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ABSTRACT

The introduction of environment perception sensors
into the automotive world enables further improve-
ment of the already highly optimized passive safety
systems. Such sensors facilitate the development of
safety applications that can act in a context sen-
sitive manner concerning the protection of vehicle
occupants. Hereby the quality of the provided in-
formation is decisive for the usability and effective
range of such sensors within integrated safety sys-
tems. In this paper noise effects in sensors and their
implications on the prediction of collision parame-
ters are analyzed. The focus lies on sensors that
can measure distances but not velocities or acceler-
ations of the objects surrounding the car. For such
sensors a noise model is presented as well as a track-
ing algorithm aiming to estimate the velocities and
to compensate the effects of noise. This information
is used by a trajectory-based algorithm to predict
relevant collision parameters like time-to-collision,
relative velocity at collision time etc. Monte Carlo
simulations show the influence of noise on the ac-
curacy of the predicted collision parameters. The
described model-based study allows the systematic
deduction of sensor requirements and represents a
new way for the evaluation of the robustness of pre-
dictive passive safety systems.

INTRODUCTION

Modern cars provide a high level of safety due
to the optimization of bodywork, seat-belts or
airbags in the last decades. Conventional pas-
sive safety applications for the activation of oc-
cupant restraint systems work on established sen-
sor concepts, e.g., acceleration and pressure sen-
sors, and have already reached a high level of adap-
tivity and robustness. The introduction of envi-
ronment perception sensors leads to a further im-
provement of security, since safety systems can be
developed that act in a context sensitive man-
ner [1, 2, 3, 4]. First applications like the proac-
tive reversible belt-tensioner can already be found
in new cars, e. g., in the Audi A7 [5], and the adap-

tation of airbags and other passive safety systems
to the specific crash situation are in the focus of
current development. Future cars will combine all
available information—including those gained by
Car-to-X (http://www.simTD.de, http://www.car-
to-car.org) technologies—concerning the environ-
ment to increase the effectiveness of vehicle safety
in an integral sense.
The number of sensors that are and will be in-
tegrated in new vehicles is increasing since appli-
cations have various requirements concerning the
range, aperture, sensitivity or other properties.
Typical applications using such sensors are mainly
located in the field of advanced driver assistance
systems like automatic cruise control, lane assist,
heading control, etc. In the vehicle safety domain
requirements on such sensors are high, i. e., a very
small false positive rate and a very high true pos-
itive rate in the detection of objects in the envi-
ronment of the car. Not only the detection of an
object’s existence is of high interest but also its
exact location, velocity and geometry. Such pre-
crash information allows the estimation of collision
parameters before a collision occurs. This infor-
mation can be used to optimize the activation of
adaptive restraint systems. However, the pre-crash-
prediction of the collision parameters is subject to
a couple of disturbance effects, e.g., inexact mea-
surements as well as time delays caused by tracking
algorithms or the communication between different
electronic control units. These factors can affect

Figure 1. Effects of sensor noise on the col-
lision prediction
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the required precision of predictive crash severity
estimations and therefore the effectiveness of inte-
grated safety systems. The example from Figure 1
illustrates that a large noise power of the predic-
tive sensor can lead to a wrong prediction of how a
scenario will develop in the future. Assuming that
the dynamic parameters like velocities or accelera-
tions do not change during the prediction interval
a small noise power disturbs the prediction mar-
ginally, whereas a large noise power can lead to a
completely wrong estimation of the scenario. The
first illustration in Figure 1 shows a prediction with
no measurement noise, the second illustration the
same scenario but under the assumption that small
noise power disturbs the measurement and the third
illustration the same scenario but under the as-
sumption that a large noise power disturbs the mea-
surement. Therefore, it is necessary to quantify the
effect of noise on predictions that are used to adapt
restraint systems by taking into account the whole
signal processing chain. This paper focuses on such
a model of disturbance effects and their influence
on the computation of relevant collision parameters
like the time-to-collision, the relative velocity at col-
lision time, the collision angle and further geometric
parameters. On the one hand the noise caused by
sensors describing the state of the ego vehicle and
on the other hand the noise caused by predictive
sensors detecting the vehicle environment are con-
sidered. Whereas a stationary white noise Gaussian
random process is assumed for the noise disturb-
ing the ego-state, for the predictive sensor a more
sophisticated model is applied. The focus lies on
sensors able to measure the position and geometry
of objects but not their velocity and acceleration.
The velocity must be estimated based on position
changes which is accomplished here using a Kalman
filter. Thus, the noise process describing the in-
accuracy of the position measurement determines
the noise process for the velocity. The model for
position inaccuracies takes into account a distance
based noise power. On the basis of such a noise
model Monte Carlo simulations are performed for
four predictive sensor variants to analyze the ef-
fects on the computed collision parameters. The
four sensor variants were chosen to represent sen-
sors with different performances.

The chapter “MEASUREMENT DATA” intro-
duces the relative dynamics model and the sensor
noise model that are used in the Monte Carlo sim-
ulations later on. Chapter “COLLISISION PRE-
DICTION ALGORITHM” focuses on the tracking
model and on the trajectory-based prediction mod-
ule used to calculate the collision parameters. In
Chapter “MONTE CARLO SIMULATION” three
traffic scenarios are analyzed in detail and the ef-

fects of noisy measurements are presented. The
general outline of the paper is illustrated in Fig-
ure 2.

