
Adaptive Error and Sensor Management for
Autonomous Vehicles: Model-based Approach

and Run-time System

Jelena Frtunikj1, Vladimir Rupanov1, Michael Armbruster2, and Alois Knoll3

1 fortiss GmbH, An-Institut Technische Universität München,
Guerickestr. 25, 80805 München, Germany

{frtunikj,rupanov}@fortiss.org
2 Siemens AG, Corporate Research and Technologies,

Otto-Hahn-Ring 6, 81730 München, Germany
{michael.armbruster}@siemens.com

3 Fakultät für Informatik, Technische Universität München
Boltzmannstrasse 3, 85748 Garching bei München, Germany

{knoll}@in.tum.de

Abstract. Over the past few years semi-autonomous driving function-
ality was introduced in the automotive market, and this trend continues
towards fully autonomous cars. While in autonomous vehicles data from
various types of sensors realize the new highly safety critical autonomous
functionality, the already complex system architecture faces the challenge
of designing highly reliable and safe autonomous driving system. Since
sensors are prone to intermittent faults, using different sensors is better
and more cost effective than duplicating the same sensor type because
of diversity of reaction of different sensor typesto the same environmen-
tal condition. Specifying and validating sensors and providing technical
means that enable usage of data from different sensors in case of fail-
ures is a challenging, time-consuming and error-prone task for engineers.
Therefore, in this paper we present our model-based approach and a run-
time system that improves the safety of autonomous driving systems by
providing reusable framework managing different sensor setups in a ve-
hicle in a case of a error. Moreover, the solution that we provide enables
adaptive graceful degradation and reconfiguration by effective use of the
system resources. At the end we explain in an example when and how
the approach can be applied.

Keywords: safety, sensor models, autonomous driving systems, adap-
tive graceful degradation

1 Introduction

Nowadays, the automotive industry faces the challenge to manage the electrics
and electronics E/E-architecture’s complexity [12] while in parallel more and
more functionality (we will call each considered software-implemented function

2 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

”system function” herein) is added within a vehicle. Moreover, a recent study [9]
shows that the E/E architecture faces the challenge of raising demand for ve-
hicle automation up to fully automated driving. Therefore, the new E/E archi-
tecture must be scalable enough to support autonomous functionality, such as
driving [10], parking or charging, and new driver assistance systems.

Due to high criticality and the requirement for fail-operational behavior
of these functions, the E/E architecture must provide built-in mechanisms to
achieve fault-tolerance. This means that systems should be able to resume af-
fected functions without negligible interruption. Traditional fault tolerance tech-
niques, such as installing multiple identical hardware backup systems, may be
cost prohibitive for automotive systems. This introduces limits to the design
effort and redundant resources that can be spent to make the system depend-
able. Graceful degradation mechanisms provide increased system dependability
without need for providing redundant system resources. It enables, in case of
a subsystem failure, resulting in the loss of some system resources, run-time
evaluation of the system state and reconfiguration to be applied. The reconfigu-
ration is required for efficient utilization of the remaining resources and different
sensor/actuator modalities to execute the required functions.

A possible technical approach to enable graceful degradation consists of a
formal framework for specifying degradation rules and a run-time system that
ensures different non-functional qualities of interfaces and function behavior at
run-time. The idea behind using a run-time system approach is to reuse the
already developed safety measures for different systems and functions and save
future development costs spent on non-functional aspects. This run-time system
should implement technical means that can ensure fault-tolerance and enable
adaptive graceful degradation of automotive system functions by effectively uti-
lizing system resources and available data (supplied by different sources, e.g.
sensors). However, the technical measures that enable the graceful degradation
of functions must be generic, in order to be easily reused for all system functions
in the vehicle.

The challenge considered in this paper is to provide a framework for generic
(function-unspecific) graceful degradation applicable to all system functions that
takes into consideration different types of data sources (sensors), their configu-
ration and the available system resources. To do so, we consider each function
as a composition of fault containment regions (FCR). Due to the fact that only
the function developer has the knowledge which FCRs compose certain func-
tion and which system resources (e.g. CPU, memory etc.) are required by the
function, the information has to be provided a priori as configuration param-
eters. Since the run-time system contains safety mechanisms that are capable
of determining the ”health” state of each FCR and has information about the
available non-faulty system resources, it is able to identify/diagnose the ”health”
and degradation level of each function and to perform the necessary reconfigura-
tions in order to provide the required functionalitiy in the system every moment.
The reconfiguration is based on the available system resources, subsystems and
their configuration, function criticality and function resource requirements. Our

Adaptive Error and Sensor Management for Autonomous Vehicles 3

approach uses a formal function model and a set of formal constraints that
describe the validity of possible function degradation. The approach (and the
models that we use) allows to analyze at run-time if the desired system safety
properties can be fulfilled and which set of functions should still be provided
after one or multiple isolation FCRs or system resources.

