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Abstract— Transient stability analysis of synchronous gener-
ators is important for a secure operation of power systems. This
paper presents the design and verification of linear-parameter-
varying (LPV) controllers to robustly establish transient sta-
bility of multi-machine power systems with formal guarantees.
First, we transform power systems described by differential
algebraic equations (DAEs) into modular LPV systems, such
that the interaction and correlation between different machines
connected to the grid is preserved. Then, we employ reachability
analysis to determine the set of admissible parameter values
which is required for the LPV controller synthesis. Afterwards,
reachability analysis is also used to formally guarantee that
the synthesized controller encloses the time-varying parameters
within chosen parameter ranges during transients. Both tasks
are solved simultaneously in a systematic fashion. The method
is demonstrated on a multi-machine benchmark example to
showcase the applicability and scalability of the approach.

I. INTRODUCTION

Transient stability analysis is considered by both theorists
and practitioners to be one of the most problematic issues
for studies involving the dynamic security assessment of
power systems [1]. The problem refers to the ability of
the synchronous generator to remain in synchronism with
the frequency of the utility grid following a disturbance in
the transmission network. This problem can be effectively
managed using fast circuit breakers and by introducing
necessary damping torque via special controllers, e.g. the
power system stabilizer (PSS). However, the standard con-
trollers which establish transient stability in practice are often
synthesized based on a linearized model of the synchronous
machine [1]–[3]. This limits their effectiveness to eliminate
the electrochemical oscillations during transients, around a
nearby region from the linearization point. This will become
even more challenging in the foreseeable future due to
increasingly varying operating conditions in power systems.

An alternative approach to handling nonlinearities of
power systems is the use of linear-parameter-varying (LPV)
controllers, see e.g. [4]–[6]. The interesting feature about
LPV systems is that they can be treated as linear time-
invariant (LTI) plants subject to the uncertainty of some
time-varying parameters which account for the operational
range of the system. This makes it possible to use powerful
linear controller synthesis tools, e.g. robust H∞ and pole
placement [7], [8]. One aspect which is ignored during the
synthesis procedure is the verification of the resulting con-
troller; that is, the formal guarantee that the time-varying
parameters will always remain within the specified space
using the synthesized controller under all eventualities. In
other work, the controller is instead examined within a
simulation environment that does not provide any guarantees.
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Fig. 1. Simplified diagram of the proposed LPV controller to robustly
establish transient stability with formal guarantees for multi-machine power
systems. In this framework, the j-th generator is controlled via a set of state-
feedback controllers Kj(φj) ∈ Kj , as presented in Sec. III. The controller
gain generates the control signal of the field voltage vf , depending on the
time-varying parameters φn,j ∈ Φj obtained using reachability analysis
in Sec. IV. The interaction at the bus h with other machines connected to
the grid is preserved by considering local measurements that are affected
following any disturbance occurring in the transmission network.

Motivated by the shortcomings of standard controllers and
the existing LPV controller synthesis procedure, we present
an approach, based on reachability analysis, to combine
synthesis and verification of LPV controllers under one
framework. Reachability analysis basically determines the set
of states that a system can reach over a time horizon starting
from a set of initial states [9], and recently, it has emerged
as a promising technique for a wide range of applications in
power systems, see e.g. [10]–[13]. The proposed framework
is particularly beneficial when synthesizing LPV controllers
of multi-machine power systems, since finding consistent
parameter ranges for each generator simultaneously in the
least conservative way can become a difficult task when not
following a systematic approach.

II. MODELLING OF LPV POWER SYSTEMS

We consider a standard model of the synchronous gener-
ator for the multi-machine power system model [2, p.334]

dδj/dt = ωs (ωj − ωr) ,
dωj/dt = 1/2Hj (Pm,j − Pe,j −Dj(ωj − ωr)) ,

dE′
q,j/dt = 1/τ ′

d,j

(
vf,j − E′q,j − id,j(Xd,j −X ′d,j)

)
.

(1)

Here δ is the rotor angle, ω is the angular velocity, and
E′ is the machine transient voltage. The system inputs are
the field voltage vf and the power Pm. The subscript j
corresponds to the j-th generator, m and e are the mechanical
and electrical components, respectively, and d and q denote
the d- and q-axis, associated with Park’s transformation.