Figure 2. Outline of the paper

Throughout the paper vectors and matrices are de-
noted by lower and upper case bold letters. A
M ×N zero matrix is dented by 0M×N .

MEASUREMENT DATA

In this chapter the model-based generation process
of noisy measurements as input data for a collision
prediction algorithm is described. Firstly the two-
dimensional relative dynamics model used for the
simulation of ideal sensor data concerning the ego
vehicle and an ego-mounted predictive sensor mea-
suring relative position data is explained. After-
wards the application of sensor noise to the simu-
lated exact reference data is depicted.

Relative dynamics model

For the motion simulation of the ego and opponent
vehicle in specific collision scenarios a nonlinear sin-
gle track model with a Pacejka tire force approach
as described in [6] was applied (see Figure 3). This
model offers a good two-dimensional description of
the global vehicle movement in stationary as well
as dynamic driving scenarios disregarding effects of
pitch and roll. As only the global vehicle trajec-
tory over ground and not the exact knowledge of
internal system state variables such as wheel rota-
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tion speeds or forces was of interest the model was
regarded as sufficient for this study. In the follow-
ing, as shown in Figure 3 the capital letters X and
Y denote an earth-bound coordinate system, the
lower case letters x and y a vehicle-bound coordi-
nate system that is rotated with the yaw angle ψ
with respect to the X-axis, and the lower case let-
ters xv and yv a vehicle-bound coordinate system
that is rotated with the slip angle β with respect to
the x-axis. Vectors with the subscripts XY , xy or
xvyy represent values in the corresponding coordi-
nate systems.

Figure 3. Relative dynamics simulation
based on a nonlinear single track model

In the relative dynamics simulation environment
the flat projection of each vehicle body was re-
garded as rectangular and symmetric to the lon-
gitudinal axis of the single track model. The basic
single track model equations are summarized in the
following. The tire slip angles αf and αr at the
front (subscript f) and rear (subscript r) wheel are
given by the subsequent kinematic relations con-
taining the frontal steering angle δf , the yaw rate
ψ̇, the velocity v, the vehicle slip angle β and the
center of mass distances lf from the frontal and lr
from the rear end of the vehicle [7]:

αf = δf − arctan

(
lf · ψ̇ + v · sinβ

v · cosβ

)
(1)

αr = arctan

(
lr · ψ̇ − v · sinβ

v · cosβ

)
. (2)

The vehicle center of mass acceleration alon and
alat in longitudinal (xv) and lateral (yv) trajectory
direction can be calculated on the basis of the prin-
ciple of linear momentum as a function of δf , β, the
vehicle mass m as well as the tangential and side

tire forces Ft and Fs at the front and rear tire:

a =
[
alon
alat

]
xvyv

=
[

v̇

v · (ψ̇ + β̇)

]
xvyv

=


1
m · (Ftr · cosβ + Ftf · cos(δf − β)
+Fsr · sinβ − Fsf · sin(δf − β))

1
m · (−Ftr · sinβ + Ftf · sin(δf − β)

+Fsr · cosβ + Fsf · cos(δf − β))


xvyv

. (3)

The vehicle yaw acceleration ψ̈ results from the
principle of conservation of angular momentum de-
pending on the mass moment of inertia Izz around
the vehicle z-axis (in a right-hand coordinate sys-
tem with the origin in the vehicle center of mass P
and the x- and y-axis according to Figure 3):

ψ̈=
1
Izz

·(Fsf ·cos δf ·lf + Ftf ·sin δf ·lf − Fsr ·lr).

(4)

The temporal change ṙ in the global vehicle center
of mass position is given by the following kinematic
equation:

ṙ = v =
[
Ẋ

Ẏ

]
XY

=
[
v · cos(ψ + β)
v · sin(ψ + β)

]
XY

. (5)

With the Pacejka tire forces given by [7]

Fsf = C3 · sin(C2 · arctan(C1 · αf−
C4 · (C1 · αf − arctan(C1 · αf )))) (6)

Fsr = C3 · sin(C2 · arctan(C1 · αr−
C4 · (C1 · αr − arctan(C1 · αr)))) (7)

as a function of the constant frontal and rear tire
parameters Cfi and Cri, with i ∈ {1, 2, 3, 4}, and
the frontal and rear tire slip angles the presented
system of differential equations can be solved by
numerical integration. This allows the calculation
of the global vehicle center of mass position r in X-
and Y-direction as well as the vehicle yaw angle ψ
and slip angle β as a function of time and therefore
defines the vehicle trajectory over ground.

On the basis of the single track model trajectory
ideal sensor data concerning the ego vehicle state
is available. For this study it is assumed that in
the ego vehicle the absolute ego center of mass
speed vego is known based on wheel speed mea-
surements and the yaw rate ψ̇ego as well as the
center of mass acceleration axego in xego-direction
and ayego in yego-direction are directly measured
by body-mounted sensors. The corresponding state
variables can be derived from the integrated vehicle
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trajectory via the following equations:

vego = |vego| =
√
Ẋ2
ego + Ẏ 2

ego (8)

ψ̇ego =
dψego
dt

(9)

axego
= cos(βego) · v̇ego
− sin(βego) · vego · (ψ̇ego + β̇ego) (10)

ayego = sin(βego) · v̇ego
+ cos(βego) · vego · (ψ̇ego + β̇ego). (11)

The parallel simulation of two trajectories offers the
possibility to calculate the relative position data
rPopp/Pego

measured by an ideal ego-mounted pre-
dictive sensor which can be calculated for any given
reference point rPopp

on the opponent vehicle.

