
Open Research Online
The Open University’s repository of research publications
and other research outputs

A novel approach to the design of DSP systems using
minimum complexity Finite State Machines

Conference Item
How to cite:

Dooley, L. S.; Knoll, A.; Wahab, M.; Fauth, A. and Freericks, M. (1992). A novel approach to the de-
sign of DSP systems using minimum complexity Finite State Machines. In: International Symposium on
Circuits and Systems (ISCAS-92), 10-13 May 1992, San Diego, California.

For guidance on citations see FAQs.

c© 1992 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00230173

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copy-
right owners. For more information on Open Research Online’s data policy on reuse of materials please consult
the policies page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00230173
http://oro.open.ac.uk/policies.html

A NOVEL APPROACH TO THE DESIGN OF DSP SYSTEMS
USING MINIMUM COMPLEXITY FINITE STATE MACHINES

L.S. Dooley’, A.C. Knoll2, M. A. Wahab’, A. Fauth2 and M. Freericks2

‘The Pol technic of Wales
Dept. of$lecqonics and Information Technology
PontvpnddMd Glamorgan.CF37 1DL

2Technische Universittit B q l h
Franklinstrak 28 Sekretamt FR 2-2
W-loo0 Berlin Id

GreaIBritain

Abstract - The paper presents a new and different approach to
the design and realisation of Digital Signal Processing @SP)
systems by utilising Finite State Machines (FSM). The DSP
system is modelled by mapping all its potential states into an
FSM, whose complexity is usually very high. The FSM mirrors
the complete functionality of the system and thus describes its
behaviour in full detail. Examples for FSMs of first and second
order digital recursive filters are provided and the current
version of the software simulating the FSM corresponding to
any linear time-invariant DSP system is described. The potential
of this approach including state reduction techniques as well as
the inclusion of non-linear DSP systems is also outlined, and
further future research intentions are briefly explored.

I. INTRODUCTION
Many of the current designs of DSP systems such as

FIR/IIR digital filters and Fast-Fourier-transformers (FFT) are
based on the translation of a signal processing algorithm into a
hardware structure relying heavily on multipliers and adders.
The advantage of this traditional approach is a relatively
straightforward transformation from algorithm to hardware.
However, its drawbacks are:

The structure of the hardware is usually highly irregular.
Many computations are performed repeatedly while the
circuit is in operation, effectively reducing throughput.
If all possible computations were performed prior to the
transformation into hardware, it would obviously
function much faster.
Due to the complexity of the hardware it is often very
difficult to fully simulate and assess its run-time behavi-
our; hence the danger of possible unwanted limit cycle
oscillations. Such effects often make it difficult or even
impossible for the designer to fully predict the output of
the circuit for any given situation.

The solution we DroDose to many of the problems
encountered in the traditionai design cycle-is the us; of finite
state machines. Here, all possible states of the DSP system are
first mapped into an FSM. This FSM is then examined for the
effects of finite word length arithmetic, quantization errors and
limit cycle oscillations. These effects are represented either by
single states or whole groups of states. In a second step,
depending on the requirements of the specific application, dupli-
cate, redundant, unwanted and possibly erroneous states are
removed algorithmically by employing reduction techniques.
The third step is the transformation of the resulting minimum
complexity finite state machine into a hardware circuit.

Germany

As can be seen from this cursory description, the FSM
for non-mvial DSP-systems has a large but nevertheless finite
number of states. In principle, each state as well as each state-
to-state transition and its corresponding effect upon the output
may be examined. The inputs and the outputs of the FSM are
elements of finite sets (of numbers). The state transition
mapping and the output mapping are defined over these finite
sets. The mappings are operations of infinite accuracy and,
consequently, free of all errors. By modifymg the state machine
it is possible to replace states that would cause the system to fad
with “adjacent” states that do not cause erroneous system
behaviour. The penalty paid is a slight general decrease in the
systems’s overall signal to noise ratio. Limit cycle oscillations,
for example, can be detected using well-known graph search
techniques, but, of course, may occasionally be too inefficient
to be used in practice. Feeding the simulation output into an
acceptor FSM could also give hints about the Occurence of
cycles. Therefore, under certain conditions, fully predictable
behaviour can be guaranteed. Even though the final hardware
may use more chip real estate when designed using an FSM
model, its structure is very regular and erroneous outputs are
much less likely. This is analogous to many computer
programs, where storage efficiency achieved via algorithmic
complexity can be sacrificed for speed and program safety.

