
Data-Centric Middleware support for ASIL assessment and de-
composition in open automotive systems
Jelena Frtunikj, M.Sc., fortiss GmbH, München, Deutschland

Michael Armbruster, Dr., Siemens AG, Corporate Research and Technologies, München, Deutschland

Alois Knoll, Prof. Dr. –Ing. Habil., Technische Universität München, München, Deutschland

Abstract

Current automotive electrics and electronics (E/E) architectures are very complex and face the challenge to pro-

vide easy integration of additional and even more complex functionality such as automated driving. Furthermore,

the end-customer is used to the possibility of easy personalization, adaptivity or extensibility of the electronic

systems with new hardware or software. Since this possibility already exists in the infotainment domain, it sig-

nificantly drives a similar expectation also within the automotive domain. Due to the fact that cars are safety-

critical systems, automotive middlewares (MW) must provide framework and methods for safe integration of

new hardware or software. This implies whenever a new functionality or component is integrated in the system,

violation of different qualitative and quantitative safety requirements needs to be evaluated.

This paper presents our recent work on runtime qualitative safety-assessment that considers Automotive Safety

Integrity Level (ASIL) compatibility of signals and the possibility of their decomposition in such open automo-

tive systems. We introduce our approach and present a case study where the approach is applied not only during

the design of the automotive system but also in Plug&Play scenario, so during refurbishment or via the end-

customer.

1 Introduction

The automotive industry faces the challenge to man-

age the E/E-architecture’s complexity [1] while in

parallel more and more functionality (we will call

each considered SW-implemented function “service”

herein) within a vehicle is required especially consid-

ering the raising demand for vehicle automation up to

fully automated driving. Furthermore the end-

customer is used to the possibility of easy personali-

zation, adaptivity, extensibility of electronic systems.

The infotainment-domain has already demonstrated

these capabilities [11], [12] and it significantly drives

a similar expectation now within the automotive do-

main. Thereby, the end-customer does not care about

qualities such as functional safety or security, since

those are expected to be ensured by default.

A possible technical approach to serve the before

mentioned challenges is a so called “open automotive

architecture”. Core-element of this architecture is a

middleware which ensures different non-functional

requirements/qualities of interfaces, services and

overall automotive functions. This middleware fol-

lows the design-paradigm to implement technical

means to ensure quality of service properties, espe-

cially functional safety features, in a generic, func-

tion-unspecific manner. The technical measures to en-

sure functional safety can easily be reused for differ-

ent services. This enables a quite simple development-

environment for automotive functions. One just has to

focus on the description of the interfaces of each ser-

vice instead of developing technical measures to en-

sure those. However, process-measures to ensure

functional safety are instead not considered to be im-

plemented by the middleware in a generic way. Any-

how, later on within this paper a concept that shows

how to verify even process requirements within a

middleware during runtime is presented. This capabil-

ity is essential to realize adaptivity and extensibility

even in the context of safety-critical functionality.

The challenge considered within this paper is the

modularization of safety-assessment (safety-

verification) process. To do so, we consider the over-

all E/E-world of a vehicle as a set of safety elements

out of context (SEooC) according to ISO26262 [3,

part 10]. Then we identify the information that will be

required to the safety-assessment during runtime and

bundle each SEooC with this. Within the “Plug”-

phase of new sensors/actors or SW-components (see

later on chapter 3, figure 2), a Safety Manager com-

ponent, which is a part of the middleware, preforms

the safety-assessment based on the extended SEooC-

description.

In this paper we consider that the overall safety-

assessment can be split up to an offline and an online-

part. Regarding the online-part, we differentiate re-

quirements concerning the process-levels to which a

SEooC has been developed (ASIL), timing require-

ments (e.g. fault-tolerance times, mission times, etc.)

and quantitative probabilistic requirements (PFH,

SPFM, LFM). Within this paper we mainly focus on

the online-verification of the compatibility of ASILs

between data-sources and sinks. Moreover, we also

consider the possibility of ASIL decomposition. The

remainder of this article is structured as follows. In

Section 2, we first revisit some basics on the safety

automotive standard ISO 26262 and the safety devel-

opment process. Afterwards, we give a detailed de-

scription of the proposed concept. Section 4 presents a

case study where this approach is applied. Section 5

compares our approach to available solutions provid-

ed by industry and scientific community and the last

section provides a conclusion and summarizes future

steps.