This article is structured as follows. In Section 2, we first introduce the target
scalable fault-tolerant E/E architecture and give a short overview of its main
features. Afterwards we give a detailed description of the proposed concept,
explaining the meta-model and the run-time environment in details. Section
4 presents an example explaining how this approach can be applied. Section
5 compares our approach against available solutions provided by industry and
scientific community. The last section provides a brief conclusion and summarizes
future steps.

2 RACE system architecture and safety concept

As discussed in the introduction, future vehicles must support an increasing
amount of new complex functionalities, such as predictive advanced driver assis-
tance systems (ADAS) up to highly and fully automated driving and parking.
Since, today’s vehicle E/E architectures are very complex, extending the sys-
tem with more hardware or software (which supports new functionalities) is not
trivial at all. As a result, a new system architecture for modern cars is required.

Basic requirements for such an E/E architecture are to be scalable, open and
thus easily expandable. Such architecture is proposed in the Robust and Reliant
Automotive Computing Environment for Future eCars (RACE)4 project [13].
The fail-operational centralized platform (Figure 1) consists of a redundant and
reliable communication infrastructure based on a switched Ethernet topology, re-
dundant power supply (blue and red lines in Figure 1) and redundant controllers.
The centralized platform computer is composed from two or more duplex control-
computers (DCC) and is responsible for executing all system functions. In order
to guarantee fail-safe behavior, a DCC has two execution lanes that monitor in-
put and output data mutually. In case an error occurs their results are discarded.
Fail-operational behavior is guaranteed by a second DCC, which takes over the
control tasks in case the first DCC has failed. The sensors and actuators used
in the approach are smart and responsible for the low level control tasks. They
are connected to the DCCs by a high-bandwidth Ethernet network.

A run-time system, together with the operating system, drivers, and compo-
nents provides services, interconnects all system components. The run-time sys-
tem facilitates generic safety mechanisms such as real-time deterministic schedul-
ing, data exchange services, health monitoring and diagnosis, as well as an ex-
ecution platform with time and space partitioning for applications running on
the same HW and having different Automotive Safety Integrity Level (ASIL)
classifications.

4 Robust and Reliant Automotive Computing Environment for Future eCars,
http://www.projekt-race.de/

4 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

Fig. 1: System Architecture: fail-operational design

3 Proposed approach

This section presents the proposed concept by giving insights in our modeling
approach and the run-time system.

3.1 Domain-specific meta-model

In order to provide a generic approach dealing with system function degrada-
tion and dynamic resource reconfiguration, we need to introduce changes to
the development process. We have to take into account the abstraction of func-
tions from their former dedicated electronic control unit and the requirement,
that functions can be integrated into a variety of architecture variants (we con-
sider any combination of allocated functions to the control/computing units of
the system as a variant). Therefore, data dependencies between functions, re-
quired sensor data and resource requirements (e.g., CPU and memory) need to
be defined explicitly and in an unambiguous manner. To do so, at design time
a domain-specific model is used. In Figure 2, a meta-model describing system
functions, subsystems and their properties and dependencies, is depicted. This is
the first step towards automated and uniform function description. The model
enables composition of functions from different subsystems (HW and/or SW)
and definition of degradation rules. The degradation rules represent specifica-
tion of reduced functionality of a system function after occurrence of failures of
the subsystems, from which the function is composed. The meta-model is used
in a model-driven development tool, which allows modeling each function based
on available data in the system and subsequent generation of data structures
from this model for further run-time use by the run-time system. The result-
ing models are called models@run-time [2] since they contain information (e.g.
required memory resources, degradation rules etc.) that is relevant at run-time.

Adaptive Error and Sensor Management for Autonomous Vehicles 5

Fig. 2: Domain-specific meta-model defining function and its components

It is important to emphasize that each subsystem has a configuration descrip-
tion that expresses additional restrictions to be considered in the models. For
example, if a subsystem is a sensor, the configuration description (Figure 3) con-
tains such information as sensor position, viewing direction, maximum distance,
type of target or collision objects w.r.t. geometry and material data, etc. [3].
The information is used to identify and validate allowed sensor configurations
and check if data from one type of sensor in case of failure can be replaced by
the data from another type of sensor.