The power Pe and the stator current i are obtained by
solving the following set of algebraic equations:

0 = vq,j − E′q,j +X ′d,jid,j ,

0 = vd,j −Xq,jiq,j ,

0 = vd,j − Vh sin(δj − θh),

0 = vq,j − Vh cos(δj − θh),

0 = Pe,j − vd,jid,j − vq,jiq,j ,
0 = Qe,j − vq,jid,j + vd,jiq,j ,

(2)

where v is the machine voltage and Q is the generator
reactive power. The voltage V and its phase angle θ at the
bus h ∈ B are associated with the grid algebraic equations.
They are calculated via the formulation of the power flow
equations [2, p.68]

0 = Ph − Vh
∑
k∈BVk|Yhk| cos(Θhk − θk − θh),

0 = Qh + Vh
∑
k∈BVk|Yhk| sin(Θhk − θk − θh),

(3)

with the line admittance being expressed by the absolute
value Y and the phase angle Θ. The parameters D, H , ωr,
ωs, X , X ′, and τ ′ are the damping and the inertia constants,
the reference and base frequencies, the synchronous and tran-
sient reactance, and the transient time constant, respectively.

The LPV system representation of the synchronous gener-
ator is derived in [14] by inserting a suitable choice of alge-
braic variables into the differential equations, and assigning
the remaining nonlinearities to time-varying parameters:

˙̃xj =

 0 ωs 0
φ1,j

2Hj
−Dj −φ2,j

2Hj

− (Xd,j−X′
d,j)φ3,j

τ ′
d,j

0 − 1
τ ′
d,j

 x̃j +

 0
0
1
τ ′
d,j

 vf,j ,
(4)

with :
φ1,j = Pm,j−(Xq,j−X′

d,j)id,jiq,j/δj,

φ2,j = iq,j , φ3,j = id,j/δj,

}
φ = F (δ, id, iq)

(5)

where φn,j ∈ Φj , n ∈ {1, . . . , nφ} are the time-varying
parameters, and the state variables are x̃ = [δ, ω, E′q]

T . Note
that the power Pm is constant, which can be easily justified
for studies involving transient stability [1, ch.13].

Remark 1. Here it should be stressed that (4) is an exact
reformulation and is not a linearization of (1)-(2). This
allows one to set up modular models of the generators to
synthesize and verify each machine separately.

III. LPV CONTROLLER SYNTHESIS

This section describes the synthesis procedure for each
j-th generator to obtain a set of state-feedback controllers,
as illustrated in Fig. 1. First, we express the LPV system (4)
in state-space form as

˙̃xj(t) = Ãj(φj(t))x̃(t) +Bjuv,j(t) +B∞,juw,j(t),
zj(t) = C∞,j x̃j(t),

(6)

with uv,j ∈ Rnv , and uw,j ∈ Rnw as the vector of control
outputs and exogenous inputs, respectively, and zj ∈ Rnz
as the output vector to specify the control performance of a
transfer function Gzjuw,j (s). The system matrix Ãj(φj(t))
depends affinely on the time-varying parameters, such that

Fig. 2. Simplified illustration of a reachable set. The dark-gray area is the
resulting set reach

(
R(0), tf

)
that encloses all possible system trajectories

for t ∈ [0, tf ], starting from a set of initial states R(0), over a time
horizon tf . Random trajectories are shown by dotted-lines. The light-gray
area represents the reachable set at t = tf denoted by R(tf ).

Ãj(φj) ∈ Ãj :=


lφ∑
i=1

λi,j(φj)Ã
(i)
j : λi ≥ 0,

lφ∑
i=1

λi = 1

 ,

(7)
where Ãj is a matrix-polytope defined as the convex hull
of a finite number of matrices with the same dimensions
denoted by Ã

(i)
j ∈ Rnx̃×nx̃ , i ∈ {1, . . . , lφ} and λi(φj) are

the coefficients of the convex combination that expresses the
variable matrix Ãj(φj) in terms of the vertices Ã(i)

j .
Next, the set of state-space controllers is obtained by

solving a semi-definite optimization problem subject to a set
of LMIs specified for H∞ and pole placement [7], [8]:

minimize
Mj , K̃

(i)
j

γj , (8)

