Modeling Multicore Programmable Logic
Controllers in Networked Automation Systems

M. Hashemi Farzaneh, S. Feldmann, Student Member IEEE,
C. Legat, J. Folmer, B. Vogel-Heuser, Senior Member IEEE
Institute of Automation and Information Systems (AIS), Technische Universitit Miinchen (TUM)
85748 Garching near Munich, Germany
Email: {hashemi, feldmann, legat, folmer, vogel-heuser} @ais.mw.tum.de

Abstract—Integrating Multicore Programmable Logic Con-
trollers (PLC) in Networked Automation Systems (NAS) promises
a higher computing performance and PLC manufactures are
launching their first Multicore PLCs (MPLC). However, analyz-
ing the MPLCs time behavior considering distributing automa-
tion tasks on different cores is more complex than analyzing the
time behavior of single-core PLCs. For increasing analyzability
of NAS a modeling notation is needed. However, MPLCs are
not considered sufficiently in modeling NAS nowadays. In this
paper, properties and requirements of MPLCs regarding the
distribution of automation tasks on multiple cores are explored.
These properties and requirements affect real-time constraints of
automation tasks of a Multicore-Capable NAS (MCNAS). Based
on the explored properties and requirements a modeling notation
for modeling MPLCs is proposed. This modeling notation offers
the automation engineer higher analyzability of the time behavior
of MCNAS.

Keywords—automation, networked automation systems, model-
ing, multicore, plc.

I. INTRODUCTION

Multicore technology is developing rapidly and multicore
processors offer a higher computing performance in compari-
son to single-core processors because of the ability of parallel
code execution on different cores. This trend increases for
Networked Automation Systems (NAS) [1]. NAS in indus-
trial automation describes an automation system consisting
of sensors and actuators as well as interconnected controllers
(e.g. Programmable Logic Controllers (PLCs)) [2]. Automation
tasks that have to satisfy real-time requirements need more
computing capabilities. The modest price of multicore CPUs
and significant increasing of computing performance motivate
NAS operators to integrate multicore processors in PLCs [9].
Moreover, integrating Multicore Programmable Logic Con-
trollers (MPLC) in NAS offers the possibility to increase
system reliability, e.g. to compensate failures of hardware
components (MPLC or cores of MPLC). In case of a MPLC
or core failure, software components can be reassigned to
other hardware with sufficient remaining computing capacity.
Because of distributing automation tasks on different cores,
analyzing the time behavior of MPLC is more complex than
analyzing the time behavior of single-core PLCs. Due to
increasing complexity of the NAS, a modeling notation for
modeling NAS architecture and time behavior is needed [3].
The objective of such a modeling notation is increasing analyz-
ability of the NAS architectures on the one hand and offering
a basis for verification of the time behavior of a modeled NAS
[2] on the other hand.

978-1-4799-0224-8/13/$31.00 ©2013 IEEE

4398

However, modeling MPLCs has not yet been sufficiently
integrated into modeling NAS although NAS and MPLCs are
increasing the system’s complexity drastically. Furthermore,
scheduling of MPLCs influences the timing behavior of NAS
and vice versa. The effect of these influences on the system’s
overall timing behavior is too complex to be determined
manually and based on expert knowledge solely. This may lead
to misconfigured systems being discovered during the plant’s
commissioning phase and, thus, real-time constraints are not
satisfied or the overall system is not working properly making
cost-intensive re-engineering necessary. Up to now, there is
no holistic modeling approach to model MPLCs within NAS
and, hence, no verification process for estimating the timing
behavior of NAS is applied to support engineers during the
design phase.

In this paper, analyzing and modeling MPLC is focused.
Analyzing MPLC, properties and requirements are derived
which affect the time behavior of MPLC in a Multicore-
Capable Networked Automation System (MCNAS). These
properties and requirements are discussed and utilized for
developing a modeling notation for MPLCs. To demonstrate
the developed modeling notation a real example from industry,
a hydraulic press, is utilized and excerpts of its model are
presented.

