
Abstract

We describe an approach to hardware/software co-design that starts with a high-level spec-
ification of a target machine and a synchronous data flow representation of an algorithm. The
instruction set description is translated into a netlist-level machine description. A set of in-
dependent tools successively transform the algorithm into a program for the target processor.
We employ the machine description formalism nML, in which a processor architecture is de-
fined solely by its instruction set semantics. Modularization and sharing of semantic proper-
ties between instructions are modelled by structuring the complete description as an attributed
grammar. Analysis tools guide the user in optimizing both the hardware and the software. The
design trajectory is explained by using the ADPCM algorithm as an example application and
a core DSP as initial target machine.

1

Implementation of Complex DSP Systems
Using High-Level Design Tools

Markus FREERICKS, Andreas FAUTH and Alois KNOLLy �

September 6, 1995

1 Introduction
Today’s complex DSP algorithms are often implemented as custom- and semi-custom VLSI
circuits. Hardware synthesis [1] can generate a combination of hard- and software directly
from an algorithmic system specification. Current synthesis tools [2, 3, 4] can handle small to
medium-sized algorithms (some hundredoperation nodes, simple control flow) or they are spe-
cialized for ahighly regular structure (e.g. videoprocessing, specializedmemory architecture[5]).

For more complex and decision-oriented applications, customizable DSP cores are often
used. Such a core combines a basically fixed general-purpose “CPU” kernel with extensions
in the form of application-specific accelerator data-paths. Thus, the cost of hand-optimizing
the core design can be shared amongst different applications; new hardware is only needed to
cope with the “hot spots” of an algorithm.

When designingsuchan architecture and its application-specificextensions, adesignmethod-
ology has to be created that encompasses the specification, test, and implementation of both
software and hardware. “Classic” synthesis environments are not well suited for this task, be-
cause they are basedupon the assumption that the hardware can be modified. Furthermore, the
hardware is described as a netlist built up from register-level hardware entities, which can be
allocated and connected at will.

Our framework[6] is based upon the nML[7] machine description formalism, in which a
processor is described solely by its instruction set. For each instruction, its exact semantics
are given at the register-transfer level. There is no explicit controller description; instead, the
designer specifies an instruction encoding from which a controller can be derived.

By creating a design abstraction at the instruction set level, rapid prototyping of DSP core
architectures becomes feasible: given a retargetable code generator, the system designer can
compile application benchmarks for an architecture, analyze the utilization of its components
andmodify the high-levelmachinedescriptioneasily. All algorithm development andmachine-
independentsimulation is doneat the signal-flow level, in a dedicatedDSP languagelike SILAGE[8]
or in a high-level specification language like ALDiSP[9]. Machine-level simulation can be
performed with instruction set simulators generated from the nML description. If special opti-
mizations are needed (e.g. when the code generator does not fully utilize a dedicated hardware
unit), the designer can manually intervene at any level of the compilation process.
�Part of this research was supported by the ESPRIT 2260 (“SPRITE”)project of the European Community.

2

flowchart
translation

control flow
transforms

code selection

scheduling &
data-routing

code mapping &
output generation

code

signal
flowchart

0100110010101
1001010010101
1100011000101
0000111101101

name processor

type word=int(16)
type addr=card(10)

mem R[8,word]
mem M[1025,word]

opn instruction = control | compute
opn compute(c:cond,a:aluop,s1:reg,s2:reg)
 action={l1=s1;l2=s2;a.action;

 if c then d=l3;}
 syntax=format("%s R%d,R%d",a.syntax,)

 image="01101"
opn aluop=add | sub | or | and | xor

opn xor() action={l3=l1^l2;} syntax="xor"

machine
description

machine
description
analysis

code generation tools

Figure 1: Design Trajectory

2 System Overview
An overview of our system’s design trajectory is shown is Fig.1. The algorithm is supplied in
the form of a flowchart, which is transformed into the internal control/data-flow graph (CDFG)
representation. This representation is human-readable and common to all tools. The target
architecture is specified as an nML description. From this, a machine analyzer creates tool-
specific machine description files (since each tool needs different “aspects” of the machine
description).

In the following, each tool will be described as it is used in the design process. We start
with a machine description.

3 Initial nML Description
As an (arbitrary) initial target architecture, we use a 16-bit core that consists of RAM, four reg-
isters, and a 4-operation ALU (cf. Fig.2). Each input to the ALU is routed through a modifier
that can negate, set to zero, or shift by a constant amount. The output of the ALU is compared
with zero and the CZ flag is set accordingly. Additions also generate a carry bit. In parallel
to each non-jump instruction, a move to or from memory can be executed. There is only one
jump instruction, which is conditionally controlled by an arbitrary PSW flag.