2αjMj + Ã
(i)
cl,jMj +MjÃ

(i)T
cl,j < 0, (9)[

sin(βj)(T1,j) cos(βj)(T2,j)
− cos(βj)(T2,j) sin(βj)(T1,j)

]
< 0, (10)Ã(i)

cl,jMj +MjÃ
(i)T
cl,j BT∞,j MjC

T
∞,j

BT∞,j −γjI 0
CT∞,j 0 −γjI

 < 0, (11)

with : Ã
(i)
cl,j := Ã

(i)
j +BjK̃

(i)
j ,

where K̃(i)
j are the controller vertices and Mj is the symmet-

ric matrix of the Lyapunov function Vj(x̃j) = x̃Tj M
−1
j x̃j .

The expressions of T1,j and T2,j are provided in [14].
The constraint conditions (9), (10), and (11) physically

account for limiting the energy consumption of the actuating
variable while introducing sufficient damping torque via
the exciter field voltage vf,j in order to stabilize the j-th
synchronous machine during transients. This is achieved via
the parameters γj , αj , and βj , whose physical meaning is:
• The parameters αj and βj are associated with the pole

placement design. They define a region realized with
Re(s) > −αj and a conic sector with the angle βj
which specifies the pole locations of the closed-loop
within the complex plane s, thus directly influencing
the dynamic performance.

• The parameter γj is the bound that accounts for the
closed-loop H∞ performance such that ‖Gzjuw,j‖∞ <
γj , i.e. this condition addresses the controller robust-
ness.



Finally, the controller Kj(φj) can be expressed analyti-
cally during control using the convex combination based on
the controller vertices K̃(i), such that

Kj(φj) =
∑lφ
i=1 λi,j(φj)K̃

(i)
j , (12)

where the coefficients λi,j(φj) are the same as those appear-
ing in (7), due to the affine dependency of the LPV controller
on the time-varying parameters.

In Sec. IV-C, we will illustrate that time-varying parame-
ters are enclosed by an axis-aligned box Φ := [φ, φ] with the
extreme points φ̂1, . . . , φ̂2nφ , where φ and φ are the lower
and upper bound of time-varying parameters, correspond-
ingly. This makes it possible to express the dependency of
the coefficients λi on φ by the closed-form expression

λi(φ) =
∏nφ
m=1νi,m(φ), (13)

with i and m denoting the i-th entry and the m-th dimension,
respectively. The formula of the variable ν and the proof of
(13) are detailed in our previous work [15].

IV. REACHABILITY ANALYSIS

This section illustrates the procedure to obtain the set of
parameter ranges Φ necessary for the LPV controller synthe-
sis based on computations of over-approximative reachable
sets. Reachability analysis of dynamical systems determines
the set of states that a system can reach over a time horizon
starting from a set of initial states, as illustrated in Fig. 2.

A. Abstraction to Linear Differential Inclusions

First, we rewrite the multi-machine power system model
in (1)-(3) using the compact form formalized as set of time-
invariant, semi-explicit, nonlinear, index-1 DAEs

ẋ(t) = f(x(t), y(t), u(t)),

0 = g(x(t), y(t), u(t)),
(14)

where the vectors x ∈ Rnx , y ∈ Rny , and u ∈ Rnu include
the dynamic states, the algebraic constraints, and the input
variables, respectively. Our reachability algorithm is based on
abstracting (14) into linear differential inclusions for each
consecutive time-interval τk := [tk, tk+1], with tk := kr,
where r ∈ R+ refers to the step size, and k ∈ {1, . . . , h} is
the time step. The abstraction is expressed by

∀t ∈ [tk, tk+1] : ẋ(t) ∈ Ax(t)⊕ U . (15)

Here A ∈ Rnx×nx is the abstraction system matrix, and U
is the set of uncertain inputs. The operator ⊕ returns the
Minkowski sum of two sets.

Remark 2. Note that (14) is continuously linearized for each
time interval τk. Additionally, the inclusion (15) encloses all
possible trajectories of the nonlinear DAE system.

