
FORMALLY CORRECT TRANSLATION OF DSP ALGORITHMS
SPECIFIED IN AN ASYNCHRONOUS APPLICATIVE LANGUAGE

Markus Freericks Alois Knoll

Technische Universitat Berlin Sekr. FR 2-2
Franklinstr. 28-29 1000 Berlin 10

mfx@cs.tu-berlln.de

ABSTRACT
The functional pro rammin language ALDiSP, which is special1
tailored to the nee& of DSfprogramming, is presented. ALDiS6
m c o y t e s data streams and an asynchronous control concept
base on on1 one construct, the suspension. A comparison with
traditional DZP languages like SILAGE is made. It is shown how
ALDiSP pro rams can be translated into efficient code using the
techniques of abstract interpretation and partial evaluation, in
which a program is applied to symbolic input, resulting in usage
informahon for all possible runs. This information is used to
o timize the program by reconstructing it. Both the com ilation
oFfunctions and the construction of a compile-time schedufe make
use of this approach.

1. INTRODUCTION

For a variety of reasons the develo ment of a language for the
specification and implementation of 6SP a1 orithms is a demand-
ing challenge. The re uirements are even kigher when real-time
systems are to be specked.
The traditional doctrine suggests that execution speed can only be
achieved in “low-level’’ languages, i.e., ultimately, by using the no-
table “C”, but these have met with limited success. Special-purpose
languages have also been developed. One of the more rominent
ones, which will serve as our comparison, is SILAGE[1 r
In 1989-90, two languages, ImDiSP[2], an imperative one, and
ALDiSP[3,5], which is based on functional concepts, were devel-
oped at TU Berlin in the context of the CADiSP project[4]. An
ImDiSP-compiler for the Motorola 960000 has been written.
The ALDiSP compiler ac is under development, after a first inter-
pretive implementation of the language made it possible to evaluate
the -rather novel - concepts.
This paper describes the language and the techniques on which that
compiler is based.

2. COMPARISON WITH OTHER LANGUAGES

We start with a discussion of different kinds of programmin lan
guages, organized by the list of features that a language skould
provide to support DSP programming.

2.1. DSP PROGRAMMING PARADIGMS

DSP programming languages can be roughly categorized by the
aradigms they are based on. One major point is the distinction
etween synchronous and asynchronous languages.

Asynchronouslanguages have an event-oriented view of the world.
Asynchronous programs can be understood as automata that re-
act to input as it occurs by computing output and changing to a
new state. A synchronous signal is viewed as a sequence of asyn-
chronous events that happen to occur at equidistant points in time.

Synchronous languages are based on the premise that all input is
processed in a fixed time frame. The DSP algorithm is then a loop
that is executed once per sample (or per ksamples, where k is a fixed
constant). Some synchronous lan uages support multi-rate signals
by providm interpolation and &&nation operations to convert
signals of different sampling rates. If a synchronous language
supports event rocessing, it does so by representin it as a “busy
waiting” signal’ once per sample frame the signa? representing
the event has to be tested, an extremely inefficient way to handle
i/o. Since most DSP algorithms are purely synchronous and there
is an easy and obvious way to implement synchronous languages
efficiently, nearly all DSP languages are based on the synchronous
paradigm.
Asynchronicity typically occurs in control applications, where
physical systems are coupled to sensors that initiate intempts on
system state change. In practice, DSP processors are often used
for both the realization of synchronous algorithms and the pro-
cessin of control events. For example, in an ISDN application.
the D& algorithm could be the compression, decompression and
error checking of digitized sound or images, while the control part
would be the management of user interaction and the handling of
ISDN protocol.

2.2. DSP PROGRAMMING REQUIREMENTS

The following requirements should be met by a DSP language:

Signal datatypes: DSP applications are concemed with the cre-
ation, transformation and analysis of signals. Usually, the intemal
representation of a signal is that of a stream of discrete equitem-
porally taken sam les. Most algorithms are only concemed with
the “current sampE” and the “1. . . k-th previous”samples, where
“k” is a small constant.
DSP hardware often facilitates si nal handling b j r i d i n g cir-
cular buffers. A language shoulc! su ed “signal”
data type that can be translated into e E e n t code accessin such
hardware features. General-purpose languages like “C” $0 not
offer this feature; often this is made for up by specially introduced
pragmas and new data types.
DSP specific lan uages are often designed around the signal
datatype; in SILAkE, for example, “everything is a signal”.
In ALDiSP, signals are re resented by streams andpipes (output
and input driven chains o?values) that are not restricted to scalar
elements; it is possible to define streams of structured types, too.
Timing specifications: in a synchronous language, timing is im-
plicit. If multi-rate i/o is needed, one sampling frequency can be
taken as a reference in relation to which all other rates are defined.
Interpolation and decimation operations can then be provided to
access signals not sampled with the reference frequency. SILAGE
depends on this method.
An asynchronous language has to provide either a lobal clock
to which timing references can be made, or rely totalfy upon data
dependencies. ALDiSP provides both features in its suspension
construct (see 4.2).

rt a pre e

This work was in part supported by an Emst-von-Siemens grant.

