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Abstract
Human–beings can easily describe their behaviour by
IF-THEN rules, which can be transferred from one task to
another with slight local changes. However, standard tech-
niques for function approximation like neuronal networks
or associative memories are unable to work with rules. We
introduce a method for extracting and importing human
readable rules from and to a B-spline fuzzy controller. Rule
import is used to initialise a B-spline fuzzy controller with
a priori knowledge to decrease the learning time and over-
come the problem of partially trained B-spline controllers.
In the experimental section we show how a set of rules for a
two arm cooperation task are generated through “learning-
by-doing” and transferred to a robot screwing operation.
The successful experiment shows how rule-based knowl-
edge can be used for skill transfer in similar tasks.

1 Introduction
Like conventional process control, perception-action cy-
cles can be implemented with either model-based or con-
nectionist methods. Model-based approaches must specify
explicit sensor-robot system models. Typical applications
are calibrated methods for hand-eye coordination and the
artificial potential-field for collision-avoidance. However,
they suffer from the following problems:

� They are not adaptable to varying environments;

� They cannot be built incrementally or modularly;

� They cannot be interpreted symbolically.

Connectionist approaches use expert knowledge or learn-
ing to acquire the characteristics of the sensor-action sys-
tem. Recently, such approaches were applied to the sensor-
based control of robots, as well as to classical process con-
trol. Applications of artificial neural networks [1, 2, 3, 4]
exhibit intelligent behaviour like self-organisation, adapta-
tion and distributed processing but the “black-box” struc-
ture remains as an obstacle to integrating symbolic ap-
proaches which represent the other important part of hu-
man intelligence. Fuzzy control also finds applications

in behaviour implementation [5], but these controllers are
mainly realised by human expert knowledge instead of
self-adaptation.

One important aspect of human intelligence for control is
the rapid understanding and application of experiences told
by others. Based on this capability, a human does not need
to learn every control task from the very beginning. Fuzzy
control in combination with adaptive learning can provide
a suitable tool for obtaining similar transfer abilities in ma-
chine control. Let us show the transfer procedure for a con-
trol task with a simple one-dimensional example. Consider
a control system with one sensor input x and one action
output. Consider that the output should react to the input
like a sin���x�� function. Assume that a controller A has
learned through (a lot of) effort how to achieve the optimal
control (the best approximation through supervised learn-
ing), Fig. 1. The controller can extract the following set of
symbolic rules interpreting the controller behaviour:

IF Input IS zero THEN Action IS zero
IF Input IS small THEN Action IS positive_mid
IF Input IS medium THEN Action IS positive_big
IF Input IS large THEN Action IS negative_big
IF Input IS maximum THEN Action IS zero

If controller A tells controller B its control experiences
qualitatively, these coarse control rules can be applied. Al-
though controller B can possibly have its own interpreta-
tion of the linguistic terms, which means slightly different
membership functions, it can still achieve similar control
results without any learning process.

In this paper we discuss the usage of rule-based knowled-
ge with a B-spline fuzzy controller [6] and the transfer
between two similar control tasks. Such a skill transfer
is cognitively adequate and leads to faster convergence of
learning processes. Focussing on the two aspects of rule
extraction and rule import, we describe the learned data as
IF-THEN rules, and in a second step, how to initialise a
controller by a priori known rules. The methods are tested
by composing both algorithms and comparing the results.
We also designed a classical fuzzy controller based on the
extracted rules. We have used a two manipulator cooper-
ation task [6] and a screwing operation [7] to show how
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Figure 1: Learning to map the sensor readings into the
action values for emulating the function y � sin�2�x��.
The B-spline basis functions defined on the interval ��� �	
represent the linguistic terms “zero”, “small”, “medium”,
“large”, “maximum” (from left to right).The values of the
rhombi represent the linguistic terms of the control ac-
tion, “zero”, “positive medium”, “positive large”, “nega-
tive large”, “zero”.

rule-based knowledge can be transferred from one task to
another. The learning time can be reduced significantly and
extremal values in the learning process like force spikes
can be avoided.

2 Basic Methods

2.1 Rule-Based Controllers

A sample rule for compliant motion could be:

IF the deviation from the desired force is very
high

THEN the arm should move back a big stretch

A general control rule has the following form:

IF Input� is PB AND ... AND InputN is NB

THEN Output is ZO (0.9754)

where Inputn is the n-th input dimension, PB, PM,
PS,... represent linguistic terms like Positive Big or
Positive Medium ... and the value in the brace is a rule
weight.

2.2 Rule Extraction

Assuming a trained B-spline controller for a given prob-
lem/function, we want to describe the output dimension
with triangular membership functions. We have to find an
optimal set of linguistic terms which matches the output of
the premises. Especially for higher dimensional problems

this can be realised by a clustering method (e.g. fuzzy c-
means) where the cluster centres are associated with the
maxima of the triangular linguistic terms.

