optimized deployment characteristics of restraystams (airbags, belt pretensioners) both
depend on anticipatory sensor signals concerniagehicle environment in the pre-collision-
phase as a basis for their crash prediction alyost The development, test and validation of
predictive safety systems require efficient simuolatbased methods in order to be able to
achieve a large test space coverage and to gemepatelucible sensor signals for the respec-
tive test scenarios.

In this paper a highly configurable and flexiblethwal for the simulation-based development
and testing of predictive safety algorithms is preed. The method is based on a synchroni-
zed data connection between MATLAB/Simulink/Staiefland “Virtual Test Drive” (VTD).

MATLAB/Simulink/Stateflow allows the intuitive modidased rapid prototyping of safety
function algorithms using predictive sensor infotima as input data. These algorithms can
easily be transformed into ANSI/ISO C-complianteddr diverse hardware targets e.g. by
the Real-Time Workshop and tested in an identmathfin the vehicle after the optimization
and validation process in the simulation environinen

VTD consists of the components driving simulatiwaffic simulation, visualization and
sensor models, which supply the algorithms runmng ATLAB/Simulink/Stateflow with
the required sensor input data concerning thealistahicle environment.

This combination offers the possibility to easitydglement a large variety of relevant traffic
situations and environmental conditions in ordelesd, optimize and validate the predictive
safety systems under repeatable conditions. Sifanldata can be accessed via interfaces for
an on-/offline data evaluation and visualisationnmependent analysis applications. The
complete simulation environment can be distributeer several computers connected via IP-
network and executed in real-time or on the basssammmon simulation time.

The simulation environment was exemplarily usetesh and optimize an anticipatory algo-
rithm characterizing an imminent collision by thegiction of representative collision para-
meters. The testing was done on the basis of aojeof characteristic pre-crash-scenarios
statistically representing the GIDAS database (Gerin-Depth Accident Study).

VIRTUAL TEST DRIVE — An integrated test environmdot the automotive industry

Audi and Volkswagen are developing an integratetiraghly modular computer based
simulation system called “Virtual Test Drive” (VTIP)). Its main focus lies on the support of
automotive development engineers throughout thieeeti¢sign, testing and validation
process of predictive safety functions.

VTD's architecture allows realistic closed-loop slations to investigate the interactions of

» vehicle driving dynamics
« vehicle sensor systems
* vehicle actuators
e driver
e driver assistance systems
e environmental conditions
(weather, road conditions, traffic situation, Cadata, ...).

As different technical applications and developnstages require specific test methods and
tools, VTD supports multiple simulation variantsrngans of reusable components, inter-
faces, models and tools, see figure 1.

- Rt /\,J \ : A
= (T N '
HIL: Hardware in the Loop VIRTUAL SIL: Software in the Loop
e.g. simulate consistent virtual e.g. test and optimize image processing
environment or functional algorithms
Models & Tools

Cars / Pedestrian Models
Virtual Environment
Driving Dynamic

VIL: Vehicle in the Loop DIL: Driver in the Loop

e.g. testing functions in real vehicles e.g. ergonomical tests in driving simulators

Figure 1: Virtual Test Drive

The operation mode Software-in-the-loop (SiL) akave early testing of algorithms on
ordinary computer hardware in a closed loop andatliematized verification of test data sets
at a later stage. Driver-in-the-loop (DiL) simutatimay be used for the interactive testing of
algorithms in order to get feedback of human tesbands at an early stage. Hardware-in-the-
loop (HiL) offers the possibility to test and valig systems on already defined target
hardware (e.g. Electronic Control Units for massdoiction) in a closed loop. Vehicle-in-the-

loop (ViL) can be used in parallel at different dpment stages when the focus is shifting
to the limits of vehicle dynamics or safety andstasice systems.

Especially within the SiL operation mode as theutof this paper the easy and flexible
access of VTD simulation data from a runtime envinent with effective visualization and
evaluation tools is of great importance. In ordeincrease the efficiency of the software de-
velopmeniprocess the runtime environment should allow madeled algorithm implementa-
tion and automatic code generation for diverseward targets. The subsequently described
application programming interface for MATLAB/Simok (2) offers all these possibilities.

MATLAB/Simulink-API — An automatically generated gication programming interface
In order to allow a bidirectional access to VTD slation data for algorithms implemented in

Simulink, an application programming interface (ARhs developed for MATLAB/Simulink
called VTD Communication Library (VTDComLib), segtre 2.