In spite of the fact that VLSI technology may one day
provide densities that allow for the one-to-one implementation
of the most complex state machine, current technology is
certainly not advanced enough to realise a state machine for a
second-order 16-bit IIR filter, which would require the
implementation of 232 states. Obviously for this sheer number
of states, the introduction of additional logic such as adders into
the FSM design is inevitable in order to reduce the complexity
(see below). Although in this paper we are dealing only with
recursive filters, the approach may easily be extendend to any
linear or non-linear DSP system with single-input single-output
as well as multiple-input multiple-output [11. Particularly
interesting is the realisation of an FFT, which may be annotated
as an IIR filter with complex coefficients by using Goertzel’s
algorithm [2].

II. PRELIMINARIES: FINITE STATE MACHINES
A finite state machine according to the Mealy model [11

is a mathematical model of a sequential system. It comprises a
finite set of input values U (in our case this is the set of values
the input signal can assume), a finite set of output values G (the
output signal), a finite state set S and two mappings: the next
state mapping f and the output mapping g. The latter are defined

629

0-7803-0593-0192 $3.00 1992 IEEE

Authorized licensed use limited to: The Open University. Downloaded on March 03,2010 at 07:57:51 EST from IEEE Xplore. Restrictions apply.

I I

as: s(n + 1) = f[s(n), u(n)] and g(n) = g[s(n), u(n)], where u(n)
E U, g(n) E G and s(n) E S are the input, output and present
state of the system at the n* clock cycle. The mapping f maps the
present state and the input into the next state, while the mapping
g produces the present output from the present state and present
input. Several standard machines may be designed which are
simple and easily implemented, while more complex FSM’s may
be realised by composition of finite state submachines
(independent or interdependent).

111. A SIMPLE EXAMPLE: FIRST ORDER FILTER
An FSM may simulate a finite DSP system in which the

output at any clock instant is a function of the past and present
values of the inputs and machine states. When the continuous
algebraic equation description of the system is given, the
approach is to evaluate the system output for all possible finite
inputs and system states. The calculated output will not be in the
same finite set as the input and the current state; therefore, some
form of approximation is necessary. However, the error of the
system’s output values will always be within fo.5 LSB.
Consider a first-order all-pole digital filter governed by the
following difference equation:

y(n) = K,y(r, - 1) + x(n)

where the present output y(n) is a function of the past output
y(n - 1) and the present input x(n). If we compare this simple
difference equation with the definition of the FSM above then we
get the corresponding FSM after the following steps:

1. Choose the word length of y(n) and x(n).
2. Define the quantisation method (roundoff, truncation,

saturation).
3. Assign to each output quantisation level y(n) a member of

the state set S and to each input quantisation level X(n) a
member of the input set U of the machine.

The first-order filter may then be represented as a finite state
machine and the next state may be obtained by quantising the
infinite accuracy computation result of the difference equation

Y(n) = QIKIRn - 1) + z(n)l

where Q denotes the quantisation operation. If the coefficient K,
= 0.55, the input x(n) I 0 (zero input sequence) and the output is
represented in a 3-bit word, then the state table may be compiled
as shown in Table 1:

1.65
-4 -2.2 -2
-3 - 1.65 -2
-2 -1 .1 -1

I -1 -1 I
Table 1: FSM for first-order %bit system

Note that the last four enmes for J(n - 1) define all possible
negative values. The output error (the difference between the
output y(n) of the infinite accuracy filter and J(n)) is at most
M.5 LSB. In this simple example, the outputs are no different
from those that would have been obtained from the arithmetic

realisation. However, in a system containing more than one
multiplier, the results obtained using the above method would be
closer to the output of an infinite precision filter. It can be shown
that an nth order IIR filter may be represented as an n-
dimensional FSM [l]. Before we proceed to the reduction
process and the implementation of a real world filter example, we
briefly explore the representation of a second order system. Let
us assume the following second-order all-pole IIR filter:

y(n) = 0.7y(n-1) - 0.5y(n-2) + x(n).