1-417

0-7803-0946-4/93 $3.00 Q 1993 IEEE

mailto:mfx@cs.tu-berlln.de

Support of diverse numeric types: to model the restrictions of
the hardware base accurately, a host of numeric types (signed/un-
signed integer, biased integer, fixpoint, different floating-point
formats), each of which can occur in v ing widths, are needed.
When these are not resent, the “C” s x t i o n is adopted: a few
types (int, float, fix) Benote those numeric representabons that the
machine provides.
While the latter approach simplifies the langua e, it is not ap-
propriate when the a1 orithm is to be s cifiecfin a machine-
mdependent way, or wken a bit-true simuction is needed.
Mechanisms to describe rounding and overflow behaviour: DSP
algorithms need and DSP hardware provides support for many dif-
ferent quantization and overflow modes, most importantly satura-
tion and different kinds of wrapping. ALDiSP supports overflow
and rounding specifications in a novel way: it uses the concept of
exceptions. Whenever rounding occurs, the operator concemed
calls a roundin exception that retums the rounded result. The
user may re-deane the “current rounding mode” by providing a
new rounding exception. It is even possible to define completely
new rounding or overflow modes.
Modularization features: many DSP programs are most naturally
described as data-flow diagrams consisting of predefined function
nodes. The development of function libraries should be aided by
language features that support the creation of highly re-usable
functions.
A problem often encountered in languages like “C” or Pascal is
that all functions are restricted to one type of arguments; e. a
function that takes a 16-bit fixed- int signal may not be appka-
ble to a 24-bit fixed-point signal gt alone a floating-point input),
even if its definition does not rely in any way on the specific types
of the arguments.
ALDiSP provides function overloading and polymorphic function
definitions; e.g. a function can be defined for different explicit
types or in a type-unspecific way.

3. PARALLELISM Ilri HARDWARE AND SOFTWARE

DSP hardware tends to incorporate parallel features; the basic
MAC (multi ly accumulate) architecture depends on the ability to
load two vakei from memory, multiply them, and add the result
to a register, all in one cycle. It is not unusual to have parallel
data-move, integer- and floating-point units in one processor.
To utilize hardware parallelism efficiently, a language should su
port “parallel” o erations like “add two arrays element-wise”. TRe
anguage shoulanot force the programmer to sequentialize a par-

allel algorithm.
Single-assignment languages llke SILAGE are adequate in this
respect, since each vanable has exactly one definition, so no “re-
use” takes place: the algorithm is stateless. Problems occur when
iterationhecursion is needed; the single-assignment approach is to
introduce pseudo-arrays in which the nth element corresponds to
the nth iteration of the loop.
Still, if the hardware provides, e.g., vector processing facilities,
possible usage of such features is only extracted from “scalar” al-
gorithms by ainstakiin anal sis. Even when parallel operators are
provided as Eard-wirecfmeclanisms in the lan uage, It is usually
not possible to extend in a portable manner w%en new hardware
has to be addressed.
Functional programming offers the possibility of higher order func-
tions (or functionals), i.e. functions that take other functions as
arguments or retum them as results. Functionals make it possible
to abstract from “control flow”, which helps modularization. In
addition, functionals make it easy to express parallelization con-
cepts.
Among popular functionals are map, which maps a functions
element-wise on an array or stream, and reduce, which applies
a binary function to vector, thereby “collapsing” it. For example,
“reduce +” in ALDiSP is the operation that computes the sum of
all elements of a vector. The difference between, e. a functional
“map” and a built-in “map” (as defined, e.g., in FOkRAN-PO) is
that the first one is an ordmary function that can be defined by the

user, while the second one is a “magic” mechanism built into the
compiler and the language definition.
The second important property of functionals is that they can be
used to write ve compact code. Functional program sources are
often an order o;)lmagnitude shorter than their imperative counter-
Parts.
Sin le assi nment languages can be seen as functional languages
witbut higker-order funcbons.