In the rule generation process all input combinations re-
lated to the B-splines are generated. Therefore we use the
position of the B-spline extremal points. For third–order
B-splines the maximum of the i-th spline can be computed
by:

xmax �
� xi�� � xi�� 
 xi � xi��

�xi�� 
 xi�� � xi�� 
 xi

where xi are the knot values of the related knotvector with
which the B-spline is defined. When the controller output
at this point is untrained, no rule is generated. Otherwise
the output membership function with the highest degree of
membership d is searched, where d is used as a rule weight.
If d is less then 1.0, the controller output intersects with
two linguistic terms of the output dimension, and therefore
the local control action cannot be described exactly by one
rule. Another rule with the same premise but the other in-
tersected linguistic term as conclusion has to be generated.

This gives us a basic approach for rule reduction. Under
the loss of accuracy we can specify a limit b � �. When
the degree of membership d is below the limit (d � b), a
second rule is generated.

The more output membership functions are used, the better
these linguistic terms are matched and the less likely we
need a second rule to describe the real output value. These
leads to a rule description in zero-order TSK type whose
output values are crisp.

IF Input� is PB AND ... AND InputN is NB

THEN Output is Value

where Value is an output value, based on which a perfect
reconstruction can be realised by a minimum number of
rules. The singletons are usefull for exact function approx-
imation but problematic for the understanding of the rules,
therefore we propose to use linguistic terms and accept the
loss of accuracy in function approximation.

2.3 Rule Import

The import process can be understood as a learning process
for the B-spline fuzzy controller. The given rules are input-
output combinations that have to be learned. The error is
the difference between the conclusion and the actual con-
troller output f��xj����jN � on the corresponding input values
multiplied by the rule weight.

Therefore, an algorithm generates the input values from the
premise for every rule and calculates the actual controller
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Figure 2: sin�x� � cos�y� learned by a B-spline controller
in ranges of ���� �	.
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Figure 3: Difference surface between the original Fig. 2
and the imported function (b=1).

output. If the difference to the conclusion is under a cer-
tain limit, no learning step is performed. Otherwise this
difference is used as the learning error. The rule weight is
used as the learning step rate. This process is repeated un-
til the mean–squared error over all learning errors remains
constant. Because this is a gradient descent of a quadratic
error function, the convergence can be guaranteed. Fig. 2,
3 and 4 show the composition of extraction and import of
a two dimensional function �sin�x� � cos�y��. If we use
a limit b � ��� to reduce the number of rules, the recon-
struction of the original function is not perfect, as can be
seen in Fig. 4. The function structure can also be generated
by a classical Mamdani fuzzy controller but it is not very
smooth (Fig. 5).
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Figure 4: Difference surface if the rules are reduced as de-
scribed above b � ���.
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Figure 5: Feeding a Mamdani type fuzzy controller with
the extracted rules.

3 Experiments for Force–Control Tasks

We now discuss how to transfer the rules which are learned
by one task to another analogous problem. The first domain
is a two-arm cooperation task [6] (Fig. 6), the second one
is a robot screwing operation [7] (Fig. 7).

3.1 Two-Arm Transportation Skill

Figure 6: Two-arm transportation task of a wooden ledge.

In the cooperation task two robots rigidly grasp an object
and move it along a desired trajectory. Both manipula-
tors are coupled in a single kinematic chain. The resulting
forces are measured with two Force Torque Sensors (FTS)
and are fed back via a B-spline controller to compute posi-
tional corrections. The task is realised by three controllers
for the forces in x� y� z direction and one controller for the
torque in z direction.

3.2 Screwing Skill

In the screwing scenario one robot is holding a bolt while
another robot is performing the screwing, Fig. 9. The com-
plete operation can be decomposed in the following steps:
Find the contact, put the bolt in the nut, find the notch point,
screw-in, terminate (when one hand detects a torque im-
pulse in the approach direction). We focus on the screw-
in part of this sequence which is somehow similar to the
cooperation task. Three controllers are used to adapt the
forces in x� y� z direction. Only the position of one robot
needs to be changed which allows us to skip the drifting



Figure 7: Screwing scenario with two robot hands.

problem that occurred in cooperation tasks with more than
one FTS, see [6].

3.3 Analogy

Both problems can be approximately described by Hook’s
law: �

d�x�t�

d���t�

�
� C

�
�F �t�
�M�t�

�
(3.1)

where C describes the programmed compliances d�x�t� and
d���t� the deviation from the equilibrium position and �F �t�,
�M�t� the forces and torques. They can be learned online

from the sensor data of both robots FTS by gradient descent
(see [6]):

�di��i������iq �t� � ��
	E

	di��i������iq �t�
(3.2)

� � �yr � yd�

qY
j��

N
nj
ij

�xj��

– with the learning rate � � � � �

– the difference �yr � yd� between measured and desired
value

– and the B-splines Nnj
ij

�xj�

From (3.1) we know that the positional error �yr � yd� is
approximately proportional to the force error �Fr � Fd�.