Fig. 3: Meta-Model defining sensor configuration

Moreover, each subsystem fulfills the assigned ASIL capability according to
ISO 26262 [11]. In order to check if data from different sensors (considered and
modeled as subsystems) can be fused to achieve certain higher ASIL level, prop-
erties such as diversity and independence have to be specified (Figure 3). Two
subsystems are diverse in case they are produced by different manufacturers,
use different technology and production processes, use different test methods
etc. Independence property can be checked for example by checking partitions

6 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

of functions or software elements, physical distance between hardware elements,
common external resources, etc.

The information about the safety quality requirement is important for the
health monitoring mechanisms that provide information required to determine
the ”health state” and degradation of the subsystem and thereby of a function.

3.2 Formal System Model

Below we present the formal foundation of the models used in our approach.
Definition 1 A vehicle V = (Fa, SWa, HWa, D) is built up from a finite set

of System Function Architecture Fa, a Software Architecture SWa, a Hardware
Architecture HWa and a Deployment Configuration D.

Definition 2 System Function Architecture Fa = (Sf , Sfc) is composed by
a finite set of System Functions Sf and a set of System Function Clusters Sfc.

Definition 3 A System Function set Sf = {sf1, ...sfn} contains the system
functions of the vehicle. A system function can be realized by one or more SW
components and the required Sensors and Actuators.

Definition 4 System functions are grouped into a set of System Function
Clusters Sfc = {sfc1, ...sfck}, where sfci ⊆ Sfc while ∀i, j : sfci∩sfcj = ∅. We
define the mapping of sf ∈ Sf to sfc ∈ Sfc with ε (sfc)→ {sfi ∈ Sf |sfi is mapped to sfc}.

The grouping of sf is based on the safety properties of the functions such as:
1) criticality level of the function (ASIL); 2) performance requirements regarding
fail-operational or fail-safe behavior. This way of grouping of the system func-
tions reduces the system complexity with regard to the amount of combinations
to be considered for deployment.

Definition 5 A Software Architecture is composed by a finite set of SW
components SWa = {s1, ...sm} that belong to at least one system function s ∈
SWa to sf ∈ Sf with α (s)→ {si ∈ SWa|si is mapped to sf}.

Definition 6 A Hardware Architecture is composed by a finite set of HW
components HWa = {h1, ...hl}. The set is divided in set of execution nodes and
set of peripheral actuator or sensor nodes HWa = HWe ∪HWp.

Definition 7 The Deployment Configuration D = (δ (sfc)) defines how
the System Function Clusters and the corresponding SW components are de-
ployed to the execution nodes HWe. For sfc ∈ Sfc, we define to δ (sfc) →
{hi ∈ HWe|sfc is executed to hi}.

The execution nodes represent the previously mentioned duplex control-
computers (DCC). The set of the execution nodes is also called Central Platform
Computer (CPC).

Definition 8 A fault is a physical defect, an imperfection or a flaw that oc-
curs within some hardware or software component. An error is the manifestation
of a fault and a failure occurs, when the component’s behavior deviates from its
specified behavior [1].

Depending on the level of abstraction, at which a system is explored, the
occurrence of a malicious event may be classified as a fault, error or a failure.
We define all malicious events that might occur within a subsystem as error.

Adaptive Error and Sensor Management for Autonomous Vehicles 7

Fault Tolerance deals with mechanisms (error and fault handling) in place.
These mechanisms allow a system to deliver the required service in the presence
of faults despite degraded level of that service.

Definition 9 A subsystem set is defined by the set of SW components and
peripheral actuator or sensor nodes SubS = SWa ∪HWp.

Lemma 1 Following definitions 3, 5, 6 and 9, a system function is unam-
biguously defined by a set of logical subsystems SF = {subS1, ...subSk}.

The subsystems represent Fault-Containment Regions (FCR) which can be
seen as black boxes w.r.t. safety and error handling. The FCRs have precisely
specified interfaces in the domains of time and value, which are required to detect
anomalies at run-time. This means, in a case of error the FCR and with that the
subsystem is marked and handled as faulty. The alteration of subsystem state can
be expressed formally by the definition of new state transition subSStateok →
subSStateerr. This definition and handling is required in order to be sure that
the fault within the FCR will not be extended out of the defined subsystem
borders.

Each subsystem subS has a defined configuration subSConfig. The config-
uration information is taken into consideration when an evaluation about inter-
changeable subsystems is performed. In case of a failure of one subS, the data
required from that subS can be substituted by the before validated interchange-
able subsystem.