For a predictive sensor located at rPsens
and

mounted at a displacement of xPsens/Pego
in xego-

direction and yPsens/Pego
in yego-direction relative

to the ego center of mass rPego
the relative location

measurement of the opponent reference point rPopp

is given by:[
xsens
ysens

]
xegoyego

:= rPopp/P sens
= rPopp − rPsens =

=
[
XPopp

YPopp

]
XY

−

[[
XPego

YPego

]
XY

+
[
xPsens/Pego

yPsens/Pego

]
xegoyego

]

=


(XPopp

−XPego
) cosψego

+(YPopp
− Y Pego

) sinψego−xPsens/Pego

−(XPopp −XPego) sinψego
+(YPopp

− Y Pego
) cosψego−yPsens/Pego


xegoyego

=
[
xrel − xPsens/Pego

yrel − yPsens/Pego

]
xegoyego

. (12)

The relative position data xsens and ysens measured
by the predictive ego sensor allows the calculation
of the relative center of mass position rrel via the
following equation in which rPopp particularly refers
to the opponent center of mass:

rrel = rPopp − rPego =
[
xrel
yrel

]
xegoyego

=
[
xsens + xPsens/Pego

ysens + yPsens/Pego

]
xegoyego

. (13)

The derived relative center of mass position data
over time also allows the determination of the rela-
tive velocity vrel between the ego and the opponent
center of mass by:

vrel = vPopp
− vPego

= ṙPopp
− ṙPego

= ṙrel =
[
ẋrel − ψ̇ego · yrel
ẏrel + ψ̇ego · xrel

]
xegoyego

. (14)

The relative acceleration between the two vehicle
centers of mass can then be calculated by:

arel=aPopp
−aPego

= v̇Popp
−v̇Pego

= v̇rel=

=
[
ẍrel−ψ̈egoyrel−2ψ̇egoẏrel−ψ̇2

egoxrel
ÿrel+ψ̈egoxrel+2ψ̇egoẋrel−ψ̇2

egoyrel

]
xegoyego

.

(15)

The simulated ideal measurement data concerning
the ego vehicle and the relative position data con-
cerning the opponent vehicle measured by a pre-
dictive sensor will be used as input for a collision
prediction algorithm estimating the expected geo-
metric and kinematic collision parameters after the
noise model explained in the following section is ap-
plied.

Noise model

In order to model the effect of statistically inexact
measurements by real sensors noise is applied both
to the ego vehicle data and the predictive sensor
data from the relative dynamics simulation. Sys-
tematic sensor errors are regarded as compensable
and therefore not taken into account. As Gaussian
random distributions offer a good means to model
measurement scattering the measurement errors are
assumed to be normally distributed with a given
standard deviation σ around the mean measure-
ment value µ, see Figure 4. As the area of ± 4σ

Figure 4. Normal distribution with a given
standard deviation

around the mean value µ in a Gaussian normal dis-
tribution contains more than 99,99 percent of the
noisy measurement values the standard deviation
for the applied noise process was defined on the ba-
sis of a given measurement tolerance ± ∆µmax via:

σ :=
∆µmax

4
. (16)
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The following equations show the noisy measure-
ments for the ideal ego state variables velocity vego,
yaw rate ψ̇ego and the accelerations axego and ayego :

vnoisyego = vego + ηvego
(0, σvego

) (17)

anoisyxego
= axego

+ ηaxego
(0, σaxego

) (18)

anoisyyego
= ayego

+ ηayego
(0, σayego

) (19)

ψ̇noisyego = ψ̇ego + ηψ̇ego
(0, σψ̇ego

), (20)

where η(µ, σ) denotes a Gaussian random variable
with mean µ and variance σ2.

The noisy measurements for the ideal predictive
sensor data xrel and yrel as well as for the ideally
detected opponent length Wsens are given by:

xnoisysens = xsens + ηxsens
(0, σxsens

) (21)

ynoisysens = ysens + ηysens
(0, σysens

) (22)

Wnoisy
sens = Wsens + ηWsens(0, σWsens). (23)

Figure 5 shows an example for ideal and discrete
noisy measurement data over time.

Figure 5. Ideal and discrete noisy measure-
ment data over time

For the further analysis steps the standard devia-
tion of the noisy ego measurements was regarded
as constant over time (assumed values for σ see
Table 1).

Table 1.
Assumed standard deviations

for ego sensor noise

sensor σ
vego 0.075 m/s
axego

0.050 m/s2
ayego

0.050 m/s2
ψ̇ego 0.005 rad/s

For the predictive sensor measurements (xsens,
ysens and Wsens) a more complex model was ap-
plied. The standard deviation σ of the applied mea-
surement noise was modeled as distance dependent
via the following linear equation because the maxi-
mum resolution of the sensor element limits the de-
tection accuracy in a decreasing manner along the
measurement distance:

σ(d) = σ0 · (1 + cd · d). (24)

The measurement distance d was calculated on the
basis of the ideal sensor values xsens and ysens:

d =
√
x2
sens + y2

sens. (25)

The assumed basic standard deviations σ0 for the
predictive sensor are shown in Table 2.

Table 2.
Assumed basic standard deviations

for predictive sensor noise

sensor value σ
xsens 0.125 m
ysens 0.0625 m
Wsens 0.075 m

As mentioned in the introduction four predictive
sensor variants are used for the Monte Carlo analy-
sis in this paper. The variants differ in terms of σ0

and cd as depicted in Table 3.