4. ALDiSP - AN OVERVIEW

ALDiSP is a call-by-value functional language with the following
features:

a delay form provides lazy evaluation on demand
e a module facility

overloaded function definitions
userdefinable types; arbitrary predicates can be used as types

0 exception mechanism: both aborting and returning exceptions,

rounding and overflow expressible via exceptions
automatic mapping of all functions on arrays and signals
higher-order functions
no restrictions due to type-checking
i/o functions
time and i/o expressed via suspensions

The last item will now be ex lained in detail. Functional ro
gramming is centered around $e idea of statelessness - the wioli
program can be seen as a mathematical function that maps mput
to output; this function is composed from other functions. Com-
putation (or better: reduction) order is only determined by data
dependencies. Because of this, function ap lications can be sub-
stituted freely by their definitions. and new Lnctions can be intro-
duced wherever shared behaviour is encountered. These structural
properties make it much easier to design and implement all kinds
of provably correct program transformations.
In contrast, program transformations in imperative language are
often incorrect because properties such as non-aliasing of pointers
cannot be determined without actually running the program on
all possible inputs, so unprovable assumptions have to be made.
These propertles can be subsumed under the notion of sfate -
context in which expressions are evaluated. Functional languages
have (nearly) no state.
Because of this lack of a state, functional langua es usual1 do
not incorporate any concept of i/o - input is most o h n consdred
to be part of the pro ram (as in r t h reduction), output is seen
as “pnnting the re& value”, w ic is outside the scope of the
language proper.

dynamically bound

4.1. STREAMS

Recent trends in incorporating i/o control use the concept of s t r e m .
A stream is a (usually infinite) se uence of values produced by a
function. A trivial stream is that o?the natural numbers, where the
nth element has the value n. Only a finite prefix of a stream must
be represented extensionally, i.e. as a data structure; the infinite
remamder of the stream is can be represented as a function.
For exam le, the stream of natural numbers can be implemented
in ALDiS“ as the recursive function

f u n c C o u n t N a t s (n) = n : : C o u n t N a t s (n + l)
N a t u r a l N u m b e r s = C o u n t N a t s (0)

The “ : : ” operator constructs a stream from a first element and the
tail of a stream, i.e. it prepends a value to a stream. It also delays
the computation of its second argument to the point where it is first
accessed. This prevents. the function from looping indefinitely.

1-418

Streams can be used to model an output-driven system: whenever
an output value is required by the pnntin function, a new stream
element is computed. Input can be provited as a stream, too; e.g.,
a file can be modelled as a (finite) stream of characters.

4.2. SUSPENSIONS

Standard streams do not lend themselves to model input-driven
behaviour. ALDiSP introduces the concept of suspensions for this
purpose. A sus nsion is an ex ressions that is “suspended”unti1
some conditionkeolds. This congition relates either to other suspen-
sions (waiting for them to evaluate) or to i/o state. Accessing the
value of an as yet unevaluated suspensions suspends the accessin
function itself. A predicate isAvahble tests for the availability of
a suspension’s value.
A good example for the use of suspensions is the valve controller:

func guard-cloaed-valve 0 -
suspend open-valve0;

until current-pressure()>lOO.O
within Oms, 2ms

guard-open-valve (1 ;

func guard-open-valve0 =
suspend close-valve0;

guard-closedpalve0
until currentgressure() ~95.0

within Oms, 5ms

These functions implement a two-state controller in a direct way.
A suspend expression consists of three parts: the ex ression
that is to be suspended; the condition upon which the evayuability
depends, and two “duration” values. The latter determines the time
frame, relative to the point where the condition becomes true, in
which the expression must be evaluated. Providing a condition that
is constantly “true” allows the user to request fixed timing delays.
The execution of an ALDiSP program is a two-level process, man-
aged by a scheduler and an evaluator. The scheduler controls the
i/o and activates suspensions; each suspension’svalue is then com-
puted by the evaluator. If, during the evaluation, a side-effect is
attempted, the evaluation blocks and retums a suspension. The
scheduler then effects the side-effect and, later, re-awakens the
suspended evaluation. Thus, evaluation is purely functional.