B. Computation of Over-Approximative Reachable Sets

After defining r := tk+1−tk and uc as the center of U , we
can express the reachable set X (tk+1) of the dynamics ẋ =
Akx+ uc, enclosed by the differential inclusion (15), based
on the well-known solution of linear state-space equations

X (tk+1) = eAkrR(tk)⊕Rp(r), (16)

Modelling of power systems as a set of time-invariant, semi-explicit, 
nonlinear, index-1 DAEs

Determine the set of 
admissible parameter values

2 LPV controller synthesis3.a

Transformation into 
modular LPV systems

1

3.b Express the LPV controller analytically using convex combinations

Re-compute the set of admissible parameter values with the LPV controller4

End

Differential and 
algebraic variables

Time-varying
parameters

Fig. 3. Illustration of the proposed approach to combine synthesis and
verification of LPV control under one framework, to robustly establish
transient stability of multi-machine power systems with formal guarantees.

where eAkr is the matrix exponential and Rp(r) is the set
which over-approximates the particular solution of the linear
state-space equation. The reachable sets at the next point in
time tk+1, and for the time interval τk, are evaluated by

R(tk+1) = X (tk+1)⊕Ru(r), (17)
R(τk) = CH (R(tk), X (tk+1))⊕Re ⊕Ru(r), (18)

where the operator CH(·) returns the convex hull of two
sets, and the set Re considers enlargement of the convex
hull enclosure, in order to account for the assumption that
trajectories over τk are straight lines. Finally, the reachable
set Ru(r) accounts for the uncertainty of the input set U .
The evaluation of the sets Rp(r), Re, and Ru(r) are derived
in our previous work [12].

C. Reachable Set of Time-Varying Parameters

To estimate the admissible set of time-varying parameters,
we over-approximate computed sets (17), (18) using

ηdk := IH(Rd(τk)) = [ηd
k
, ηdk],

ηak := IH(Ra(τk)) = [ηa
k
, ηak],

(19)

where ηk is the interval hull which approximates computed
reachable sets. The superscripts d and a corresponds to dif-
ferential and algebraic variables. The operator IH(·) returns
the interval that encloses a set as tightly as possible.

The interval hulls X and Y enclosing the evolution of
differential and algebraic variables for (14) over a time-
horizon tf with h := tf/r time-steps, are

X := enclose
(
ηdk, . . . , η

d
h

)
= [x, x] ,

Y := enclose (ηak , . . . , η
a
h) =

[
y, y

]
,

(20)
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Fig. 4. The WSCC 3-machine 9-bus benchmark [3, Ch. 2].

using x := min
k∈{1...h}

ηd
k
, and x := max

k∈{1...h}
ηdk,

y := min
k∈{1...h}

ηa
k
, and y := max

k∈{1...h}
ηak,

(21)

therefore, the set of admissible parameter values of (6) over
a time-horizon tf can be expressed by

Φj = {φj = F j(x, y) : x ∈X, y ∈ Y } . (22)

Here, F (x, y) is the nonlinear function that describes time-
varying parameters as in (5). The function is evaluated using
interval arithmetic since differential and algebraic variables
are presented by interval vectors in (20).

V. OVERALL APPROACH

Combining all previous steps, we can now summarize the
overall original approach to synthesizing LPV controllers
with formal guarantees. The procedure shown in Fig. 3 is
outlined as follows

1 Transform each grid node of the multi-machine
power system DAE model (14), which corresponds
to a generator bus to the LPV representation (4).

2 Perform transient stability analysis on the DAE sys-
tem (14) using reachability algorithms to guess the
set of parameter values Φj for each j-th generator.

3.a Synthesize a set of controllers Kj(φj) ∈ Kj that
account for admissible parameter trajectories ob-
tained in 2 by formulating a set of LMIs specified
for pole placement and H∞ design.

3.b Express the LPV controller analytically based on
the synthesized set of state-space controllers.

4 Verify the design specifications of the controller
using reachability analysis, to guarantee that the
time-varying parameters are always enclosed within
the specified admissible space.