Table 3.
Analyzed predictive sensor variants

sensor variant σ0 cd
1 σ 0.05 1/m
2 σ 0.10 1/m
3 2 · σ 0.05 1/m
4 2 · σ 0.10 1/m

The distance dependent standard deviation scaling
factor is illustrated in Figure 6.

COLLISION PREDICTION ALGORITHM

Tracking Model

In order to estimate the position and the velocity
of an object—as in common predictive sensors—the
discrete state-space formulation

x[k] = f(x[k − 1],h[k],u[k]) (26)
y[k] = h(x[k],w[k]) (27)

is used, with x[k] being the state vector at the time
instance indexed by k, h the system noise, u the
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Figure 6. Distance dependent standard de-
viation scaling of the measurement noise

control vector, y the measurement vector, w the
measurement noise, and f and h denote the map-
pings describing the dynamic model and the sensor
model. In order to use the well-known notation [8]
from (27)—unlike in the rest of the paper—a posi-
tion vector [x, y]T is notated as r = [rx, ry]T in this
section. The coordinate system used in the follow-
ing is a right-hand coordinate system that has its
origin in the center of gravity of the ego car and the
x-axis points to the front. Since the ego car is mov-
ing over ground also the location of the origin of the
coordinate system is fixed only for one sample time
T and then it is updated. Figure 7 visualizes the
movement of the ego car and an object between two
time stamps. The coordinate system at time t0−T ,

EGO

S

S′

O x

y

P Pold

t0

t0

t0 − T

t0 − T

x′

y′

yego

O′

Object

Figure 7. Movement of ego car and object
in a sample interval T

having the index k−1, is denoted with S, its origin
with O and the coordinate system at time instance
t0 with S′ and its origin with O′. During the time
T the coordinate system rotates with the yaw angle
yego and the object moves from the point Pold to
the point P . In the following the time instance t0
has the index k. Since the sensor type that is in
the focus of this paper measures only positions but
additionally also the velocities of the objects in the
environment of the car are important, the following
state vector will be used

x[k] =
[
rO

′P
x,S′ [k], rO

′P
y,S′ [k], vOPx,S′ [k], vOPy,S′ [k]

]T
, (28)

where rO
′P

x,S′ [k] is the relative distance in x-direction
between the object and the ego car at time in-
stance t0 expressed in the coordinate system S′,
rO

′P
y,S′ [k] the relative distance in y-direction, vOPx,S′ [k]

and vOPx,S′ [k] the components of the velocity vector
over ground but rotated in the coordinate system
S′. The advantages of implementing the tracking
using the velocity over ground instead of the rela-
tive velocity are described in [9].

To find a suitable model for the mapping h in the
dynamic equation (26) firstly the position and then
the velocity of ego car and object must be ex-
pressed in S′ based on the values in the coordinate
system S.

The position [rOO
′

x,S [k], rOO
′

y,S [k]]T of the ego car at t0
expressed in the cooridinate system S is

rOO
′

x,S [k] = vOx,S [k − 1]T + haO
x,S

T 2

2
(29)

rOO
′

y,S [k] = vOy,S [k − 1]T + haO
y,S

T 2

2
, (30)

with vOx,S [k − 1] and vOy,S [k − 1] being the vector
components of the velocity over ground rotated in
the coordinate system S, and haO

x,S
and haO

y,S
rep-

resenting noise terms which take into account that
during an time interval T the acceleration of the
car is neglected.

The position [rOPx,S [k], rOPy,S [k]]T of the object at time
instance t0 expressed in the coordinate system S is

rOPx,S [k] = rOPold
x,S [k − 1]+vOPold

x,S [k − 1]T+h
a

OPold
x,S

T 2

2
(31)

rOPy,S [k] = rOPold
y,S [k − 1]+vOPold

y,S [k − 1]T+h
a

OPold
y,S

T 2

2
,

(32)

where [rOPold
x,S [k−1], rOPold

y,S [k−1]]T is the position of
the object at time t0−T expressed in S, [vOPold

x,S [k−
1], vOPold

y,S [k − 1]]T the components of the object’s
velocity vector over ground at time t0−T expressed
in S, and h

a
OPold
x,S

and h
a

OPold
y,S

noise terms taking into

account that the acceleration of the object during
a sample interval T is neglected.

With equations (29), (30), (31), and (32) the rela-
tive position [rO

′P
x,S [k], rO

′P
y,S [k]]T between ego car and

object at time instance t0 expressed in S can be
computed as

rO
′P

x,S [k] = rOPx,S [k]− rOO
′

x,S [k]

= rOPold
x,S [k − 1] + vOPold

x,S [k − 1]T + h
a

OPold
x,S

T 2

2

− vOx,S [k − 1]T − haO
x,S

T 2

2
(33)
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rO
′P

y,S [k] = rOPy,S [k]− rOO
′

y,S [k]

= rOPold
y,S [k − 1]+vOPold

y,S [k − 1]T+h
a

OPold
y,S

T 2

2

− vOy,S [k − 1]T − haO
y,S

T 2

2
. (34)

To express the relative distances rO
′P

x,S′ [k] and rO
′P

y,S′ [k]
in the state vector x[k] a transformation to S′ is nec-
essary, i. e., a rotation with the yaw angle yego[k]:

rO
′P

x,S′ [k]=cos(yego[k])rO
′P

x,S [k]+sin(yego[k])rO
′P

y,S [k]
(35)

rO
′P

y,S′ [k]=cos(yego[k])rO
′P

y,S [k]−sin(yego[k])rO
′P

x,S [k].
(36)