Definition 10 Based on the subsystem subS ”health” state (error free or
erroneous) and the redundancy information, different degradation level of the
subsystem subSDeg0, subSDeg1, ..,subSDegN can be defined.

The subsystem degradation level (also named only degradation) can take val-
ues form 0 to N . The zero degradation level is the lowest one and represent fully
functionality, while the Nth level is the highest one and means no functionality
available (the subsystem is in erroneous state serr).

Definition 11 A system function sf degradation predicate sfDegx is a
boolean function over a set of degradation level states of the subsystems compos-
ing the function. The set of system function degradation predicates represents the
specification of the function and system degradation w.r.t. safety. For each degra-
dation predicate a set of attributesA = {memoryResources, runtimeResources}
are specified and are used by the reconfiguration mechanism that keeps system
safety after a failure of execution component. A system function degradation
predicate can also get values form 0 to N .

Reconfiguration mechanism: In case of execution nodes scarce (due to
a failure), a reconfiguration mechanism has to be activated in the system in
order to make the decision about which system functions to be run in the sys-
tem and which not. The decision criteria needs to take into consideration the
available resources (execution and system resources e.g. different sensors) and
the criticalites of the functions. As this is obviously a computationally com-
plex multi-dimensional optimization problem that has to be solved at run-time,
techniques that are not computationally extensive like greedy approximation
algorithm should be used.

8 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

3.3 Run-time system and degradation approach

Even though our approach is based on a formal foundation, here we explain the
approach in more details in an informal way for the sake of clarity.

As mentioned before, we consider a system function sf ∈ Sf as a compo-
sition of subsystems. Since the subsystems have precisely specified interfaces
in the domains of time and value, that information is used for configuring the
safety mechanisms of the run-time system, which provide information and error
indications required to determine the ”health” state of the corresponding subsys-
tems. We define the following relevant FCRs/subsystems of a system function:
1) sensors or actuators and 2) application software components - SW functions
implementing the system function control algorithm, including respective par-
titions (in both time and space domains). The defined FCRs also include the
communication links, through which they send and/or receive data.

In order to enable calculation and appropriate determination of function
degradation level at run-time, a run-time system component named System
Function Manager (SFM) identifies the state of each subsystem belonging to
each system function. This means the SFM is able to determine the ”health”
state (correct or faulty) and the degradation level of all subsystems based on the
system state and the error indications that result from diagnosis of these spe-
cific subsystems. More detailed explanation of the safety mechanisms that the
run-time system offers can be found in [5]. The process of fault detection (health
monitoring), consolidation of error indications, ”health” state determination and
the mapping to run-time system components is depicted on Figure 4.

Fig. 4: Separation of fault detection from fault handling

Depending on the error indications that the health monitoring run-time sys-
tem components generate and the redundancy type of the subsystem (e.g. single,
double, triple redundancy etc.), the SFM identifies the ”health” state and the
degradation level of each subsystem at run-time. SFM is based on a developed
algorithm that evaluates the error indications, which are a result of detected
faults, and in that way it provides the required information that represents the

Adaptive Error and Sensor Management for Autonomous Vehicles 9

basis for error handling. The task of the System Function Manager is mainly
focused on the phases of isolation, passivization and activation on of all subsys-
tems subS belonging to all system functions, based on their current ”health”
state. The System Function Manager together with the Reconfiguration Man-
ager determine the next ”health” state. In case of a permanent fault, the FCR
and the corresponding subS is isolated. In a case of transient fault, the FCR is
passivated, and if no faults more are found, the FCR continues to be active. The
mentioned ”health” states can be applied to all types of subsystems (FCRs) that
are defined in the system.

Based on the ”health” states and the redundancy information, we have de-
fined the following degradation level of the subsystems subS:

– degradation level 0 (subSDeg0): data available (no fault detected and the
subsystem is ”active”)

– degradation level 1 (subSDeg1): data available but data coming via one net-
work link in the previously mentioned system architecture are not available
(and the subsystem is ”active”)

– degradation level 2 (subSDeg2): data available but one redundant subsystem
from same type is faulty (lost) (and the subsystem is ”active”)

– degradation level N (subSDegN): data are not available due to a fault (and
the subsystem is ”isolated”)