Then, for zero input, the state table for a 2-bit system would be
as follows:

%n - 1)
0
1

-2
-1

0
1
-2
-1

0
1
-2
-1

0
1
-2
- 1

-
Y(n - 2)
0
0
0
0

1
1
1
1

-2
-2
-2
-2

-1
-1
-1
-1

- Y p
0.7
-1.4
-0.7

-0.5
0.2
-1.9
- 1 . 3

1 .o
1 . 7
-0.4
0.3

0.5
1.2
-0.9
-0.2

-
Y t)

1
-1
-1

0
0
-2
-1

1
2
0
0

1
1
-1
0 -

Table 2: FSM for second order 2-bit FSM

It is clear that any input sequence other than zero would have to
be added to the output y(n), because the law of superposition
applies.

IV. STATE AND COMPLEXITY REDUCTION
We consider two different steps for the reduction of the

original FSM: State Reduction (SR) which aims to minimise the
total number of states thereby changing the behaviour of the
original FSM (with all states present) and Complexity Reduction
(CR) which reduces the amount of logic needed to realize the
state-reduced FSM. In the first step of SR, the original FSM is
searched for erroneous states such as those caused by over or
underflow. Further erroneous conditions are limit cycle
oscillations although, at this early stage, they are usually diffkult
to find and not relevant because the hardware circuit will be
based upon the machine generated by the CR step following SR.
Erroneous states found during SR may be replaced with suitably
chosen adjacent states or state groups. The state reduction
techniques currently employed for the FSM model are the
removal of all duplicate states and the replacement of all
underflow/overflow states (using saturation arithmetic).

Appropriate further techniques are currently under
development and are based upon statistical methods, using three
separate parameters to obtain a suitable measure of the relative
importance of each particular state in the FSM. Using either a
first or second order Markovian process, a probability factor Pi,
a complexity factor Ci and an information factor Ii are
combined to form a vector which is used to process the replete

630

Authorized licensed use limited to: The Open University. Downloaded on March 03,2010 at 07:57:51 EST from IEEE Xplore. Restrictions apply.

I I

state machine and to produce a relevance quantiry (RQ), which
is an objective measure of the importance of a state to the
function of the resultant FSM. A threshold is then set so that
states exhibiting values of RQ below the prescribed value are
omitted by reassigning the transitions leading to them. Issues
such as the frequency of the occurence of a state, the probability
of undertaking a particular state transition and the path in the state
transition graph which lead to a state transition are all
incorporated in the computation of the RQ factor. It is envisaged
that eventually, together with the detection of limit cycle
oscillation states, the above reduction techniques will be fully
automated within the FSiM simulator program (see below), thus
providing a fully automatic environment to the user to omit states
and to synthesize the corresponding performance of the FSM
model.

The second step in the reduction process is complexity
reduction: The machine is decomposed into suitable submachines
that may or may not be interdependent. Here, known
decompostion techniques from logic synthesis and logic testing
[3; 41 may be used. An example realisation for an 8-bit IR filter
may look as shown in fig. 1: The submachines M1 ... M255 each
realize an impulse response for input values of 1...255. All
outputs of the 255 machines are added to yield the output value
of the filter. In principle, M1 ... M255 are structurally identical,
i.e. are multiples of each other. This does not, however, apply
when cutoff effects in the vicinity of the end of the interval (0 or
255) become critical.

Inpu $ET+
M255

Fig. 1: A sample realisation of an LTI-IIR filter

Depending upon the actual filter coefficients, the machines
handling input values near the limit of the range may be totally
different from those in or around the centre. It is obvious that
machines that are multiples of each other may easily be integrated
into a low number of scalable machines, i.e. a large area of the
dynamic range can be mapped into a few FSM's. Also, the
scaling is not accomplished by a multiplier but by a number of
template machines; which leads to a very high precision,
particularly if the wordlength of the adder is sufficiently long.