The velocity of the object over ground but rotated
into the coordinate system S is

vOPx,S [k] = vOPold
x,S [k − 1] + h

a
OPold
x,S

T (37)

vOPy,S [k] = vOPold
y,S [k − 1] + h

a
OPold
y,S

T. (38)

In order to express the velocity of the object over
ground at time instance t0 in S′ a rotation with
yego[k] must be performed

vOPx,S′ [k]=cos(yego[k])vOPx,S [k]+sin(yego[k])vOPy,S [k]
(39)

vOPy,S′ [k]=cos(yego[k])vOPy,S [k]−sin(yego[k])vOPx,S [k].
(40)

All relations required to express the mapping h in
(26) are now given by (33), (34), (35), (36), (37),
(38), (39) and (40). Since only the yaw rate is mea-
surable in cars, the yaw rate is approximated by
yego[k] = ẏego[k] · T . Also it is assumed that the
sampling interval T is small so that the noise terms
haO

x,S
and haO

y,S
corresponding the the ego car can be

neglected in (33) and (34). The following vectors
and matrices are introduced to find an expression
for h that can be used in a Kalman filter

R̃[k] =
[

cos(ẏego[k]T ) sin(ẏego[k]T )
−sin(ẏego[k]T ) cos(ẏego[k]T )

]
,

R[k] =
[

R̃[k] 02×2

02×2 R̃[k]

]
, F̃ =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,

G̃=


T 2/2 0

0 T 2/2
T 0
0 T

, x[k−1]=


rO

′Pold
x,S′ [k − 1]

rO
′Pold

y,S′ [k − 1]
vOPold
x,S′ [k − 1]

vOPold
y,S′ [k − 1]



h[k] =

[
h

a
OPold
x,S

h
a

OPold
y,S

]
, ũ[k] =


−vOx,S [k − 1]T

0
0
0

 .
The second component in ũ[k] is zero since vOy,S [k−
1] = 0. Now the dynamic equation (26) can be
written as

x[k] = F [k]x[k − 1] + u[k] + G[k]h[k], (41)

with

F [k]=R[k]F̃ , u[k]=R[k]ũ[k], and G[k]=R[k]G̃.
(42)

Since the sensor type that is considered in this pa-
per measures only the relative position the mea-

surement vector is y[k] =
[
rO

′P
x,S′ [k], rO

′P
y,S′ [k]

]T
and

(27) can be expressed as

y[k]=
[

1 0 0 0
0 1 0 0

]
x[k]+w[k]=Hx[k]+w[k].

(43)

With the dynamic equation (41) and the measure-
ment equation (43) it is straightforward to apply
a Kalman filter [8] in order to estimate the state
vector x[k].

Computation of collision parameters

A collision prediction algorithm has to anticipate
the prospective motion of the ego vehicle and sur-
rounding objects on the basis of realistic movement
assumptions and estimate the expected collision pa-
rameters under the given premises. The predic-
tion may both depend on kinematic ego state data
and relative object measurement data provided by
a predictive sensor mounted on the moving ego ve-
hicle. The prediction process is necessary because
a predictive sensor is usually not able to measure
the geometric and kinematic impact conditions in
adequate precision right before the collision. This
results from limitations in the sensor field of view
as well as the necessary time interval for the object
creation and the movement tracking algorithms.

For an online estimation of the collision effect in the
ego vehicle the geometric and kinematic initial con-
ditions of the impact have to be described explicitly
by the predicted collision parameters. Therefore
the following parameters defining the relative posi-
tion and movement of the ego and opponent bound-
ing boxes at the time of collision were selected, see
Figure 8.

The relative geometric and kinematic movement
state of the two vehicle bounding boxes is described
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Figure 8. Predicted collision parameters as
initial conditions of the mechanical impact

by the relative reference point position xcoll in xego-
direction and ycoll in yego-direction as well as the
geometric angle φgeom between the vehicle longi-
tudinal axes (in Figure 8 the slip angles of both
vehicles are chosen negligibly small) in combina-
tion with the ego width Wego, the ego length Lego,
the opponent width Wopp and the opponent length
Lopp. As a real predictive sensor will mostly not
be able to detect the complete opponent length the
parameter Lopp may also refer to the current length
of the detected part of the opponent vehicle. The
impact direction is specified by the angle φvrel

be-
tween the relative velocity vector and the ego veloc-
ity vector as well as the absolute value vrel of the
relative velocity vector. Furthermore the expected
time to collision (TTC) is estimated on the basis
of the underlying assumptions. For this study the
collision parameters were calculated on the basis
of a no change assumption concerning the current
movement state of the ego vehicle and the opponent
in two dimensions over ground. The assumption
no change extrapolates the actual moving state of
the ego vehicle and the opponent sensor object on
the basis of a Taylor series for kinematic state vari-
ables. The closer the collision comes the better the
no change assumption is able to predict values that
fit the real development of the accident scenario.

The ego and object trajectories are calculated on
the basis of the following correlations concerning
the predicted movement state at t0 defined by the
velocity v, the yaw angle ψ and the slip angle β
along the prediction time tpred:

v(tpred) = v(t0) +
dv

dt
(t0) · tpred

+
1
2
· d

2v

dt2
(t0) · t2pred + ...