The paper is structured as follows: In the next section, the
state of the art related to multicore challenges and modeling
automation systems is discussed. In section III, software and
hardware properties and requirements for modeling MPLC are
classified. A notation for modeling MPLC is presented in sec-
tion IV. An application example from industry demonstrating
the modeling notation for MPLC is introduced in section V.
The paper is summarized and an outlook on future work is
given in section VL.

II. STATE OF THE ART

In the following, the state of the art with focus on modeling
notation for automation systems, general challenges of multi-
core processors and challenges of multicore processors in real-
time automation systems is presented. Gomaa [4] describes a
method for designing real-time and distributed applications,
which integrates object-oriented, and concurrency concepts by
using the Unified Modeling Language (UML). Katzke et al.
[5] introduce an implementation oriented approach for object
oriented software development of heterogeneous distributed
systems. In this approach, UML is extended by model elements
for representing control code as well as small-scale patterns

for plant automation. Huber et al. [6] introduce a graphical
notation for characterizing the software architecture and to
distribute processes and tasks on processors in the automotive
domain. Witsch et al. [7] present a modeling notation for
designing communication networks in automation systems.
It includes elements of NAS such as sensors, actuators,
PLCs, switches, etc. This modeling notation offers automation
engineers a design instrument for earlier phases of system
design. Vogel-Heuser et al. [3] consider time requirements for
modeling NAS and consider time-related information separated
into time requirements and properties. Frey et al. [8] introduce
a Network-Controller- using Modelica to model distributed
automation systems. These models can be applied for ana-
lyzing response time in open and closed-loop control systems.
None of the previously described approaches consider specific
characteristics of MPLC.

Hansen [9] discusses the emerging trend of using MPLCs
in industrial informatics and factory automation and addresses
the existing trends, the future possibilities and challenges
such as accessing shared hardware. Byna et al. [10] address
the problem of accessing shared memory in multicore CPUs
and introduce simple analytical models for prediction of the
occurrence of data access contention and provide a guideline
for choosing the optimal number of CPU cores to run an
application without causing data access contention. Chen et
al. [11] discuss the problem of the high complexity of inter-
nal behavior of multiprocessor system-on-chip (MPSoC) and
present a general framework for profiling MPSoC embedded
systems. They suggest a framework helping designers to iden-
tify performance problems and to improve the architecture of
embedded systems.

Paolieri et al. [12] claim that current multicore CPUs are
less analyzable than single-core CPUs and propose a multicore
architecture with shared resources that allows the execution
of applications with hard real-time and non-hard real-time
constraints at the same time. It provides time analyzability
for hard real-time tasks. Rosen et al. [13] suggest that cache
misses play a significant role estimating Worst Case Execution
Time and analyzes four Bus Scheduling Approaches and
optimizes two of them to enhance the predictability of real-
time applications on multicore CPUs. Saifullah et al. [14]
suggest that multicore processors have potential to enable
real-time applications with timing constraints that cannot be
fulfilled on a single-core processor. Furthermore, the approach
addresses the problem that hardware technology regarding
multicore processors is moving at a rapid pace but developing
software and programming models is slow. For exploiting
multicore resources, a new task decomposition algorithms is
presented. This algorithm considers the intra-task parallelism.
Oriol et al. [15] present FASA as a scalable component
framework for distributed control systems. FASA computes an
optimal schedule for automation tasks considering real-time
constraints. Unfortunately, none of the related works which
deal with challenges of multicore processors considers the
modeling of MPLC.

The reviewed literature deals either with modeling notation
for NAS without considering issues of multicore processors or
address challenges of multicore processors in non-real-time
and real-time systems without discussing modeling. Modeling
MPLCs in automation systems has not been considered suf-

4399

Software Hardware
CPU Type
CPU Clock Speed
5 Max Number of. Tas.ks of a Core Number of Cores
*é Task Synchronisation Strategy Cache Size
2 Task Scheduling Strategy Core To Cache Scheduling Strategy
Instruction Set
RAM Size
g Task Name Load Per Core
Q
g Task Cycle Time Load Per CPU
;5; Task Priority
& Task Data Dependency
Fig. 1. Explored properties and requirements for modeling MPLC

ficiently. For this reason, modeling notations of automation
systems and specific characteristics of MPLCs are brought
together in this paper for modeling MPLCs in NAS.