2 ISO 26262 overview

ISO 26262 was published in November 2011 as a

functional safety standard for electrical and electronic

systems in road vehicles. When applying hazard anal-

ysis and risk assessment according to ISO 26262, a

set of safety goals (high level requirements) are speci-

fied and an Automotive Safety Integrity Level (ASIL)

is assigned to each of them. ASIL represents the de-

gree of rigor that should be applied in development,

implementation and verification of the requirement in

order to avoid unreasonable residual risk. From the

top-level safety goals, more refined safety require-

ments are specified, which are then assigned to single

hardware (HW) or software (SW) subsystems (com-

ponents) of the system [3, part 3-7]. If in the design

of the system architecture, sufficiently independent

and heterogeneous redundant elements do exist, it is

possible to allocate a specific safety requirement to

two of the components. The redundant components

inherit lower ASIL value than the parent. For exam-

ple, an ASIL D requirement may be allocated to two

independent architectural elements and the resulting

two decomposed requirements inherit a lower ASIL

level (e.g. ASIL B). The ISO26262 defines several

rules to derive an ASIL to several independent archi-

tectural elements within part 9 and does call this “de-

composition”.

Safety requirements are usually addressed by concrete

countermeasures, such as fault prevention techniques

(e.g. coding guidelines, development process guide-

lines), fault removal (e.g., testing, verification) or

fault tolerance (e.g., redundancy) [4]. These counter-

measures are then included in the safety concept

which defines how the sound composition of different

measures contributes to the achievement of the top-

level safety goals. A safety case finally defines a

sound argument which “proves” that the set of safety

requirements is sufficiently complete and that the sys-

tem complies with these requirements. The task of a

certifier is to manually check all documents that are

provided and come to the conclusion if the system is

safe or not. In case of positive answer, the system re-

ceives the required certificate. Unfortunately, this tra-

ditional safety approach cannot be employed in the

context of open automotive systems, because compo-

nents/systems that are unknown at design time have to

be dynamically integrated with other third-party com-

ponents that already exist in the system. Hence a

complete safety-assessment is impossible at develop-

ment time and part of it has to be shifted at runtime

and done automatically.

By the introduction of the Safety Element out of Con-

text (SEooC) concept in the ISO26262 [3, part 10] the

first steps towards enabling runtime safety-assessment

(at least part of it) have been made. The ASIL capa-

bility of a SEooC defines the requirements of ISO

26262 that are applied to the development process of

this SEooC and states the capability of the SEooC to

comply with assumed safety requirements assigned

with a given ASIL.

Therefore, the SEooC concept enables specifying

safety requirements explicit at the interfaces of (sub-)

systems. By using this information, safety-assessment

regarding different safety attributes such as ASIL

compatibility and decomposition of signals, probabili-

ties of failures per hour (PFH) or even the hardware

metrics (SPFM, LFM) can be performed.

3 Proposed Approach

This section presents the proposed concept that tack-

les the above stated challenges. As stated in the intro-

duction we aim, part of the safety-assessment that

checks safety requirements (regarding ASIL compati-

bility and decomposition) coming from different sub-

systems (HW or SW) and which realize a certain sys-

tem service (e.g. steering functionality), to be shifted

at runtime and be performed automatically. This pro-

cedure is to be executed not only when the first sys-

tem configuration is generated (at design time) but

also whenever new subsystems are dynamically inte-

grated (via Plug&Play) in the open automotive sys-

tem.

Before we give a detailed description of the concept,

we first elaborate on the prerequisites that must be

fulfilled in order to operationalize the presented ap-

proach in the context of future open automotive sys-

tems. At the end of this section we also provide some

more information about the implementation details.

Prerequisites for application of the concept

A preliminary requirement for the application of the

proposed method is an E/E architecture (developed

according to ISO 26262 as SEooC with a certain

ASIL capability) that provides Plug&Play ability. To

provide Plug&Play in the automotive field even for

safety critical applications, the system architecture

needs to provide capabilities to guarantee extra func-

tional properties for resource utilization, safety and

security. Such architecture is suggested in the Robust

and Reliant Automotive Computing Environment for

Future eCars (RACE, www.projekt-race.de) project

[5]. The centralized platform (Figure 1) consists of a

redundant and reliable communication infrastructure

based on a switched Ethernet topology, and a runtime

environment (RTE). A middleware, which defines the

Runtime Environment (RTE) together with the oper-

ating system, drivers, and components provides ser-

vices, interconnects all system components. The MW

facilitates generic safety mechanisms such as real-

time deterministic scheduling, data exchange services,

health monitoring and diagnosis, as well as an execu-

tion platform with time and space partitioning for ap-

plications running on the same HW and having differ-

ent ASIL classifications.