≈ v(t0) +
dv

dt
(t0) · tpred (44)

ψ(tpred) = ψ(t0) +
dψ

dt
(t0) · tpred

+
1
2
· d

2ψ

dt2
(t0) · t2pred + ...

≈ ψ(t0) +
dψ

dt
(t0) · tpred (45)

β(tpred) = β(t0) +
dβ

dt
(t0) · tpred

+
1
2
· d

2β

dt2
(t0) · t2pred + ...

≈ β(t0) +
dβ

dt
(t0) · tpred. (46)

On the basis of the movement state variable approx-
imations at each prediction time step the vehicle
velocity vector v can be calculated by:

v (tpred) =
[
v(tpred) · cos(ψ(tpred) + β(tpred))
v(tpred) · sin(ψ(tpred) + β(tpred))

]
xy

.

(47)

The absolute vehicle position r along the predicted
trajectory can then be calculated by integration:

r (tpred) =

tpred∫
t0

v(t̃pred) · dt̃pred =
[
x(tpred)
y(tpred)

]
xy

.

(48)

The absolute acceleration a along the trajectory is
given by:

a(tpred) =
d

dtpred
v(tpred) =

=
[

v̇(tpred)
v(tpred) · (ψ̇(tpred) + β̇(tpred))

]
xvyv

=
[
alon(tpred)
alat(tpred)

]
xvyv

. (49)

The resulting trajectory on the basis of a given
and numerically extrapolated working point of the
ego vehicle movement is shown in the Figure 9. In
this case the ego slip angle βego is assumed to be
known with a diminishing slip rate β̇ego so that
it remains constant during the prediction. Both
the ego vehicle state as well as the opponent ve-
hicle movement are predicted on the basis of the
described no change trajectory extrapolation, see
Figure 10. Whereas for the ego vehicle the accel-
eration, yaw rate and the slip angle are assumed
to be known for the opponent vehicle detected by
the predictive sensor only the velocity in xego- and
yego-direction is used for the prediction but not its
acceleration, yaw or slip rate. This assumption is
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Figure 9. No change prediction on the basis
of the current moving state

based on the fact that these variables are very hard
to estimate with a sensor only directly measuring
the position and not the relative velocity. Further-
more a diminishing slip angle is supposed for the
opponent vehicle which is a good approximation for
stable driving maneuvers considering the increasing
number of ESP systems limiting the slip angle in
modern vehicles. The resulting collision parame-

Figure 10. No change prediction of the ex-
pected collision constellation and parameters

ters described above are calculated on the basis of
an analysis concerning the overlap of two rectangu-
lar bounding boxes around the vehicle contours at
each point of the prediction time along the trajecto-
ries. Therefore the precision of the TTC-prediction
is limited by the integration time interval during
the discrete prediction process. The smaller the

prediction time interval is selected the more exact
the kinematic and geometric collision parameters
can be calculated.

MONTE CARLO SIMULATION

On the basis of the described measurement data
generation and the collision prediction algorithm
Monte Carlo simulations were performed to analyze
the effect of the noisy measurement input data on
the predicted collision parameters in three selected
car2car-collision scenarios.

Simulation scenarios and process

In the following three critical traffic situations each
resulting in a car2car-collision are presented. The
scenarios will be analyzed concerning the sensitivity
of the predicted collision parameters on the basis
of noisy input data in this chapter. The accident
scenarios are illustrated in Figures 11, 12, and 13.

Figure 11. Scenario 1: straight rear-end col-
lision with full overlap

Figure 12. Scenario 2: straight frontal colli-
sion with partial overlap

Figure 13. Scenario 3: curved frontal colli-
sion with partial overlap

In the first scenario the ego vehicle driving at a
speed of 50 km/h hits the back of an opponent ve-
hicle at a velocity of 10 km/h with full overlap. The
second scenario represents a straight frontal impact
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with an overlap of 40 percent within which the ego
vehicle at a velocity of 50 km/h collides with the
opponent vehicle driving at a speed of 40 km/h.
In the last scenario the opponent vehicle driving at
57.4 km/h leaves its lane on a curved road segment
and collides frontally with the oncoming ego vehicle
with a velocity of 56.2 km/h. For simplicity con-
cerning the further analysis steps the selected sce-
narios are all stationary concerning velocities, yaw
and slip rates. Of course dynamic scenarios with
sudden break or steering inputs can also be evalu-
ated with the proposed method. For the simulation
process both vehicles are assumed to be equally di-
mensioned with a length of 5 m and a width of 2 m.

For the sensitivity analysis of the collision para-
meter calculation on the basis of the Monte Carlo
method for each collision scenario 1000 simulation
runs were performed with MATLAB/Simulink [10]
at a sample time of 1 ms for a sufficiently exact dy-
namics simulation. In each scenario Gaussian noise
with the assumed standard deviation (see Chapter
“Noise Model”) was added to the ideal measure-
ments at a discrete measurement sample time of
20 ms modeling the processing cycle for ego and
predictive sensor data. For every scenario two ref-
erence time stamps in relation to the actual time of
collision (TOC) at TOC - 400 ms and TOC - 100 ms
were selected. The reference collision parameters
were calculated on the basis of the ideal dynamics
data. At every reference time step of a scenario the
predicted collision parameters on the basis of the
noisy input values for the collision prediction mod-
ule as well as the corresponding reference values
were logged. The resulting differences between the
prediction outputs and the reference values were an-
alyzed concerning the statistical mean and standard
deviation as well as the minimum and maximum
values. The input values for the collision prediction
module at each time step over all the 1000 simula-
tion runs per scenario were all normally distributed
with the given (distance dependent) standard devi-
ation around the nominal value and a noise value
limitation to the ± 4σ interval. The simuation runs
were performed with constant ego sensor noise pa-
rameters and the four predictive sensor noise vari-
ations according to section “Noise model”.