III. ANALYZING PROPERTIES AND REQUIREMENTS
CONCERNING MPLCs

In this section, software and hardware properties and
requirements are investigated which are related to MPLC.
For this purpose information from two sources are collected.
The first source is based on data sheets of MPLCs which
describe the hardware and software properties of MPLCs (e.g.
CPU Type, Task Scheduling Strategy). The second source is
based on multicore processor challenges discussed in literature.
The challenges of multicore processors are crucial for real-
time automation systems for making a statement whether
automation tasks deadlines can be met. By not meeting these
deadlines in hard real-time systems, catastrophic sequences
may occur.

Analyzing MPLCs, two classes of parameters can be deter-
mined. The first class deals with hardware-related parameters
and the second one deals with software-related parameters.
For each class, properties and requirements are defined as sub
classes. Properties class includes parameters which come with
a MPLC as a product and are constant (e.g. CPU Type, En-
gineering Environment installed on a MPLC, etc.). Moreover,
the class of requirements consists of parameters which are set
by designers of a MCNAS and have to be fulfilled in order to
have a correct functioning MCNAS (e.g. Load per Core). Fig.
1 depicts an overview of investigated parameters. From the
explored hardware and software properties and requirements,
we derive MPLC time requirements. These time requirements
have to be fulfilled in order to meet the task cycle time can be
met. The meeting of the task cycle time depends on meeting
these time requirements. In the following subsections the
modeling of these properties and requirements are discussed.

A. Hardware properties

CPU Type includes information about CPU producer and
CPU model of the multicore CPU in a MPLC (e.g. Intel i7
2715QE). CPU Clock Speed is a significant factor for estimat-
ing the performance of a CPU. High Number Of Cores offers

high computing performance regarding parallel computing of
automation tasks. Cache is a rapid buffer memory in the
CPU that stores process data. Using cache, repeated access
on Random Access Memory (RAM) can be avoided. In this
way, data access delays are reduced. Cache plays an important
role in a multicore CPU [10] and increases the computing
performance. Having a big Cache Size, more data can be stored
for a rapid access by CPU. The time behavior of a multicore-
CPU also depends on the Core To Cache Scheduling Strategy
for competing cores while accessing the shared cache [16].
Core To Cache Scheduling Strategy deals with strategies such
as two-phase locking strategy that control the concurrent cores,
accessing a shared cache. The concurrency control mechanisms
lead to data access delays which affect the performance of
the MPLC. Instruction Set specifies the set of instructions
(programming instructions) of a CPU. Instruction Set affects
the performance of CPU allocating RAM. For instance, a CPU
with a 32-bit instruction set can allocate only 4 Gigabyte of
the RAM but a CPU with a 64-bit instruction set can allocate
around 16 Exabyte (18.4x10'8bytes) of the RAM. The bigger
the RAM Size, the higher the performance of PLC. Having big
RAM Size more data can be stored at the run-time for a rapid
access by CPU.

B. Hardware requirements

Load per Core specifies the load on a core, which will
be set by the designer of MCNAS. This parameter must be
set if a core must not exceed a specific temperature regarding
to security issues. High CPU temperatures can lead to CPU
or core failures. Failures in automation systems in critical
environments such as nuclear power plants can endanger
people in the neighborhood. Load per CPU limits the whole
load on a multicore CPU. Here is the previously mentioned
reason also valid.