In order to support Plug&Play, here the traditional

message-oriented approach is replaced by a data-

centric one: instead of specifying sender-receiver rela-

tionships, the subsystems developers have to specify

the component interfaces by a standardized data mod-

el. Based on this data model, the MW establishes data

paths between subsystems.

The data-model can be seen as a data-base full of da-

ta-elements (sensor- and actor-data) describing the

vehicle’s, the environment’s or the driver’s state.

Figure 1 RACE System Architecture

Integration of new subsystems (HW or SW developed

as SEooC with a certain ASIL capability) in the above

mentioned E/E architecture is done in 3 steps as de-

picted in Figure 2. Since the integration occurs during

runtime, it has to be ensured that the system keeps op-

erating according to its specification. This is especial-

ly important for such safety-critical systems, because

a loss of integrity might cause damage to material and

life. We call this incremental safety assessment. A

once assessed set of service of a vehicle will not lose

its functional safety qualities even so new services or

components (sensors or actors) have been added.

Figure 2 Bundle- Phase, Plug- Phase, Play-Phase

The integration of new subsystem starts with a so

called “Bundle-Phase” where the HW/SW subsystem

is delivered with description information containing

also the safety related information. The Plug&Play

procedure is logically separated into two phases. In

the “Plug-Phase” interpretation of description docu-

ments is done to re-plan the E/E configuration and

adapted configuration data is provided. This is the

phase where the proposed safety-assessment is per-

formed. The next phase will just be entered in case

that all required qualities especially those addressing

functional safety can be ensured. In the “Play-Phase“

the new configuration is enforced (Figure 2).

For the remainder of this paper, we assume such ar-

chitecture as the underlying basis for the discussed

methodology.

Runtime safety-assessment

Due to the fact that safety is not a modular property,

meaning composition of safe systems cannot be as-

sumed to be automatically safe; all safety quality at-

tributes (e.g. probability of failure per hour, ASIL

signal level compatibility) coming from the different

subsystems/components of the system must be ana-

lyzed in order to provide safety guaranties. To do so,

a safety-assessment concept that enables to model and

check safety quality attributes for a system consisted

of different components has to be developed. Compo-

nent-based development has emerged as a promising

solution for developing complex systems. The ap-

proach breaks down the system into smaller compo-

nents, and the system model is obtained by composi-

tion of the individual components. This trend is the

basis for our approach and enables to shift part of the

safety-assessment to runtime. A quite similar ap-

proach is followed by Schneider and Trapp [6].

We believe that it is not reasonable to perform com-

plete safety analyses (e.g., FTA, FMEA) or complex

quality checks (e.g., model checking) at runtime.

Therefore, it is very important to find the right level

of abstraction in support of automated analysis at

runtime.

In order to enable automated safety-assessment at

runtime, whenever a new subsystem (HW or SW),

developed as SEooC with a certain ASIL capability

according to ISO 26262, will be integrated in the sys-

tem a description of it and its safety requirements

have to be provided to the system. The idea behind

the description is to establish a predefined and stand-

ardized component description of the single (sub-)

systems that are to be integrated. These descriptions

can then be composed and evaluated at runtime when-

ever systems are to be integrated or adapted. Figure 3

depicts the information that such a description con-

tains.

As we can see from figure 3, the subsystem descrip-

tion contains information about all signals (represent-

ed by data models in the MW) that are provided and

required by the subsystem. In addition each signal de-

scription contains information about the ASIL level

and some other safety quality requirements in the do-

mains of value or timing. The last information is re-

quired in order to be able to evaluate the quality of the

signal at runtime with a safety mechanism with corre-

sponding ASIL level (e.g. monitoring function verify-

ing the signal value). When a subsystem is integrated,

a violation of the ASIL level compatibility for each

required signal for that subsystem is checked by a

Safety Manager (MW component that belongs to the

above mentioned middleware and which performs the

safety-assessment). In case the required level is not

provided a possibility of decomposition can be evalu-

ated.