43. A COMPLETE PROGRAM

A suspension-based analo on to streams, dubbed i es, provides
for input-driven i/o. The foflowing is acomplete AfLfiSP program
that reads an input at a fixed rate, applies a simple second-order
FIR filter to it, and writes it out again:

func ReadFromRegister(Rate,Reg) -
read(Reg) ::

suspend readFromRegister(Rate,Reg)
until true within Rate,Rate

func WriteToRegister (Reg, Outputpipe) =
(write (Reg, head(0utputPipe) ;
suspend WriteToRegistcr(Reg,ta~l(OutputPipe~)

until isAvailable (tail (Reg)
within Oms, O.lms)

func FIR(aO,al,a2) (inp) =
let SO = 0::inp

sl = 0::so
s2 - 0::sl
inp + aOfsO + alfsl + a2fs2

in

end

filter1 - FIR(O.98132343,-0.3225834,0.12465574)
net
SamplingRate = 1 sec / 44000
Input = ReadFromRegister(SamplingRate,StdIn)

WriteToRegister(StdOut,filterl(FilteredInput))
in

The ReadFromRegister function samples a given inputregis-
ter (e. ., an ADC) at a frequency of 44kHz. The resultin pipe is
then fiftered and written to an output register (e.g., a D A d .

5. COMPILATION

There are two traditional compilation techniques for functional
programmin languages, combmator-based com ilation and stack
machines. f i e first is based on the translation ofthe rogram and
its input into a graph which is then reduced in a rager arbitrary
order. Stack machines have a more conventional machine model
in mind; they are mainly used in the implementation of sbict and
impure functional languages. The Lisp machines were descendants
of this approach.
Both techniques are not well matched to ALDiSP, mostly because
they rely on a taggedmemory heap providing dynamic storage and
garbage collection facilities.
With the advent of CPS-based code generation[6], a technique
has emerged that lowers the level of lambda expressions (the in-
termediate form common to most functional language compilers
and interpreters) to that of machine code. CPS is based on the idea
that the program is rewritten to a form in which all control flow is
explicit. In particular, a function never “retums” (to some call site
which is statically unknown), but calls a “continuation” function
that represents the “rest of the program”. This property makes it
possible to view a function call as a “jump+rename”. i.e., to abol-
ish the need for a retum stack. In this view, function parameters
correspond to machine registers.
After CPS conversion, a heap is still needed to store the activation
records of non-linear function calls. A further optimization mes to prove $at the r g r a m is restricted to a nested control flow pattern.
f this is possi le, the continuation frames can be implemented on

a stack.
CPS code still needs a garbage-collected heap as long as non-scalar
data objects are used and higher-order functions employed: array-
like objects cannot in general be updated in-place, and higher-order
functions - at least those that have function-valued results - must
allocate environment closures on the stack.
Here, we apply two new methods: an abstract interpretation (AI)
of a program is a “simulated execution” on abstract input values.
For example, an o r t i o n that reads an input register will retum
a symbolic value at denotes “some 16-bit integer”. The abstract
interpretation is monitored; after it has beenrun, it is known which
function has been called with what types of ar uments Using
this knowledge, a process of partial evaluation (EE) re-writes the
program by introducing specialized functions.
Abstract interpretation and partial evaluation are a generalization
of traditional optimization techniques based on data-flow analysis,
such as constant-propagation, inlining, and dead code removal.
If a language has a formal semantics, it is possible to prove that
some abstract interpretation of this language is “correct”. There
are a varie of possible abstract interpretation schemes for a give
language, xpending on

what abstract values are needed: a simple abstract values would be
“some number”, a highly sophisticated one would be “a vector of
32 floating-point values, none of which is negative or zero, which
should be held in cache”. During an abstract interpretation, all
kind of extra information can be lugged around in the abstract
values.
how recursion is treated: the abstract interpretation of an i f
construct needs to follow both arms 3f the conditional. In the
context of a recursive function, this leads to nontermination. By

1-419

caching the calls to functions, these can be avoided, but it is known
that the cost of findin a fixed point for a recursive function can
be exponential in the keight of the abstract data domain - that is,
quite expensive.

t How “context information” is used: when the arms of an i f
expression are evaluated, a context is assumed in which the con-
dition of the i f is either true or false. This information can
be carried along and used to steer the progress and, later, the
specialization process.

These, among others, are active areas of research[7, 81

5.1. STATIC CONTROL FLOW

DSP algorithms, especially those of the real-time persuasion, tend
to have a very regular (or static) control flow. This gives reason to
expect that a program that specifies such an algorithm will behave
very well under abstract interpretation. even if the language is a
very “dynamic” one. Typical ALDiSP programs are reduced
indeed to the ex cted core functionality by the partial evaluation
process. In anapgy to the well-known “syntactlc sugar” that de-
notes all syntactic niceties of a language that can be stripped away
in a parser/preprocessor without any deeper understanding of the
pro ram, we would like to introduce the term “semantic sugar”
to fenote all mechanisms - higher-order functions, overloadmg,
type checking, automatic mapping, exceptions, etc. - that can be
removed by a partial evaluator.