C. Software properties

A task in automation systems, describes a program which
runs on a PLC in a cyclic manner. Max Number of Tasks of a
Core limits the number of running tasks on a core. Depending
on Task Synchronization Strategy different task execution times
are expected and fulfilling real-time constraints can be guar-
anteed [18]. For parallel running tasks a Task Synchronization
Strategy is needed to avoid that two tasks access a shared
data at the same time. Without task synchronization, tasks
can calculate with not-updated data. Working with not-updated
data, leads to wrong calculations and results. Task Scheduling
Strategy is needed when two or more competing tasks run on a
CPU. Depending on parameters such as task priority, a running
order for tasks is specified. Task Scheduling Strategy plays a
significant role estimating execution time of a task [14].

D. Software requirements

Task requirements come from the automation engineers
programming MCNAS. Each automation task has a unique
Task Name and a Task Cycle Time (task deadline). Task Cycle
Time must be met in order to have a correctly running closed-
loop automation system. Each task has a Task Priority that has
to be considered depending on the scheduling strategy which is
specified as Task Scheduling Strategy. Software in automation
systems is modularized and consists of so-called Program

4400

TABLE 1. DERIVED TIME REQUIREMENTS

Time Requirements ID Derived from

Task Synchronization Delay | Task_Sync_Delay Task Data Dependency,
Task Synchronization

Strategy Per Core

Cache Size, Core To Cache
Scheduling Strategy, RAM

Task Memory Access Delay = | Task_ Mem_Delay
Core To Cache Delay or

Core To Cache Delay + Core Size
To RAM Delay
Priority Dependent Task Task_Prio_Delay Task Priority
Delay
Scheduling Dependent Task | Task Sched Delay | Task Scheduling Strategy
Delay Per Core
Computing Performance Com_Delay CPU Clock Speed, CPU
Delay Instruction Set, Load Per

Core, Load Per CPU

Organization Units (POU) [19]. An automation engineer as-
signs POUs to tasks while designing an automation system.
Depending on the complexity of the POUs, the execution
time of a task is affected. Two automation tasks T1 and T2
(consisting of POUs) are defined as dependent tasks (7ask
Data Dependency) if an output variable of T1 is input variable
of T2 or vice versa. T1 and T2 are also dependent tasks if
they share global variables. High data dependencies lead to
longer execution times. The reason is the task synchronization
overhead which was discussed in subsection C.

E. Deriving time requirements

From the previously discussed requirements and prop-
erties, time requirements are derived. These time require-
ments are both hardware-related and software-related. Task
Synchronization Delay (Task_Sync_Delay) is caused by soft-
ware requirement Task Data Dependency and property Task
Synchronization Strategy. The more shared variables between
two parallel tasks, the higher the synchronization delay. Task
Memory Access Delay (Task_Mem_Delay) deals with the delay
accessing a data from memory and is affected by hardware
properties Cache Size, Core To Cache Scheduling Strategy,
RAM Size. Task_Mem_Delay is equal to Core To Cache Delay
if data exists already in Cache. If the data does not exist in
Cache, it is equal to Core To Cache Delay + Core To RAM
Delay. Priority Dependent Task Delay (Task_Prio_Delay) is
affected by software requirement Task Priority: the higher the
priority of a task, the shorter the Task_Prio_Delay. Scheduling
Dependent Task Delay (Task_Sched_Delay) is the delay caused
by software property Task Scheduling Strategy: the more effi-
cient is the scheduling strategy, the shorter Task_Sched_Delay.
An efficient scheduling strategy guarantees that all tasks are
done as fast as possible. The Computing Performance De-
lay (Com_Delay) is the delay depending on CPU properties
CPU Clock Speed, Instruction Set, Load per Core, and Load
per CPU. Table IDerived time requirementstable.1 shows an
overview of the derived task time requirements. The sum of
the derived time requirements of a task has to be less than its
cycle time in order to fulfill real-time constraints of the task.