The nML description for this machine is depicted in Fig.3. This 63-line text suffices to
completely describe the behaviour of our hardware. The attributes that describe binary encod-
ing or textual representation of the assembly code are left out for clarity; they are only needed
in the last stage of the compiler.

3

±/0 ±/0

ALU core

register
file

L1 L2

L3

bu
s

po
rt

dedicated hardware

ROM

decoder

po
rt

address
logicPC

1
16

PSW
C

Z+

bu
s

po
rt

bu
s

po
rt

RAM

I/O

1616

16

16

16

16

16

Figure 2: The Processor Core

The nML description is structured as a grammar of twenty nonterminals, the root of which
is instruction. Nonterminals are either defined via alternatives (“|”-rules) or by param-
eterized definitions that may refer to both terminals (literal values) and instantiations of other
nonterminals. Each nonterminal can define attributes that refer to its parameters and their at-
tributes. The instruction set is defined as the set of all possible derivations of the instruction
tree; each instruction’s semantics is given by the value of its action attribute. Note that nML
imposes no restriction on the set of possible attributes; descriptions can be extended with arbi-
trary attributes (e.g., timing or cost-related) if there are tools that recognize them. Our current
framework supports attributes for semantics, instruction encoding, and assemblylanguage rep-
resentation.

4 The Retargeting Process
Each time the user modifies the nML description, the framework must be “retargeted”, i.e. all
machine-dependent files have to be updated. Retargeting is performed by an analysis tool that
extracts the specific information that each machine-dependent tool needs. Some tools, espe-
cially those that realize the classic“software compilation”optimizations (common-subexpression
elimination, constant-folding, conditional scopeoptimization, etc.) are almost entirely machine-
independent. There are three main stages in our compiler that depend heavily upon specifics
of the target architecture: expansion, chaining, and scheduling.

4

01 type addr = [0..511] \\ program size
02 type word = int(16) \\ word size
03 type midx = [0..1023] \\ main mem size
04 type ridx = [0..3] \\ register set size
05 type flidx= [0..15] \\ bits in PSW
06 type shift= [-8..7] \\ shift range
07
08 mem PC[1,addr] \\ program counter
09 mem M[midx,word] \\ main mem size
10 mem R[ridx,word] \\ register set size
11 mem PSW[flidx,bit] \\ status word
12
13 mem CC[1,bit] alias=PSW[0] \\ carry bit
14 mem CZ[1,bit] alias=PSW[1] \\ zero bit
15
16 mem L[3,word] \\ ALU latches
17 mem BUS[1,word] \\ bus latch
18
19 mem NORM[1,word] alias=M[0] \\ memory-
20 mem EXP [1,word] alias=M[1] \\ mapped
21 mem MANT[1,word] alias=M[2] \\ accel.
22
23 op instruction = jump | alu_and_move
24
25 op jump(c:bit, ci:flidx, target:addr)
26 action={if PSW[ci] == c then PC = target;}
27
28 op alu_and_move(a:aluop, m:moveop)
29 action={ m.pre; a.action; m.post;}
30
31 op moveop = load | store
32
33 op load(from:midx, to:ridx)
34 pre= {BUS = M[from];}
35 post={R[to] = BUS;}
36
37 op store(from:ridx; to:midx)
38 pre= {BUS = R[from];}
39 post={M[to] = BUS;}
40
41 op aluop(a:alu; o1,o2,d:ridx; l:modl; r:modr)
42 action={L[0] = R[o1]; l.action();
43 L[1] = R[o2]; r.action();
44 a.action;
45 CZ = (L[2]==0);
46 R[d] = L[2];}
47
48 op alu = add | and | or | xor
49
50 op add() action = {CC::L[2]=L[0] + L[1];}
51 op and() action = { L[2]=L[0] & L[1];}
52 op or() action = { L[2]=L[0] | L[1];}
53 op xor() action = { L[2]=L[0] ˆ L[1];}
54
55 op modl = shift_l | neg_L | zero_l
56 op shift_l(s:shift) action={L[0]= L[0]<<s;}
57 op neg_l() action={L[0]= -L[0];}
58 op zero_l() action={L[0]= 0;}
59
60 op modr = shift_r | neg_R | zero_r
61 op shift_r(s:shift) action={L[1]= L[1]<<s;}
62 op neg_r() action={L[1]= -L[1];}
63 op zero_r() action={L[1]= 0;}

Figure 3: Processor Core Instruction Set

5

4.1 Expansion
The expansion phase maps the “abstract” operations of the initial application algorithm to the
“concrete” set of operations that is implemented by the target architecture. To give an example:
our processor core has no hardware multiplier; for each multiplication that occurs in the algo-
rithm, the expansiontool must finda suitable implementation in terms of the availabehardware
operators (+,<<, and conditional jumps).