Figure 3 Subsystem and Signal Safety Requirement

Description

We have examined the ASIL decomposition approach

of the ISO 26262 standard [3, part 9], and how it can

be correctly applied and performed at runtime. If in

the system architecture, sufficiently independent and

heterogeneous/diverse redundant subsystems provid-

ing the same type of signal exist, it is possible decom-

pose the requirement of the subsystem requiring the

specific signal. For example, if a subsystem to be in-

tegrated requires a certain ASIL D signal and there are

two independent and diverse architectural subsystems

providing that signal but with ASIL B quality, the

subsystem can be integrated successfully in case a

merging-functionality for the considered two signals

will be available.

The Safety Manager component contains a data base

of ASIL decomposition algebra patterns [3, part 9]

(e.g. ASIL C = B(C) + A(C)) and a description of all

elements (and the required ASIL decomposition relat-

ed information) available in the system.

The Possible ASIL decomposition patterns according

to ISO 26262 are:

 ASIL D = C(D) + A(D)

 ASIL D = B(D) + B(D)

 ASIL C = B(C) + A(C)

 ASIL B = A(B) + A(B)

 ASIL x = x(x) + QM(x)

The procedure of checking independency and diversi-

ty properties [3, part 9] is based on the subsystem de-

scription information.

For example, two subsystems are diverse in case they

are produced by different manufacturers, use different

technology and production processes, use different

test methods etc. The independency property can be

checked for example by checking the vendor-

information of the two subsystems given in the sub-

systems’ descriptions. For that checks such as parti-

tions of functions or software elements, physical dis-

tance between hardware elements, common external

resources are performed.

The Safety Manager Middleware component is trig-

gered by the Plug&Play Manager during integration

of a new subsystem. The Plug&Play Manager is re-

sponsible for generating the new configurations in

case the new subsystem is added in the system. In

case the Safety Manager approves the integration, the

Plug&Play Manager executes the last steps of the in-

tegration of new components. In addition, the Safety

Manager is responsible for configuration and instanti-

ation of the required monitoring and voting mecha-

nisms that provide the correct signal at run-time.

Implementation details

The (sub-) system description has an XML structure

and as such is delivered to the middleware for all

available subsystems in the system architecture. It has

to be mentioned that the description to which we refer

here is part of safety related description which is de-

livered together with the complete information of the

system. The XML description is then parsed into data

structures that contain all the information. For a cer-

tain system functionality (e.g. steering) a directed

acyclic graph, containing the HW and SW subsystems

(SEooC), is generated based on the data flow. The

vertexes of the graph represent the SEooC and the di-

rected edges the required and the provided signals.

After the graph is generated the Safety Manager con-

tains the required information in order to start the al-

gorithm for safety assessment. Each pair of vertexes is

checked regarding the compatibilities of the safety

quality requirements of signals between them (re-

quired and provided signals) and if required the pos-

sibility of decomposition is evaluated as well.

A summary of the whole proposed workflow is shown

in Algorithm 1.

Input: Subsystems subS and Service S Descriptions

Output: Safety Assesment Result

bool safetyAssesmentResult = false;

bool decompResult = false;

foreach SubSys subS in Service S do
 foreach SubSysRequiredSignal subS.reqiredSignal do

 if (findSubSystemProvidingReqSignal(subS.reqiredSignal))
 /* required signal with certain ASIL existent */

establishLogicalRoutesBetweenSubSystems();

instanciateConfigureMonitoringMechanisms();
safetyAssesmentResult = true;

 else
 /* required signal with certain ASIL not existent */
 /* evaluate possibility of decomposition */

 decompResult = evaluateDecomp(subS.reqiredSignal);

 if (decompResult)
 establishLogicalRoutesBetweenSubSystems();

 instanciateConfigureMonitoringVotingMechanisms();

 safetyAssesmentResult = true;

 else

 safetyAssesmentResult = false;

 break;

 end

end

Algorithm 1 Safety Assessment Workflow

The algorithm that determines the possibility of de-

composition is sketched below.