IV. MODELING NOTATION FOR MCNAS

In this section, the investigated properties and requirements
from the previous section are transferred into a modeling

TABLE II. MODELING NOTATION ELEMENTS FROM [3]

Communication-related time ya N\ N
behavior N\ 7 U j
Application-related time behavior v Y

A 4

Host and network line Host] =

PLC with CAN bus adapter and x "
S A
I/O-modules, control task running on FL’ u @ u @

CAN
PLC 8x | 8x | 8x | 8x

HIORLIG,

Digital/analog sensor and digital/analog
actuator

notation for MCNAS. Firstly, a modeling notation of NAS
regarding NAS architecture and time behavior is introduced.
Secondly, new elements for modeling MPLC are proposed.
These modeling elements include the investigated properties
and requirements of MPLC.

A. Modeling notation for NAS as basis

The modeling notation developed by Vogel-Heuser et al.
[3] covers the basic components of a NAS such as sensors
and actuators and PLCs. In this notation, time requirements
of a NAS are integrated providing the ability to compare
NAS architectures and their time behavior. Table IIModeling
notation elements from [3]table.2 shows an excerpt of the
basic components of the modeling notation and the compo-
nents of the modeling notation regarding hardware and time
requirements and properties. Modeling elements related to
the time behavior are divided into communication-related and
application-related elements. They are either a property or a
requirement modeling element. The PLC modeling element
does not contain any details. These basic components are
extended to develop a modeling notation for MPLC.

B. Modeling MPLCs in MCNAS

For modeling MPLC first a PLC modeling element is
needed which indicates the number of cores. Looking at this
symbol, an automation engineer can recognize that the used
PLC is a MPLC or a single-core PLC. Fig. 2MPLC modeling
elementsfigure.2 depicts a sample of the three needed elements
for modeling MPLC properties. For modeling the properties
of MPLC a modeling element is proposed which includes the
main properties of MPLC. This element contains information
about CPU and RAM. For a more fine modeling the MPLC
details such as the Core To Cache Scheduling Strategy, Max
Number of Tasks of a Core, Task Synchronization Strategy
and Task Scheduling Strategy has to be embedded into an-
other modeling element includes these details. Probably, an
automation engineer is not interested in all details of MPLC
in the earlier phases of modeling a MCNAS (e.g. the exact
type of MPLC will be specified in later phases of MCNAS
development). Thus, details can be added optionally for latterly
expanding them in a modeling tool. Modeling elements for a
MPLC are connected using a line.

For modeling requirements on MPLC two modeling ele-
ments are proposed. The first modeling element deals with
task requirements of MPLC and includes requirements such
as Name, Task Cycle Time, Priority, Task dependency and

4401

» _ CPU
L PN

cl|c|c|c

PLC-CX2040-Details PLC-CX2040

Core To Cache Scheduling EDF

Strategy Type Intel i7 2715QE
Max Number of Tasks of a Cores 4
C 50 5
ore & |Speed 2.1 GHz

Task Synchronization ©

Y Semaphors Cache 6 MB
Strategy - -

Romnd Instruction Set 64 bit
. oun

Task Scheduling Strategy Robin RAM 4GB

Fig. 2. MPLC modeling elements
|
| 4 TASK_TIME REQUIREMENTS(ms) N
Task_Sync_ | Task_Mem | Task_Prio_| Task_Sched_
Task Delay _Delay Delay Delay Com_Delay
LTI 6 1 1 1 0,5
T2 3 1 5 3 0,5
T3 0 1 5 3 0,5
P CPU
L PN
C c|c|cj|c
t Host
il
' CYCLE_TASK ‘
Task Name Cycle time Prio. Order POUs
[ms]
T1 Taskl 10 1 T1,T2,T3 FBI, FB3
T2 Task2 20 2 T2,T3 PRGI1
T3 Task3 20 2 NULL FB2

Automation task requirements

Fig. 3.

assigned POUs. The other modeling element takes over the
derived time requirements from the previous section. The sum
of time requirements must be less than the Task Cycle Time
of each task (Task Cycle Time has to be met). Both modeling
elements are connected to one of the cores of the MPLC
modeling element. Fig. 3Automation task requirementsfigure.3
shows the elements for modeling requirements of MPLC.