This phase is based on a library that provides the replacement rules for all operations that
can not be directly implemented. A large set of these rules is machine-independent and pre-
defined; the machine dependency lies in marking those operations available in hardware, and
specifying expansion policies for those operations with multiple implementations of differing
cost. The library can also be extended by hand to provide for “special-purpose” operations
implemented by accelerator paths.

4.2 Chaining
The chaining phase [10] contracts groups of connected operations into data-path operations
that can be executed on one data-path within one instruction cycle. On our example architec-
ture, combinations of shift/negate/zero followed by add/and/or/xor operations provide chain-
ing opportunities. Chaining implements part of the instruction selection task of ordinary com-
pilers; it is based on a library of pattern matching rules. This library has to be generated in toto
from the nML description.

4.3 Scheduling and Routing
The last phase consists of scheduling and data routing: the partial instructions that are gen-
erated in the chaining phase must be ordered in time; signals must be routed through regis-
ters and memory locations. Scheduling and routing are strongly related tasks: the scheduler
tries to minimize the register life-times of signals; the data routing algorithm must determine
which values are kept in registers according to their probable life-times. As scheduling is NP-
complete, heuristics play an important role. We employ a list scheduler guided by an adaptable
multi-level priority function.

This phase needs a detailed resource model of the target machine, a library of the valid
transfer operations, and resourceusage information encodedin reservation tables for the chained
instructions.

5 The Application Algorithm
As our example algorithm, we use a subset of the ADPCM (Adaptive Digital Pulse Code Mod-
ulation) algorithm, which is employed in telecommunication applications. In our framework,
algorithms are represented as control-data-flow graphs (CDFGs), i.e. synchronous data-flow
graphs with control edges. Operation nodes include the standard arithmetic functions, a “se-
lect” operator and type conversion operators. Later stages of the compiler generate additional
transfer- and jump-operations, as well as signal attributes (such as “lifetime” and “location”).
Conditions are modelled by “scopes”,which are more flexible than standard“basicblock” con-
trol flow models. The sole memory operation is the “delay”, which stores a value for one iter-
ation of the algorithm. Each scope is controlled by a condition, and all signals defined in the

6

scope are valid only if that signal is true. The “select” operation is used to merge the results of
different scopes. Representedas a data-flow graph, the whole ADPCM algorithm consist of ca.
2600 operation nodes. Our subset is the “predictor”, which contains almost all multiplications.
Figure 4 describes from what operations it is made up.

Category Type Count %

abs 10 1.91
add 60 11.47
mult 8 1.53

ALU op neg 28 5.35
shift 33 6.31
sign 25 4.78
and 1 0.19
xor 18 3.44
eq 7 1.34
gt 12 2.29

control lt 5 0.96
not 13 2.48

select 24 4.59
memory delay 18 3.44
book- bundle 49 9.37

keeping unbundle 46 8.80
rename 156 29.83

accelerator norm 10 1.91

sum ALU 193 36.90
sum control 61 11.66
sum total 523 100.00

Figure 4: Initial Application Node Count

Note the high percentage of control operations: the ratio of control-related operations to
ALU-operations is nearly 1:3. A naı̈ve compiler would have to generate at least one compare
and one jump per compare/select, from which a minimal execution time of 48 cycles can be
deduced.

6 Utilization statistics
Our framework includes tools that let the user inspect the CDFG during the different phases
of compilation, both by visually presenting the graph and by giving statistics keyed by node
categories. These statistics guide the designer when modifications to algorithm and hardware
are made. Major points of interest are

� the number of chainings that were found: If only a subset of the chaining patterns is
used, the instruction encoding can be tightened; modifiers might be moved to different
positions in the data-path to ensure better chaining possibilities.

7

Category Type No HW Booth Full Mult

add 143 95 95
neg 46 46 46
shift 226 78 78

ALU op and 1 1 1
hwmult 8
bmult 32

or 40 6 6
xor 18 18 18

control setEQ 99 43 43
setLT 53 62 62
not 13 13 13

memory delay 18 18 18
book-keeping rename 269 137 137

cast 307 101 101
accelerator norm 20 20 20

sum 1253 670 646
sum w/o book-keeping 677 549 525

nodes after chaining 1146 686 666

scheduled cycles 807 538 471

Figure 5: Three Multiplier Alternatives

� frequent operation combinations: if certain sequences of operations occur frequently,
they can be taken as candidates for accelerator data-paths.