In the cooperation task every controller has four input di-
mensions which are the related force and torque, the dis-
tance to the desired trajectory and the shoulder–hand dis-
tance. All input variables are covered with five B-splines.
The rules are extracted as described above.

3.4 Linguistic Rules To Transfer

These rules are to be imported into controllers which are
used for a screwing task as discussed in [7]. Because this

task is almost static, the third and fourth input variable are
dispensable. The screwing operation takes place at a fixed
place, so the hand-shoulder distance remains constant. As
a consequence the number of rules for controlling each di-
rection is reduced to 25, Tables 1,2 and 3.

NB NM NS NM NS NM
NS NM NM NM NS NS
ZO NM PM PM PS NS
PS PS PM PM PS PS
PB ZO PS PS ZO PM

NB NS ZO PS PB

Table 1: Rules to control forces in x direction.

NB NM NM NM NM NM
NS NB NM NM NM NB
ZO PS ZO NS ZO ZO
PS PM PM PS ZO ZO
PB PM PM PM PM PM

NB NS ZO PS PB

Table 2: Rules to control forces in y direction.

NB NS NS NM NS NS
NS NS NS NM NM NS
ZO PM ZO NS NS NS
PS PB PM ZO PS PS
PB PB PB PS PS PM

NB NS ZO PS PB

Table 3: Rules to control forces in z direction.

Although both tasks (cooperation/screwing) are somehow
similar, the stiffness parameters in C vary a lot. To adapt
the different stiffness situations the linguistic terms of the
output variable are linearly stretched by multiplication with
a stretching factor. If such a factor is unknown, it has to be
found iteratively.

3.5 Control with Directly Transferred Rules

Importing these 25 rules in a B-spline controller produces
the control surface shown in Fig. 8. Performing a screw-
ing operation like the one in Fig. 9 without online learn-
ing will produce the force curves shown in Fig. 10. The
desired force in z-direction was -1N (see also Fig. 11 in
comparison which shows the forces of an uncontrolled op-
eration1). One major benefit of an initialised controller
is its faster convergence in relation with learning. Fig. 12
compares the MSE of two controllers, one learning from
scratch, the other one after rule transfer. Here one can see
how the learning time can be reduced significantly by im-
porting rules from another task.

1When such an operation succeeds.
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Figure 8: Control surface generated by the imported rules.

Figure 9: Force guided screwing operation with two robots.

3.6 Optimal Control and Local Adaption

Comparing Fig. 8 and Fig. 13 shows how the learning pro-
cess modifies the control surface locally but keeps its over-
all shape. The control surface in Fig. 14 is resulted from
a screwing task that was not initialised and trained with
seven learning steps. One can see that only the central part
of the surface was modified and the outer parts remain in
an initial state of zero. This is the problem of bad extrap-
olation of B-spline controllers which can be handled by a
good initialisation.
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Figure 10: Forces measured during a screwing operation
with an initialized controller.
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Figure 11: Forces measured during an uncontrolled screw-
ing operation.
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Figure 12: Comparison of the MSE of initialised / unini-
tialised controllers with respect to the learning steps.

4 Conclusions

We showed that sensor-based behaviours can be incremen-
tally learned based on a B-spline model. Readable rules
can be easily extracted from a B-spline fuzzy controller.
A set of rules can be transferred to comparable control
tasks and locally adapted. Such a skill transfer reduces
the learning time significantly. Learning from scratch pro-
duces large errors in the early learning process which can
prohibit the learning at all (screw does not snatch, ledge
breaks, ...). These bootstrapping problems can be avoided.

Several features of the approach are:
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Figure 13: Control surface after learning an initialised con-
troller.
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Figure 14: Control surface after learning an uninitialised
controller.
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Figure 15: Forces measured during a screwing operation
with an initialised and learned controller.

� Knowledge encoding by transforming numerical data
to symbolic representation. As a result, huge amounts
of data are compressed with the “IF-THEN” struc-
ture. If the model of the input/output relation is not
available, this compression is quite compact. The pro-
posed model can serve as a bridge between numeric
input/output data and symbolic control rules. The
approach possesses good interpretability, adaptability
and generality if the dimension of the input space is
limited.

� Incremental methodology results in the transparency
of the behaviour building process. The modular par-
tition of a behaviour in local control rules is actually
the reason for rapid convergence of learning.

� Smooth output. If a B-spline basis function of order
k is used, the output is (k � �)-times continuously
differentiable.

With our approach, the perception-action cycle is finally
represented in form of “IF-THEN” rules with optimised
parameters. No complex programming and control exper-
tise are needed. Fine-tuning of the main controller param-
eters can be done on-line and automatically. We are work-
ing on using this technique for acquiring a wide range of
sensor-based skills in a complex aggregate assembly sce-
nario.
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Figure 16: Forces measured during a screwing operation
with an uninitialised and learned controller.
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