Input: Subsystems subS and Service S Descriptions, Subsys-

temSignalToBeDecomposed subS.requiredSignal
Output: Decomposition Evaluation Result

subSysDecriprion subS1, subS2;
bool twoSubSysProvideSignal = false;

bool decompositionRes = false;

bool independencyRes = false;
bool diversityRes = false;

/* find two subsystems providing the required signal */
twoSubSysProvideSignal =

find2SubSysProvidingSignal(subS.requiredSigna, subS1, subS2);

/* check independency and diversity of subsystems */

if (twoSubSysProvideSignal)

independencyRes = evalIndependency(subS1.independency,
subS2. independency);

 diversityRes = evalDiversity(subS.diversity, subS2. diversity);

 /* check if required ASIL can be achieved */

 if (independencyRes && diversityRes)
 evalDecompAlgebra(subS.requiredSigna,subS1, subS2);

 decompositionRes = true;

Algorithm 2 ASIL Decomposition Evaluation

4 Case Study

As outlined in the previous chapter, here we present

how the previously explained concept can be used in a

scenario where “steering functionality” in a vehicle

based on by-wire components is to be composed from

signals/data coming from different subsystems that

have been developed as SEooC. The SEooC are de-

livered to the system together with their description

information and the MW (Safety Manager) examines

the possibility of their composition in order to provide

the required functionality. Due to the fact that the

“steering functionality” has highest ASIL level (ASIL

D including required fail-operational quality as there

is no mechanical backup), the software function that

contains the steering algorithm is delivered as a sub-

system, which is developed according to the ASIL D

guidelines and which requires a sensor input signal

with an ASIL D quality. However, such a signal is not

provided in the system and therefore the Safety Man-

ager starts the procedure assessing the possibility of

ASIL decomposition.

Since in the system there are two sensors providing

the required signal with an ASIL B quality, the MW

component checks not only the independency and di-

versity properties but also the other safety quality re-

quirements (e.g. the value range etc.). This means the

MW checks if those subsystems don’t share common

parts (e.g. connected to a different power supply in

the system), are based on diverse technologies, com-

pose the required ASIL level (Figure 4). In case all

checks are positive the MW establishes the logical

connections between the sensors and the software

function. In addition based on the description infor-

mation provided for each of the SEooC, the required

voting and monitoring mechanisms (developed as

safety mechanisms with a certain ASIL compatibility)

providing the correct sensor value to the function dur-

ing run-time are configured and instantiated.

Figure 4 Safety Manager MW component performing

ASIL safety-assessment and decomposition

5 Related Work

Traditionally, safety-critical systems are verified dur-

ing design time using hazard analysis techniques such

as Fault Tree Analysis (FTA) [10], Failure Mode and

Effect Analysis (FMEA) [2], Hazard and Operability

Analysis (HAZOP) etc. However in open systems as

described above the need for runtime safety assess-

ment exists. There are numerous approaches that inte-

grate different aspects of safety assessment in the real-

time systems domain. In this section we present ones

that are most relevant to our work and state the differ-

ences between the approaches.

In [6] the authors share their views on safety certifica-

tion perspectives for open adaptive systems, and pre-

sent their approach, which is based on conditional

safety certificates. Conditional certificates describe

preprocessed technical safety requirements with a

domain-specific language and transfer these require-

ments to runtime safety model. Their approach is ini-

tially oriented at assisted adaptive living or car2car

communication and similar loosely coupled systems.

Our approach also uses runtime safety assessment, but

is focused on automotive systems and takes into con-

sideration the recommendations from the ISO 26262

standard. In addition, the approach presented here in-

stantiates and configures the required safety mecha-

nisms (including monitoring and voting) that are in

place to ensure the provided signal quality, rather than

only working on a certificate level as in [6].

Kelly and Weaver [7] introduced the concept of Goal

Structuring Notation (GSN). GSNs have been devel-

oped to provide a clear, structured, approach for mod-

eling, developing and presenting safety arguments

that are evaluated at design time in order to achieve

certification. However, our approach focuses more on

the question of how to describe variable properties of

the subsystems to be in integrated in the automotive

control system, in a form that can be evaluated at

runtime. In addition, we also deal with the algorithm

that performs the safety assessment.

Inverardi et al. published an approach [8] that is relat-

ed to the modularity concept as in our work and to the

idea of using a guarantee-demand framework (corre-

sponding to the provided-required framework in our

work). Even though, the framework aims to cope with

different levels of granularity that span from code to

software architecture, this approach is unspecific

about the actual properties that are to be covered.