VI. CASE STUDY

We consider the multi-machine WSCC 9-bus benchmark
example [3, Ch. 2], illustrated in Fig. 4. We assume
the PQ-loads and transformers are modeled as constant
impedances. The LPV controller is synthesized around an
LMI-region consisting of the half-plane Re(s) > −7 and
the conic sector with an angle β = 45◦. This enforces suf-
ficient damping of approximately 70%, thus eliminating the

Fig. 5. Projection of the reachable set of differential variables for generators
G2 and G3. The light-gray and dark-gray areas belong to the reachable set
during fault and post-fault, respectively. The white box corresponds to the
set of initial state variables R(0). The considered fault scenario is the loss of
the transmission line connecting the buses 5 and 7. The line is reconnected
after the clearance of the fault, and the reachable set is computed until all
states are enclosed by R(0), to formally verify that the LPV controller
introduces sufficient damping torque to converge state variables back the
original equilibrium point. The solid lines present random simulation results
starting from the initial reachable set R(0).

electromechanical oscillations in a reasonable time. Table I
provides the admissible space of Φj for each j-th generator,
which is required for the controller synthesis procedure.

The considered fault scenario is the loss of the transmis-
sion line between bus 5 and 7. Immediately after losing the
transmission line, entries of the admittance matrix change
thus leading to a discontinuous jump in the algebraic variable
to satisfy the power flow equations (3). This disturbance
generates a new control action from the unified control struc-
ture, see Fig. 1, as the local measurements δ, P, Q, V ∠θ
at each generator bus were affected by the perturbation in
the transmission network. Fig. 5 shows projection of the
reachable set using the synthesized LPV controller for the
considered fault scenario.

We include uncertainty in the initial set of differential
variables, since initial states are not exactly known due to

TABLE I
ADMISSIBLE SPACE OF THE TIME-VARYING PARAMETERS FOR EACH

GENERATOR OF THE WSCC 9-BUS BENCHMARK EXAMPLE.

Φ G1 G2 G3

Φ1 [0.21, 0.25] [0.04, 0.06] [0.07, 0.11]
Φ2 [0.25, 0.33] [0.84, 1.12] [0.51, 0.62]
Φ3 [0.34, 18.9] [1.19, 1.68] [0.46, 0.59]



Fig. 6. Time-domain bounds of chosen time-varying parameters. The
light-gray and dark-gray areas belong to the reachable set during fault and
post-fault, respectively. The jump in φ2,2 at t = 0.01, and t = 0.2 is
associated with the fault scenario which leads to the discontinuous change
in the reachable set. The dashed-lines are the upper and lower bounds of the
time-varying parameters, see Table I. Since the time-domain bounds do not
intersect with the dashed-lines, it can be formally verified that the controller
robustly establish transient stability according to its design specifications.

increasingly varying operating conditions in current power
systems. Note that the post-fault phase is analyzed until
all dynamic state variables converge back to the initial set
denoted by R(0). To examine accuracy and tightness of
the over-approximative reachable set, we validate the results
against simulated trajectories of the DAE system starting
from the set of initial states R(0). It can be seen that the
reachable sets tightly enclose all trajectories, thus allowing
one to estimate the set of admissible parameter values in the
least conservative way. The parameters are obtained via the
computation of reachable sets of differential and algebraic
variables according to the method explained in Sec. IV-C.
Reachability analysis is also used to verify that these bounds
are not violated using the synthesized controller for the
considered fault scenario, as shown in Fig. 6.

Comparing our results with an existing method is not
possible due to the originality of the proposed method.
A comparison, however, is indeed possible when consid-
ering each aspect separately, i.e. controller synthesis or
verification, as reported in our previous work [12]–[14].
A comparison of the LPV control performance against the
standard PSS controller is found in [14], where it is shown
that the LPV controller outperforms the PSS in many aspects,
improving the control performance significantly and yielding
much tighter reference value tracking during transients. Fur-
thermore in [12], [13], we highlight the many advantages
of reachability analysis over numerical simulations, and
present the verification of state-space controllers in a realistic
configuration of a power plant.

VII. CONCLUSION

We propose a unified approach based on reachability anal-
ysis to combine synthesis and verification LPV controllers
in one framework, to robustly establish transient stability of
multi-machine power systems with formal guarantees. The
proposed approach reformulates the set of nonlinear DAEs
governing dynamics of power systems into modular LPV
systems, thus allowing one to systematically synthesize and
verify decentralized controllers, and more importantly pre-
serve the correlation between different machines connected
to the grid. In future work, the concept applicability will be
studied and validated against a realistic setup employing a
standard controller, e.g. the PSS, belonging to the 450 MW
power plant München Süd GuD, owned by Munich City
Utilities, similar to our recent contribution in this area [13].
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