V. APPLICATION EXAMPLE

In this section, a hydraulic press as an application example
from industry is introduced first to demonstrate the proposed
modeling notation for MPLC subsequently.

A. Introduction of hydraulic press

In order to demonstrate the presented modeling notation,
a hydraulic press used for the production of fiber boards
is used as an application example, cf. Fig. 4Using MPLC
modeling notation for modeling a hydraulic pressfigure.4. A
full description of the whole plant is further detailed in [20].

CYCLE_TASK

TASK_TIME_REQUIREMENTS(ms)

Cycle
Task Name ;im: Prio. Dependency POUs Task | Task_Sync_Delay las:;;:‘: ;’m— Task_Prio_Delay Task_Sched_Delay Com_Delay
ms
Tl F1 Observation 30 1 T1.12,13,T4 PRGI T G ; : ; 03
T2 | FI Contr. Loop Valve L | 15 | 2 T2.13,T4 FBI, FB2 ™ 3 : E 3 02
T3 | Fl1 Contr. Loop Valve C 15 2 NULL FB4 &
T4 | FI Contr. Loop ValveR | 15 2 NULL FB3, FB5 T3 0 1 5 3 0,5
Host-
,1 | 4 CYCLE TASK N
PLC-CX2040-Details PLC-CX2040 Cycle
Core To Cache EDF Task Name time | Prio. Dependency POUs
Scheduling Strateg Type Intel i7 2715QE [ms]
Max Number of Tasks | 5 -, | Cores 4 T F2 Observation 20 | 1 | TILTI2TI3,T14 PRG2
oo |5 |Specd 2.1 GHz TI2 | F2 Contr. Loop Valve L | 20 | 2 NULL FB6
Sas ynchronization | Semaphor Cache 6 MB T13 | F2 Contr. Loop Valve C |20 2 NULL FBS, FB9
trategy $ Instruction Set | 64 bit ——— T14 | F2 Contr. Loop ValveR | 20 | 2 NULL FB7, FUNI
Task Scheduling Round Host
Strategy Robin RAM 4GB S k ‘
r
o \
S \ [—
S | ! ! 0!y A - == | = DE
. | BoN ; T
‘ ‘ Host { N E XH, - \Imrm‘v‘ }ly
\
Host lJ —
-
P
P C
C
b L U PN
C C cru

427 machine group

®O|®

Fig. 4. Using MPLC modeling notation for modeling a hydraulic press

In wood industry, plants can consist of 3000 up to 6000
analogue or digital sensors or actuators connected via field-
buses. Often, thousands of control loops with data delays of
less than 10 to 20 ms need to be controlled by multiple PLCs.
The hydraulic press is the most costly piece of equipment in
wood industry. The press principle is simplified as follows:
For the finished fiber board, material (already mixed with
glue) needs to be pressed with a specific pressure in order
to obtain a certain thickness related to a desired set value.
In order to control both the distance and pressure on the
material, certain hydraulic systems within so-called frames
are distributed along the hydraulic press. Each frame consists
of five hydraulic systems that — in turn — may consist of a
proportional valve, a distance sensor and a pressure sensor.
Controllers are mostly realized using proportional-integral-
differential controllers used to control pressure and distance on
the material. Furthermore, as the material gets thinner along
the press’ longitudinal direction, the controllers’ distance and
pressure set values not only depend on the sensors and actu-
ators within the frame, but also on preceding and succeeding
frames or frame groups. To make things worse, a press may
consist of up to 70 frames and, thus, up to 500 sensors, making
the engineering process even more complex. In order to master
the system’s complexity, appropriate support in developing and
modeling the NAS needs to be provided. For the sake of clarity
and simplicity, the exemplary hydraulic press consists of 16
frames.