V. THE SIMULATOR PACKAGE FSiM
As mentioned above, the state models of FSMs modelling

non-trivial DSP systems may become very complex; hence they
are rather intractable to compile and to evaluate by hand. In order
to automate the design cycle (from FSM description to a
hardware description language) a comprehensive software tool is
being developed. Currently, a rudimentary package called FSiM
has been realised, which provides key functions for FSM
simulations. This package takes the mathematical specification of
the FSM as the input and produces a complete description of the
behaviour of the FSM. Apart from the specification of the DSP-
system the only additional information that need be provided is
the wordlength of the target system and its rounding mode.

The simulation is normally based upon a unit impulse sequence
but an arbitrary input may also form the basis for the simulation.
A typical FSiM input file is shown in fig. 2, for a non-canonic
second-order Butterworth low-pass filter using 16-bit input data
and coefficient wordlengths together with positive and negative
saturation arithmetic modes. State variables on the right hand side
of an equation refer to their value during the previous cycle.

OUTPUT Y;
INPUT X;
STATE = (Xn-1, Xn-2, Yn-1, Yn-2);

Y = X + 2 * Xn-1 + Xn-2 +

Yn 2 = Yn-1;
YnIl = Y;
Xn 2 = Xn-1;
x n z l = X;

WIDTH = 16;
ROUND = saturate;

1.142878384 * Yn-1 - 0.4124832098 * Yn-2;

Fig. 2: Example of an FSiM input file

In this input file multiple inputloutput systems may be defined
and the order of the system is not limited. In the current version,
the output of the simulator is a table of all states traversed within
the FSM for a given input sequence. Moreover, all state
transitions and erroneous conditions due to overflow and
underflow are output (an excerpt from a complete listing is
shown in the next section).

The simulator is written in C and it runs under UNIX. At
present, only linear time invariant systems governed by
difference equations such as the ones shown above may be
simulated. However, non-linear functions such as sine and
exponentials may be used to specify non-linear systems of a
limited scope. In the future, the simulator will provide the ability
to evaluate polynomial expressions and functions defined over a
limited interval. It is also planned to include FSMs that change
their structure over time by introducing conditional expressions
into the FSM description. The FSM may then depend on time
and, for example, upon the availability of a certain data value.

As state reduction techniques are developed they will also
be included in the simulator. The simulator version currently
being worked on will accept complex coefficients in the input
description so as to make the realisation of FFTs via the FSM
mechanism possible. It is also envisaged to incorporate facilities
to graphically display the distributions of states and state
transitions. This would give the user an intuitive feel for possible
interaction with the state removal techniques. In the case of n-
dimensional state machines, the system would provide the
appropriate projections in two or three dimensions.

The detection of limit cycle oscillations essentially
consists of searching cycles in a graph, a problem which is
exponential in the number of states of the machine. Normally,
however, self-sustained limit cycle oscillations do not exceed a
certain cycle path length and the search may be stopped when a
certain path length i s reached. It is envisaged that provided a limit
cycle oscillation path has been detected, the path will be broken
and one of the states in the cycle replaced with another state,
damping the oscillation to zero.

631

Authorized licensed use limited to: The Open University. Downloaded on March 03,2010 at 07:57:51 EST from IEEE Xplore. Restrictions apply.

W. FSiM AND AN ACTUAL IIR-FILTER FSM DESIGN
We now consider an IIR filter example of the Butterworth type,
given by the following difference equation:

yn = xn + 2xn-1+ xn-2 + 1.142878384 yn-1 - 0.4124832098 yn-2

(subscripts are used here to improve readability). FSiM takes
this equation as a complete description of an FSM (see fig. 2)
and produces the full state table, together with a listing of all state
transitions. Fig. 3 is an excerpt from the whole listing and shows
the states encountered after a unit-impulse is applied to the IIR
filter described by the above equation. Note that the impulse
response is finite due to rounding effects.