/V IRTUAL \ MATLAB / Simulink
/ \ B e DER

Gsl GSl
Models & Tools scp VTD scpP
Virtual Environment Communication
Vehicle Dynamics G| Library s
Sensor Models (autom. generated API)

Traffic Simulation |« SCP SCP | — T

Figure 2: VTD Communication Library

The library uses the Generic Simulation Interfag&l) and the Simulation Control Protocol
(SCP) interface to establish a real-time data cciore between Simulink and the VTD
simulation environment, see figure 3. The GSI iiatez provides read and write access to a
large number of simulation variables, e.g. positaiynamics and state values of vehicles,
sensor outputs, road marks, environment conditietes, while the SCP interface allows to
guery and set parameters which control the behawibthe simulation environment itself,
e.g. start and stop the simulation, trigger nexttie computation, enable/disable event
triggers, etc..

The required API code to access GSI and SCP data$imulink is generated automatically,
as it is expected that continuous development isffetated to the extension of VTD and the
respective GSI interface require frequent changesder to be able to fulfil new require-
ments from algorithm developers and testers. Thezed code parser and code generator tool
chain based on the software ANTLR (3) was implem@énivhich uses the C-programming
language header file declaring the contents of @BAork packets as parser input and gene-
rates the resulting code for the API in Simulinlsé@d on a given Parser Grammar definition
and code templates for C-, MATLAB- and Simulink Irfitts, see figure 4.

The data structures and declarations within the GEleader file are described by comments
in a Doxygen (4) compatible format. The grammawted to the ANTLR parser contains
expressions for dealing with C-language constrymes.compiler definitions, Doxygen style

comments and Doxygen style Meta-Tags. The lattes @mne used to have a more fine grained
control over the code generation process, e.g.hehéb create special Matlab-code for the
handling of C-Language Enum variables or to proudermation about the Sl unit of a
certain variable to the Simulink API user.

Ethernet)
TCP/IP

Real-Time

=)

8| Connection

Virtual Test Drive MATLAB/Simulink/Stateflow
Test Environment Function Development and

Runtime Environment

Figure 3: Architecture of the smulation environment

The parser and code generator tool chain gendtretgs-language code for a MATLAB/SI-
mulink s-Function, a MATLAB Bus Object Definitionl€ for a GSI input and output bus as
well as a Simulink .mdl file specifying Simulink \DF'Communication Block Elements for
sending / receiving GSI/ SCP data.

The automatically generated Simulink API achieveiththis tool chain allows the comfor-
table access of VTD simulation variables by medrtee®Simulink VTD Communication
blocks and the MATLAB Bus Selector Dialog for seieg individual data signals.

] MATLAB
1 s-Function
i (C-Code)

1 MATLAB Bus
Object Definition
] .m-File

VIRTUAL

Generic Simulation
Interface (GSI)
C-HeaderFile

Simulink Library
Block Element

C-Header Style
& Doxygen
Grammar

Figure 4. Parsing and Code Generation

ALGORITHM DEVELOPMENT — Testing results of a pretii@ safety algorithm

Various automotive applications in the active andgive safety use anticipatory sensor
signals concerning the vehicle environment. Aspiatsthe collision probability, the un-
avoidability of a crash or the initial parametefso arising accident are the basis for the
triggering or adaptation of the application specdafety actuators. In this case an algorithm
using anticipatory sensor data during the pre-cpdetse to predict the parameters Time-To-
Collision (TTC), relative collision velocity () and collision angleg) at the time of contact
was implemented as a Simulink s-Function and exanipltested in the presented environ-
ment. The testing was done on the basis of a hageqgb characteristic pre-crash-scenarios
statistically representing the GIDAS database (5).

In the following the algorithm testing proceduraldhe resulting prediction outputs are
demonstrated on the basis of two characteristicsami scenarios taken from the extensive
testing pool available in VTD. The selected sceygaare shown in figure 5.

Scenario 1

Scenario 2

V=43 t=00/01138 3 V&A3 t=00/01,70.

Figure5: Test scenariosin Virtual Test Drive

In the first accident scenario the virtual testieleh(ego vehicle, ¥= 78 km/h) collides fron-
tally with the rear end of a laterally slightly gtgered vehicle driving ahead,(¥ 52 km/h). In
the second scenario the ego vehiclexv3 km/h) is frontally hit by an oncoming vehidtie-
ning left at an intersection {s= 20 km/h). These two scenarios are typical examfur real-
world situations where predictive frontal safetplgations can significantly reduce the con-
sequences of an accident or even avoid the accoempletely.