Simulation results

In the following the results of the Monte Carlo sim-
ulation process are illustrated. For each of the three
simulated collision scenarios introduced in the last
section the noisy predictive sensor data as input for
the collision prediction module as well as the re-
sulting differences ∆TTC, ∆vrel, ∆φvrel

, ∆φgeom,
∆xcoll and ∆ycoll between the prediction outputs
and the reference values are presented for two ref-

erence points of time (TOC - 400 ms and TOC
- 100 ms). The noisy ego vehicle sensor data is
only illustrated for scenario 1 at TOC - 400 ms,
see Figure 14, because each of the four ego sen-
sor signals was disturbed with a Gaussian noise of
constant standard deviation over all scenarios and
reference points of time. The generated plots show
the mean, minimum and maximum values (contin-
uous lines, left y-axis) as well as the standard de-
viation (dashed line, right y-axis) at the regarded
reference point of time for the four analyzed sensor
variants (concerning all performed simulation runs
under the given sensor noise). Figure 14 illustrates

Figure 14. Scenario 1: Noisy ego sensor sig-
nals at TOC - 400 ms

the ego sensor data values in scenario 1 at TOC
- 400 ms for the four presented (predictive) sensor
variants in scenario 1. As the ego sensor data values
were disturbed with constant noise parameters the
mean, minimum and maximum sensor values over
all the four sensor variants at TOC - 400 ms ap-
proximately remain constant with the chosen stan-
dard deviation. In this scenario the measured ego
speed vego varies in an interval of about ± 1 km/h
around the nominal value of 50 km/h, the acceler-
ation measurements axego

and ayego
in an interval

of approximately ± 0.2 m/s2 and the yaw rate ψ̇ego
in a range of about ± 0.02 rad/s. The effect of
the distance dependent predictive sensor noise over
the four variants at TOC - 400 ms in scenario 1
is shown in Figure 15. The standard deviation at
that reference point of time increases from sensor
variant 1 to sensor variant 4 along with the interval
between the maximum and minimum values of the
measured relative position xrel in xego- and yrel in
yego-direction and the opponent width W . TOC -
400 ms is related to a mean xrel-value of about 9 m
and a mean yrel-value of 0 m concerning the rear-
end collision. The predicted collision parameters at
TOC - 400 ms in scenario 1 scatter as a result of
the given noisy input, see Figure 16. The differ-
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Figure 15. Scenario 1: Noisy predictive sen-
sor signals at TOC - 400 ms

Figure 16. Scenario 1: Predicted collision
parameters at TOC - 400 ms

ence between the predicted and the reference value
varies between a resulting minimum and maximum
value for each collision parameter. In this case for
every parameter the difference increases along with
the sensor variant. The predicted TTC varies in
an interval smaller than ± 100 ms around the ref-
erence value for all the considered sensor variants.
The mean ∆TTC-value is not exactly 0 ms because
of the prediction tolerance due to the discrete pre-
diction time interval of 10 ms. The relative ve-
locity vrel was predicted with a tolerance better
than ± 5 km/h decreasing from sensor variant 4
down to 1. The predicted geometric collision an-
gle φgeom is more diffuse than the relative velocity
angle φvrel

. Both parameters were estimated with
an accuracy better than ± 14̊ concerning the ref-
erence in all sensor variants. The predicted relative
collision location parameter xcoll only varies in a
quite small range of about ± 0.2 m. The predicted
lateral collision opponent location ycoll scatters in
a wider range of up to approximately ± 0.5 m. At
the examined point of time the accuracy of the pre-

Figure 17. Scenario 1: Noisy predictive sen-
sor signals at TOC - 100 ms

diction decreases from sensor variant 1 to sensor
variant 4 for all collision parameters. At TOC -
100 ms in scenario 1 the predicted TTC varies
in a decreased interval of about ± 50 ms around
the reference value in all sensor variants based on
smaller predictive input parameter variations, see
Figures 17 and 18. The relative velocity vrel is
predicted with an accuracy of approximately ± 4
km/h. As seen above the predicted relative veloc-
ity angle φvrel

again doesn’t scatter as much as the
geometric collision angle φgeom. Both parameters
remain in an interval smaller than about ± 12̊ over
all sensor variants. The relative collision location is
predicted relatively exact in xego-direction (± 0.20
m) and doesn’t exceed an interval of ± 0.25 m in
yego-direction. As a result of the decreasing predic-
tive sensor input noise at TOC - 100 ms compared
to TOC - 400 ms the collision parameters are esti-
mated with a better (or at least identical) accuracy
for all sensor variants.