� utilization of operators: depending upon how often they are used, operators may be re-
moved or replaced by cheaper alternatives.

An example of the latter phenomenon is multiplication: our original algorithm contains 8
multiplications of 7-bit values with 14-bit results. Since our core contains no multiplier, these
are expanded into shift/add combinations of ca. 24 operations each. The inclusion of a hard-
ware multiplier would thus eliminate ca. 192 nodes from the algorithm. As an experiment,
we have specified two accelerator datapaths, one containing a full multiplier, the other imple-
menting a 2-bit Booth step (allowing 8-bit multiplication in 4 steps).

To include the full multiplier, the nML description is extended by two lines:

23 op instruction(i:instr)
23a action={i.action; M[0] = M[1] * M[2];}
23b op instr = jump | alu_and_move

This models a memory-mapped multiplier that runs once per cycle.� Figure 5 shows the
node counts of the three alternatives after expansion and chaining, and the total length of the
algorithm after scheduling.

�The specification for the Booth multiplier is not shown because it is basically the same, only somewhat
larger.

8

7 Conclusion
We have presenteda retargetable code-generation framework that can be used to optimize both
hardware- and software-components of a DSP application. A concisemachine description for-
malism serves as the sole input languageand facilitates an easy retargeting process. For a large
application algorithm (full ADPCM), our system takes about 3 hours of runtime, most of it is
spent in the scheduling phase. To estimate the quality of the generated code, we compared it
against a hand-coded version of the ADPCM algorithm for an architecture similar to our core
(with Booth-step accelerator) that had a total of ca. 1500 instructions. Based on this, we esti-
mate that the code produced by our compiler is ca. 30% slower than hand-written code.

Current work is concernedwith modelling pipelineddata-paths andcomplexmemory mod-
els. [11] shows how an nML model can be translated into a hardware-level net list; we are now
working on an extension to nML in which we can provide a “net skeleton” that guides this pro-
cess. Finally, we are considering the generation of code for multi-processor systems.

References
[1] M. C. McFarland, A. C. Parker, R. Camposano (1990): The High-Level Synthesis of

Digital Systems, in: Proc. of the IEEE, Vol. 78, No. 2., pp.301-318, 1990

[2] D. Lanneer, G. Goossens, F. Catthoor, M. Pauwels, H. De Man (1991): An Object-
Oriented Framework supporting the full High-Level Synthesis Trajectory, in: Proceedings
CHDL 91, Marseille, France, April 1991

[3] F. Catthoor (1992): Design Methodologies for application-specific signal processing ar-
chitectures, Tutorial presented at EUSIPCO 92

[4] M. Potkonjak, J. Rabaey (1993): Exploring the Algorithmic Design Space using High
Level Synthesis, in: Eggermont et.al (eds): VLSI Signal ProcessingVI, IEEE Special Pub-
lications, pp. 123-131

[5] P.E.R. Lippens, J.L. van Meerbergen, W.F.J. Verhaegh, A.E.van der Werft (1993):
Modular design and hierarchical abstraction in Phideo, VLSI Signal Processing, VI, Eg-
germont et.al. (eds), IEEE Signal Processing Society, 1993

[6] A. Fauth, A. Knoll (1993): Automated generation of DSP program development tools us-
ing a machine description formalism, Proceedings ICASSP 93, Minneapolis, Minn., April
1993

[7] M. Freericks (1991): The nML Machine Description Formalism, Technical Report
1991/15, Technische Universität Berlin, Fachbereich 20, Informatik, Berlin, 1991

[8] Mentor Graphics/EDC (1991): Silage User’s and Reference Manual,

[9] M. Freericks, A. Knoll, L. Dooley (1992): The Real-Time Programming Language
ALDiSP-0: Informal Introduction and Formal Semantics, Forschungsberichte des Fach-
bereichs Informatik Nr.92-26, TU Berlin

[10] A. Fauth, G. Hommel, C. Müller, A. Knoll (1994): Global Code Selection for Directed
Acyclic Graphs, 5th International Conference on Compiler Construction (CC’94), LNCS
786, pp. 128-142

[11] A. Fauth, M. Freericks, A. Knoll (1993): Generation of Hardware Machine Models
from Instruction Set Descriptions, VLSI Signal Processing, VI, Eggermont et.al. (eds),
IEEE Signal Processing Society, 1993

9