B. Modeling the example of hydraulic press

A possible architecture for fulfilling the presented control
task is shown in Fig. 4Using MPLC modeling notation for

modeling a hydraulic pressfigure.4 The architecture consists
of two MPLCs and one single-core PLC. The PLCs are con-
nected via PROFINET. Beckhoff MPLCs CX 2040, CX 2030,
CX 2020 have been used for the hydraulic press. The informa-
tion has been derived from the data sheets available in [17].
The PLCs are switched via an Ethernet switch.

I/O-modules for 16 press frames containing the appropriate
sensor and actuator interfaces are connected to the PLCs
via PROFINET field bus interface. PLC-CX 2040 takes over
the tasks of frames 1-8. PLC-CX 2030 (dual core) process
tasks of frames 9-13 and tasks of frames 14-16 run on
PLC-CX 2020 (single-core). The hardware properties of the
PLC-CX 2040 are described on the left side. The descrip-
tive modeling elements detailing PLC-CX 2030 and PLC-
CX 2020 are not included in Fig. 4Using MPLC model-
ing notation for modeling a hydraulic pressfigure.4 because
of space saving. Software requirements (CYCLE_TASK and
TASK_TIME_REQUIREMENT) are shown on the top of the
Figure (PLC-CX2040). The modeling elements LINE_DELAY
and BRIDGE_DELAY are introduced in [3] and describe an
excerpt of the time requirements of the whole MCNAS of the
hydraulic press.

Using the presented modeling example, it has been shown
that characteristics of MPLCs including hardware properties,
hardware requirements, software properties, software require-
ments and time requirements on MPLC can be modeled.
Providing an appropriate tool support, these characteristics can
be analyzed, e.g. the analysis of the task distribution: using
a given scheduling process and taking the CYCLE_TASK
properties into account, the timing behavior of a software
implementation executed on a MPLC can be determined.

4402

Furthermore, effects between timing behaviors of MPLCs and,
hence, the complete MCNAS can be analyzed. Using an
appropriate tool being developed in future research work, the
information presented above will be verified using methods
from automatic verification, e.g. simulation and stochastic
model-checking (cf. [2]). This enables to support engineers
while dealing with the complexity of the overall automation
system during engineering. Hence, the engineer is able to point
out time-critical scenarios, e.g. task distributions of MPLCs or
response times of NAS and their effects on the overall timing
behavior. Therefore, the presented modeling approach will
provide a significant step towards identifying design mistakes
and violations of time requirements at an early design stage.

VI. CONCLUSION AND FUTURE WORK

Multicore Programmable Logic Controllers (MPLCs) offer
a higher performance because of their capability of parallel
code execution in Multicore-Capable Networked Automation
Systems (MCNAS). In this paper, we focused on analyzing
and modeling MPLC. The result of analyzing MPLC was
a set of software and hardware properties and requirements.
Based on these properties and requirements a notation for
modeling MPLC has been proposed. This modeling notation
was demonstrated by means of an application from industry.

Future work will focus on evaluating the proposed mod-
eling notation for MPLC and deeper investigation of MPLC
considering operating system and engineering environment.
Another focus will be the verification of the time behavior
of MCNAS concerning software distribution on MPLC cores
in case of hardware failures providing higher system reliability.
Additionally, a tool support will be implemented covering the
presented characteristics and requirements in order to enable
automatic verification of MCNAS. The prototypical tool will
be evaluated empirically both during university courses and by
experts from industry to verify that both the system’s failure
rate and design time decrease using the presented approach in
comparison to a traditional one.

REFERENCES

[1] ABB’s Protection Library Eliminates Need for Safety PLC(2013).
[Online]. Available: http://www.automationworld.com.

[2] B. Vogel-Heuser , G. Frey, H. Hermanns, J. Folmer, L. Liu and A. Hart-
manns, “"Modeling of Networked Automation Systems for Simulation
and Model Checking of Time Behavior”, in Systems, Signals and
Devices (SSD), 2012 9th International Multi-Conference, 2012, pp. 1-5.