The research aim with respect to FSiM is to decrease the
amount of computation resources necessary to tabulate the whole
automaton. A block-diagram orientated graphical user interface
within the framework of the CADiSP system [5] is also being
developed. It has been designed to provide the user not only with
a display of the output signal but also with a means of reducing
states stepwise and interactively to simulate the corresponding
performance. The user may eventually go back and forth between
the different reduction levels to obtain an immediate feedback on
the corresponding system performance.

n x Y (~n-29 Yn-1, xn-29 Xn-1)

0
1
2
3
4
5
6
I
8
9

1 0
11
1 2
13
14
1 5
1 6
11
18
1 9
20
2 1
22
23
24
25
2 6
2 1
28

32167
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

327 6 1
32167
3 2 1 6 1
23933
13837
5942
1083

-1213
-1833
-1595
1067
-562
-202

1
84
96
1 5
46
22
6

-2
-5
-5
- 4
-3
2
-1
0
0

0,32767,0,32161
32167,32161 I 32161 I 0

32161,32161,0,0
32767,23933,0,0
23933,13831,0, 0
13831,5942,0,0
5942,1083,0,0
1083,-1213,0, 0

-1213,-1833,0,0
-1833,-1595,0,0
-1595,-1061,0, 0
-1067, -562,0,0
-562,-202,0,0

-202,1,0,0
1,84,0,0

84, 96,0,0
96,15,0,0
75,46,0,0
46,22,0,0
22,6,0,0
6, -2,0,0

-2,-5,0,0
-5,-5,0,0
-5, -4,0,0
-4,-3,0,0
-3,-2,0,0
-2, -1,o,o
-1,o, 0,o

o,o,o,o

VII. CONCLUSIONS
Summarising the benefits of the FSM method as follows:

Full control of the DSP-system’s behaviour through extensive
simulation: Every state that the system may ever encounter
may be examined for desirability.
The system’s behaviour is fully predictible for any input si-
gnal.
Elimination of undesired effects by removing states and re-
placing them with substitute states taken from the set of
“sensible” states.
It is well known that FSMs may be realized by combinatorial
circuits of various technologies such as Read-Only-Memries,
Programmable-Logic-Arrays, EPLDs or application specific
circuits (ASICs). Therefore, the method provides the potential
for flexible implementation and for optimizing hardware
realizations for very high speed operation.
Furthermore, the method lends itself to an implementation
based on block-diagram orientated graphical user interfaces.
Even if the system cannot be described analytically, an FSM
may be constructed from the known input-output relationship
(including the past history). State reduction techniques may
then be applied as well and the effect of expunging certain
states may be examined interactively. Depending upon the
reduction level, the performance of the DSP system will be
reduced but it will be realizable at lower cost. Note, however,
that the user always keeps control of the properties of the
system.

VIII. REFERENCES
[11 Y. Zhang and L.S. Dooley

A New Realisation for Digital Signal Processing
Systems using Finite State Machines
London: McGraw-Hill, to appear early 1993.

[2] Oppenheim, A., Schafer, R.
Digital Signal Processing
E n g l e w d Cliffs: Prentice-Hall, 1975, pp. 287 ... 289

S. Devadas and A. Newton
Decomposition and Factorization of Sequential
Finite Stare Machines
IEEE Int. Conf. on Computer Aided Design, 1988

P. Ashar, S. Devadas and A. Newton
Optimum and Heuristic Algorithms for Finite State
Machine Decomposition and Partitioning
IEEE Int. Conf. on Computer Aided Design, 1989

A. Knoll and R. Nieberle
CADiSP - A Graphical Compiler for the Programming
of DSP in a completely symbolic way
IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Albuquerque, 1990

[3]

[4]

[5]

ACKNOWLEDEMENTS
The authors would like to acknowledge the grant support
received under the ARC collaboration scheme from the British
Council and the Deutsche Akademische Austauschdienst (Grant
NO. ARC-173)

Fig. 3: States of the Butterworth filter after unit-input

632

1- 1

Authorized licensed use limited to: The Open University. Downloaded on March 03,2010 at 07:57:51 EST from IEEE Xplore. Restrictions apply.