Figure 18. Scenario 1: Predicted collision
parameters at TOC - 100 ms
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Figure 19. Scenario 2: Noisy predictive sen-
sor signals at TOC - 400 ms

Figure 20. Scenario 2: Predicted collision
parameters at TOC - 400 ms

In scenario 2 at TOC - 400 ms, see Figures 19
and 20, the predicted TTC varies in a maximum
interval of about ± 60 ms around the reference
value in an increasing manner along the predictive
sensor variant due to the growing sensor noise at
that point of time. The relative velocity vrel is pre-
dicted with a minimum accuracy of approximately
± 6 km/h. Again the predicted relative velocity
angle φvrel

doesn’t vary as much as the geometric
collision angle φgeom. Both parameters remain in
an interval smaller than about ± 5̊ over all sensor
variants. The relative collision location xcoll is pre-
dicted in a range of about ± 0.3 m in xego-direction
and doesn’t exceed an interval of ± 0.6 m in yego-
direction. At TOC - 100 ms in scenario 2 the
TTC variation interval decreases to approximately
± 20 ms due to the significantly smaller predictive
sensor noise, see Figures 21 and 22. Whereas the
prediction scatter intervals for the relative velocity
vrel, the geometric angle φgeom, the relative veloc-
ity angle φvrel

and the xcoll-location parameter do
not change significantly compared to the values at

Figure 21. Scenario 2: Noisy predictive sen-
sor signals at TOC - 100 ms

Figure 22. Scenario 2: Predicted collision
parameters at TOC - 100 ms

TOC - 400 ms, the prediction of the ycoll-parameter
gets significantly better. This results both from the
less scattering yrel-values at TOC - 100 ms as well
as the decreasing effect of errors in the movement
prediction direction with a decreasing distance.

Figure 23. Scenario 3: Noisy predictive sen-
sor signals at TOC - 400 ms
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Figure 24. Scenario 3: Predicted collision
parameters at TOC - 400 ms

Figure 25. Scenario 3: Noisy predictive sen-
sor signals at TOC - 100 ms

Figure 26. Scenario 3: Predicted collision
parameters at TOC - 100 ms

In collision scenario 3 the predictive measurement
scattering monotonically increases over all sensor
variants at each reference point of time and de-
creases from TOC - 400 ms to TOC - 100 ms, see
Figures 23 to 26. As both vehicle trajectories are

curved and the yaw and slip rate of the opponent
vehicle are not estimated in the collision prediction
module the no change prediction assumes a straight
opponent trajectory that doesn’t take into account
the lateral opponent vehicle movement. This re-
sults in a visible difference of the mean prediction
values for the relative velocity vrel and the colli-
sion angles φvrel

and φgeom as well as the lateral
collision location ycoll in yego-direction from the
reference values. The depicted difference between
the mean values for the predicted collision angles
and the ycoll-location parameter gets smaller from
TOC - 400 ms to TOC - 100 ms because the effect
of the inexact movement assumption decreases with
a smaller distance. In this case the inexact col-
lision parameter prediction is not only influenced
by the measurement value scattering but also by
the inexact movement assumption in the opponent
trajectory generation. The measurement scatter-
ing effects on the predicted collision parameters are
similar to those observed in scenarios 1 and 2.

CONCLUSIONS

The optimization of passive safety applications by
the use of predictive sensor data requires a suf-
ficiently exact prediction of collision parameters
characterizing the type and severity of a collision.
Ego vehicle state sensors as well as predictive sen-
sors only measure with a given tolerance and res-
olution so that predicted geometric and kinematic
collision parameters always scatter depending on
the characteristics of the applied sensors as well as
the sensor signal processing steps. In this paper
a method for the model-based evaluation of sen-
sor noise effects on the predicted collision parame-
ters along the whole signal processing chain with
a predictive sensor able to measure distances but
not velocities was presented. On the basis of the
developed method a study on the effects of mea-
surement scattering concerning the predicted colli-
sion parameters was accomplished. Therefore fixed
noise parameters for the ego vehicle sensors and two
different basic noise levels for the predictive sensor
combined with two noise dependencies along the
measurement distance were assumed. Their effects
on the collision parameter prediction were analyzed
in three selected collision scenarios. Whereas in the
straight collision scenarios the mean values of the
predicted collision parameters based on noisy input
data fitted the reference values very accurately in
curved scenarios the collision prediction algorithm
assuming a straight trajectory for the opponent ve-
hicle (as opponent yaw rates are very hard to es-
timate) resulted in a time-dependent mean value
in the geometric parameter prediction. Depend-
ing on the sensor noise parameters the geometric
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collision parameters in all analyzed scenarios scat-
tered in a specific range representing the accuracy
of the prediction under the given premises. For the
three analyzed scenarios under the made assump-
tions the TTC prediction scattering at TOC - 400
ms and TOC - 100 ms didn’t exceed a range of ±
100 ms around the reference value, the relative ve-
locity angle prediction was always in an interval of
± 9̊ and the predicted geometric angle varied in a
maximum interval of ± 18̊ . The relative reference
point position in longitudinal ego vehicle body di-
rection scattered in a range of ± 0.30 m at most
and the relative reference point position in lateral
ego body direction differed in a maximum range of
± 0.60 m (at TOC - 400 ms) respectively ± 0.25 m
(at TOC - 100 ms) in straight scenarios and in a
range from -0.10 m to -1.30 m (at TOC - 400 ms)
respectively -0.50 m to 0.10 m (at TOC - 100 ms) in
the curved scenario. The results show the challenge
of collision predictions in the case of small vehicle
overlaps and in curved scenarios. For the reliable
detection and prediction of the collision parameters
in these scenarios the sensor noise parameters have
to be kept low in combination with an adequate dy-
namic object tracking with ego-compensation even
in areas close to the ego vehicle. The effect of dy-
namic scenarios with sudden steering or brake in-
puts concerning the parameter prediction was not
yet analyzed and has to be observed in future stud-
ies.
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