For both test cases the types of the two collidieigicles (in this case identical) and a virtual
pre-crash-sensor for the ego vehicle were spedtfi®éD. In the defined configuration the
predictive sensor is mounted on the back sidee&tio rear-view mirror and geared towards
the driving direction. The sensor position andrémulting three-dimensional sensor cone are
illustrated in figure 6.

=78 {=00:00.88

Figure 6: Sensor cone for the virtual pre-crash-sensor

The shown virtual sensor has a longitudinal rarfggdameters, a symmetric horizontal aper-
ture angle of 60 degrees and a vertical apertuykeari 6 degrees. The currently implemented
idealized sensor model offers exact data concethim@ctual geometric and kinematic state
for all objects intersecting with the defined sensme.

When the described scenario is started in VTD itmellsaneously running Simulink-API-
interface described above offers the mentionedigtieel sensor data as well as kinematic
data concerning the ego vehicle to a Simulink medeataining the mentioned crash pre-
diction algorithm.

=78 t=00;00/70 A0 20 a0 i 10 20 30
-y [m]

Figure 7: Prediction of the crash constellation and the collision parameters

Based on the longitudinal velocity, the longitudiaeceleration and the yaw rate of the ego
vehicle as well as the predictive sensor data conagthe collision opponent (distance and
relative velocity in longitudinal and lateral ditem and dimensional information) the
algorithm estimates the expected collision coraieth and returns the TTCevande as
output parameters.

The algorithm output for the two accident scenapiesented in figure 5 over the time period
of about one second before the mechanical contdbeaolliding vehicles is shown in the
following plots.

1600 100 200

150

00 e Dot

1000 : : : :
© | H : : : BO b e b :

v lkanih]

TTC [ms]
phi [

b A S :
S00

Scenario 1

-100

-150

1800 T 100 T 200
150
100

1000
50

4 ki)

TTC [ms]

: 50
[101] ERTR TR POE FRUOUOTTURS b NS DOPRTE VORRPPPRPPESPPRPRPO

Scenario 2

-100

150 / 4

-200
1)

02 04 06 08 1
tlsl

Figure 8: Algorithm output in the selected collision scenarios

As expected in both scenarios the TTC which isipted with a forecast interval of 1 second
continuously decreases till zero at the time oftacin The predicted relative velocity at the
collision time amounts to about 26 km/h over thelgtorecast interval in the first scenario
(v1 =78 km/h, y = 52 km/h) where both vehicles are driving condyain the same direction.

In the second scenarioy(¥ 43 km/h, y = 20 km/h) the predicted relative velocity dece=as
from about 63 km/h to 59 km/h during the forecastduse the oncoming vehicle decelerates
along the curved trajectory. The collision angleasstantly estimated to O degrees during the
prediction interval in the first scenario as boéhicles don’t change their driving direction.
Because of the curved trajectory the predictedstoil angle in the second scenario changes
from about 175 degrees to approximately 140 degrees

By variation of the sensor origin and the geomefrihe sensor cone in VTD different sensor
constellations can be tested and evaluated in ctionevith the predictive algorithm embed-
ded in Simulink. Thereby the moment of detectiod tre resulting effect of a predictive
safety system under given scenario conditions eaanlalyzed in detalil.

CONCLUSIONS

For the testing and optimization of predictive satgorithms especially in the pre-crash-
phase the use of simulation methods is indispeasadbk presented simulation environment
offers the possibility to test algorithms working anticipatory sensor data securely and
reproducibly with a big coverage of relevant scargar~urthermore the described simulation
tool chain represents an efficient means for thmranication of technical ideas and the
descriptive functional presentation of predictia¢ety systems. In order to improve the
simulation-based performance evaluation of safgpfieations e.g. under different weather or
lighting conditions complex models for anticipat@gnsors have to be integrated into the

simulation environment. In this context a closepration between the original equipment
manufacturers and suppliers in the automotive itndad a standardized way of sensor
modelling and sensor model exchange are necesshgydble to do the release of predictive
systems with the main focus on simulation-basecdau.

(1)
(2)
3)

(4)
()

Neumann-Cosel, K. von, Dupuis, M., Weiss, irtual Test Drive — Provision of a
Consistent Tool-Set for [D,H,S,V]-in-the-Loop”, Rroceedings on Driving
Simulation Conference Europe, 2009, Monaco

MATLAB 2007a, Copyright © 2000-2006 The Math¥ks Inc.

Website ANTLR Parser Generator Software Projatp://www.antlr.org

(March 18", 2010)

Website Doxygen Project, http://www.doxygen.¢varch 15", 2010)

GIDAS, “German In-Depth Accident Study”, httavw.gidas.org (March 10 2010)