Rushby [9] examined ways in which the notion of

modular certification could be interpreted in an air-

plane context and proposed one approach that is ap-

plicable to software components in integrated modu-

lar avionics (IMA) architectures. The approach is

based on the assume-guarantee reasoning and the idea

behind is that components can be certified to perform

their function by using only assumptions about the

behavior of other software components. In compari-

son to our work, this approach focuses on the modu-

larization of safety artifacts within the development-

time and does not provide a solution for formalizing

the safety-related information in a way that would al-

low runtime evaluation.

6 Conclusion and Outlook

This paper identified the challenges regarding safety-

assessment of future automotive systems. To tackle

the challenges we proposed a framework and method

for analyzing safety properties such as ASIL signal

compatibility. Future work includes further imple-

mentation and extension of our approach (e.g. ASIL

decomposition regarding SW components and their

respective safety mechanisms) and integration in the

“Revolution” demonstrator of the RACE project.

Compatibility with existing development and certifi-

cation processes is to be evaluated in future as well.

Acknowledgments

The work presented in this paper is partially funded

by the German Federal Ministry of Economics and

Technology under grant no. 01ME12009 through the

project RACE.

Literature

[1] M. Broy, I. Kruger, A. Pretschner, and C. Salz-

mann. Engineering automotive software. Pro-

ceedings of the IEEE, 95(2):356–373, 2007.

[2] M. Hillenbrand, M. Heinz, N. Adler, J. Matheis,

and K. D. Mueller-Glaser, “Failure Mode and

Effect Analysis based on Electric and Electronic

Architectures of Vehicles to Support the Safety

Lifecycle ISO/DIS 26262,” in 21st IEEE/IFIP

International Symposium on Rapid System Pro-

totyping, 2010.

[3] International Organization for Standardiza-

tion/Technical Committee 22 (ISO/TC 22).

ISO/DIS 26262 - Road vehicles. Functional safe-

ty. Technical report, ISO, Geneva, Switzerland,

November 2011.

[4] Avizienis, A., Laprie, J., Randell, B., and Land-

wehr, C. 2004. Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans.

Depend. Secur. Comput. 1, 11–33.

[5] S. Sommer, A. Camek, K. Becker, C. Buckl, A.

Zirkler, L. Fiege, M. Armbruster, G. Spiegel-

berg, and A. Knoll. Race: A centralized platform

computer based architecture for automotive ap-

plications. In Vehicular Electronics Conference

(VEC) and the International Electric Vehicle

Conference (IEVC) (VEC/IEVC 2013). IEEE,

October 2013.

[6] D. Schneider and M. Trapp. A safety engineer-

ing framework for open adaptive systems. In

Self Adaptive and Self-Organizing Systems

(SASO), 2011 Fifth IEEE International Confer-

ence on, pages 89–98, 2011.

[7] Kelly, T. P. and Weaver, R.. The goal structur-

ing notation – A safety argument notation. In

Proceedings of the DSN Workshop on Assur-

ance Cases: Best Practices, Possible Outcomes,

and Future Opportunities, 2004

[8] Inverardi, P., Pelliccione, P., and Tivoli, M..

Towards an assume-guarantee theory for adapta-

ble systems.In Proceedings of the ICSE Work-

shop on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS’09). 2009,

pages106–115.

[9] Rushby, J., Modular certification. NASA con-

tractor rep. CR-2002-212130, NASA Langley

Research Center., 2002

[10] Ericson, C.A., Fault tree analysis: a history. In:

Proceedings of the 17th international system

safety conference, 1999

[11] M. Eichhorn, M. Pfannenstein, D. Muhra, and E.

Steinbach. A soa-based middleware concept for

in-vehicle service discovery and device integra-

tion. In Intelligent Vehicles Symposium (IV),

2010 IEEE, pages 663–669, 2010.

[12] G. Gehlen, E. Weiss, and A. Quadt. Service ori-

ented middleware for automotive applications

and car maintenance. In Proceedings of the 1nd

Workshop on Wireless Vehicular Communica-

tions and Services for Breakdown Support and

Car Maintenance, pages 42–46, Nicosia, Cyprus,

Apr 2005. RWTH Aachen University.