5.2. STATE ANALYSIS

When partial evaluation is completed, the functions that constitute
the program are simplified as far as ossible. Still, the other part
of the run-time model has to be handyed: the scheduler.
Here, too, the abstract interpretation approach is a plied. When
running the program, there are two main states: L e system is
resting when all pending suspensions are either waiting for input to
occur (or time to elapse), or are dependent upon suspensions that are
waiting for input. As timepasses, input takes place and suspensions
are actlvated. The evaluation of these input-dependent suspensions
enables other suspensions to run, and so on. Eventually, the system
comes to rest agam.
The above outlined process can be “abstracted“ by providing ab-
stract input whenever the system is resting. If the control behaviour
of the program is independent of the actual in ut values, the only
thing to model is the absence or presence ofinput. Otherwise,
all possible input values must be simulated. At the moment, our
compiler does not do the latter; the overhead would be too high.
Since a program may be waiting for a number k of input sources
simultaneously, all possible combination of input events must be
simulated. For each such combination, a new abstract state is
reached after the system comes to rest.
Two abstract states are said to be “similar” if all suspensions they
contain are waiting for the same conditions, and only their partic-
ular variable bindings (modelling the state) differ.
If the abstract interpretation of the scheduler finds that the set of
possible states at time k (denoted S k 2) is similar Sk + c2, it has
found a static schedule. In apurely synchronous program, S k 2 will
be similar to S:,,, i.e., the set of possible states is the same at all
points in time.
Once a stable schedule is found, compilation can follow. The
scheduler can be executed “in the compiler’s mind”, and no run-
time scheduling is needed any more.

6 . CONCLUSION AND OPEN PROBLEMS

Our compiler is now able to run the first phases of abstract interpre-
tation and partial evaluation; the state analysis technique outlmed
in the last section is being implemented.
As an added bonus, the abstract interpreter, being a superset of
an “actual” interpreter, can be used to simulate pro rams (albeit
slowly - the abstract interpreter is burdened by a lot of%ookkeeping
chores.)
For now, no specific target architecture is envisioned. The output
of the compiler is a pseudo-code similar to “C” or FORTRAN.
The previous section shows one major ractical problem: In a
program with two sampling frequencies, Sle constant c will be the
owest common denominator of the frequencies - uite a large
number, and a real problem for the compiler. In ajdition, even
if the number of input sources is small (say, 4 or 5). there are
2k possible combinations. Heuristics are needed to speed up the
simulation process.
A second problem is that of code explosion: a naive partial evalua-
tor will unroll all loops and over-specialize many functions. Here,
too, heuristic guides are needed to control the expansion process.

7. REFERENCES

[11 Silage User’s and Reference Manual, prepared by Mentor
GraphicsEDC. June 1991 (describes version 2.0)

[2] Volker Kruckemeyer, Alois Knoll: Eine imperative
S ruche zur Programmierung di italer Signal rozessoren,
grschungsberichte des FachbereiAs Informati k r . 1990/10,
TU Berlin

[3] Alois Knoll, Markus Freericks: An applicative real-time lan-
guage for DSP-programming supporting asynchronous data-
pow concepts, in: Microprocessing and Microprogrammin ,
Vol. 32, No. 1-5 (August 1991 - ProceedingsEuromicro ’915,
pp. 541-548

[4] Alois Knoll, Rupert Nieberle: CADSP - a Graphical Com-
der for the Programming of DSP in a CO letely Symbolic

Gay , Proc. IEEE-ICASSP’90, pp. 1 0 7 7 - 1 0 3
[5] M. Freericks, A. Knoll, L. Dooley: The Real-Time Pro ram

ming LanguageALDiSP-0: Informal Introduction and drmai
Semantics, Forschungsberichte des Fachbereichs Informatik
Nr. 92-26

[6] Andrew W. Appel: Compiling with Continuations, Cambridge
University Press, 1992

[7] D. Bjoemer, A. P. Ershov, N. D. Jones: Partial Evaluation
and Mired Computation, Proc. of the IFIP TC2 Workshop on
Partial Evaluation and Mixed Computation, North-Holland,
1988

[8] Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, Yale Univ., June 17-19. 1991, published
as: SIGPLAN Notices, Vo1.26, No.9, Sept. 1991

We have shown that it is possible to compile a language equipped
with a number of semantic frills targeted at a demanding realm
such as DSP pro ramming, in a correct way into efficient code.
While the com ifation process is a cost1 undertaking, we hope
that it is more Jan made up by the gainelease of programming.

1-420