[3] B. Vogel-Heuser, S. Feldmann, T. Werner, and C. Diedrich, "Modeling
network architecture and time behavior of Distributed Control Systems

in industrial plant automation”, in 37th Ann. Conference of the IEEE
Industrial Electronics Society. Nov. 2011, pp. 2232-2237.

4403

(4]

(51

(6]

(71

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

H. Gomaa, “Designing concurrent, distributed, and real-time appli-
cations with UML”, in 23rd International Conference on Software
Engineering, 2001, pp. 737-738.

U. Katzke and B. Vogel-Heuser, “Design and application of an engi-
neering model for distributed process automation”, in American Control
Conference, 2005, pp. 2960-2965.

F. Huber, B. Schlitz, A. Schmidt and K. Spies, ”AutoFocus A tool
for distributed systems specification”, B. Jonsson and J. Parrow, Eds.
Springer Berlin Heidelberg, 1996.

D. Witsch and B. Vogel-Heuser, “Modellierungsansatz fr Zeitan-
forderungen und Kommunikationsnetze”, atp — Automation Technology
in Practice, vol. 50, no. 6, pp. 44-53, 2008.

G. Frey and L. Liu, "Modellierung und Simulation vernetzter Automati-
sierungs- und Regelungssysteme in Modelica Modeling and Simulation
of Networked Automation and Control Systems in Modelica”, at —
Automatisierungstechnik, vol. 57, no. 9, pp. 466-476, 2009.

K. T. Hansen, ”Usage of multicore in automation”, in IEEE International
Symposium on Industrial Electronics. pp. 3784-3786, 2010.

S. Byna, X.-H. Sun and D. Holmgren, "Modeling Data Access Con-
tention in Multicore Architectures”, in 2009 15th International Confer-
ence on Parallel and Distributed Systems. 2009, pp. 213-219.

P-H. Chen, C.-T. King, Y.-Y. Chang and S.-Y. Tseng, "Multiprocessor
System-on-Chip Profiling Architecture: Design and Implementation”,
in 15th International Conference on Parallel and Distributed Systems.
2009, pp. 519-526.

M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat and M. Valero,
“Hardware support for WCET analysis of hard realtime multicore
systems”, ACM SIGARCH Computer Architecture News, vol. 37, no.
3, p. 57, Jun. 2009.

J. Rosen, A. Andrei, P. Eles and Z. Peng, "Bus Access Optimization for
Predictable Implementation of Real-Time Applications on Multiproces-
sor Systems-on-Chip”, in 28th IEEE International Real-Time Systems
Symposium (RTSS 2007). Dec. 2007, pp. 49-60.

A. Saifullah, K. Agrawal, C. Lu and C. Gill, "Multicore Real-Time
Scheduling for Generalized Parallel Task Models”, in IEEE 32nd Real-
Time Systems Symposium. Nov. 2011, pp. 217-226.

M. Oriol, M. Wahler, R. Steiger, S. Stoeter, E. Vardar, H. Koziolek
and A. Kumar, "FASA: a scalable software framework for distributed
control systems”, in 3rd international ACM SIGSOFT symposium on
Architecting Critical Systems, ser. ISARCS12. New York, NY, USA:
ACM, 2012, pp. 51-60.

Y. Cui, W. Zhang, Y. Chen and Y. Shi, "A Scheduling Method for
Avoiding Kernel Lock Thrashing on Multi-cores”, in IEEE International
Conference on Parallel and Distributed Systems. pp. 17-26, 2010.
Beckhoff (2012). [Online]. Available:
http://www.beckhoff.de/default.asp?embedded_pc/.

G. Lipari, G. Lamastra and L. Abeni, “Task synchronization in
reservation-based real-time systems”, IEEE Transactions on Computers,
vol. 53, no. 12, pp. 1591-1601.

International Electrotechnical Comission. Programmable controllers -
Part 3: Programming languages,Reference: IEC 61131-3 ed. 3.0 .

B. Vogel-Heuser, Automation in the Wood and Paper Industry. Berlin
Heidelberg: Springer, 2009, pp. 1015-1026.