The information about the degradation level of each subsystem is used to
calculate the degradation of a system function sfDeg at run-time. Since only
the function developer has the knowledge and the expertise, which subsystems
compose and are required for certain system function, he/she is responsible for
defining the allowed degradation of the system function. A degradation rule for
a system function is expressed by means of boolean algebra. The boolean expres-
sion includes all subsystems and their degradation state subSDeg. An example of
such an expression for a system function consisting of three subsystems (sensors,
actuators and/or SWC) looks like following:

sfDeg1 = subSDeg0i ∧ subSDeg1j ∧ subSDeg0k
An example system function sf in a vehicle is pedestrian detection and auto

brake function, which consists of four subsystems/FCRs: camera subScamera,
radar subSradar, brake subSbrake, and SW component implementing the algo-
rithm for pedestrian detection subSpdswc. Each of these subsystems has different
degradation levels depending on the redundancy constellation:

– camera: subSDeg0camera and subSDegNcamera

– radar: subSDeg0radar, subSDeg1radar and subSDegNradar
– brake: subSDeg0brake and subSDegNbrake
– pedestrian detection SW component: subSDeg0pdswc and subSDegNpdswc

The degradation rules specified by the predicates define the dependency be-
tween a specific function and the sensors or actuators and other applications,
whose data is required in order the function to work. Based on the degradation

10 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

rules and the actual degradation level subSDegxi of each subsystem, the boolean
expressions are evaluated at run-time and the ”best” system function degrada-
tion sfDeg is calculated. For the pedestrian detection and auto brake function
the system function developer has specified the following degradation rules:

sfDeg0pedDet = subSDeg0camera∧subSDeg0radar∧subSDeg0brake∧subSDeg0pdswc

sfDeg1pedDet = subSDeg0camera∧subSDeg1radar∧subSDeg0brake∧subSDeg0pdswc

sfDeg2pedDet = subSDeg0camera∧subSDegNradar∧subSDeg0brake∧subSDeg0pdswc

......
sfDegNpedDet = ¬(sfDeg0pedDet∨sfDeg1pedDet∨sfDeg2pedDet∨sfDeg3pedDet...∨
sfDegN−1

pedDet)

Based on the the degradation calculation algorithm shown in Algorithm 1,
the actual system function degradation level is calculated at run-time for all
active sf belonging to all active system function clusters sfc.

Algorithm 1 Degradation calculation

1: for all SFCluster sfc in SFClusterList sfcList do
2: for all SysFunction sf in SFCluster sfc do
3: for all SubSystems sbubS in SysFunction sf do
4: calculateHealthStateAndDegLevel(subS,subS.Deg)
5: end for
6: calculateSysFDegLevel(sf ,sf.degRules,sf.subSs)
7: end for
8: end for

As stated in [8], autonomous vehicles have various sensor types with different
modalities. Since sensors are prone to intermittent faults, using a different sensor
is better than duplicating the same type of sensors. Different types of sensors
typically react to the same environmental condition in diverse ways. For example,
in case a vehicle is equipped with radars for blind spot detection, if rear-looking
radar does not work properly, a software algorithm detecting obstacles from
images obtained via rear-looking camera can be used.

With the above in mind, our approach offers the possibility to define ad-
ditional degradation rules including different types of sensors in cases when
different types of sensors provide the same data/information. This is benefi-
cial especially in the case of a failure of one or more data sources. In such a
situation, a possibility to switch to a different source providing the same infor-
mation (that has correct configuration w.r.t. position, viewing direction etc.)
exists and the system function still remains fully available in the system. The
correct configuration of two interchangeable sensor subsystems is validated in
our model-driven development tool and the information is available at run-time.
For example, properties like angle of view ais checked:

Adaptive Error and Sensor Management for Autonomous Vehicles 11

subSConfiglidar.angleFOV >= subSConfigradar.angleFOV

subSConfiglidar.distanceFOV >= subSConfigradar.distanceFOV

An example of such a case for the previously described pedestrian detection
and auto brake function, is when data from Radar subSradar sensor can be ”sub-
stituted” by data produced by a LiDAR (Light detection and ranging) subSlidar

sensor. We have to mention that the different sensor might require different mon-
itoring functions that help at run-time the ”health” state of the sunsystem to be
calculated. Additional degradation rules for the pedestrian detection and auto
brake functionality like the one below can be specified. Having this opportunity
is useful and important since various algorithms using different types of sensors
even for a common goal may consume significantly different amount of resources.

sfDeg0pedDet = subSDeg0camera∧subSDeg0lidar∧subSDeg0brake∧subSDeg0pdswc

The approach also offers the possibility to model data redundancy not only
from same types of units but also from diverse ones. Different degradation levels
of the units, are supported in case of diverse units and additional degradation
rules for the function can be specified. The advantage of using data from both
types of units lies in the possibility for data fusion and obtaining more thereby
accurate information. With that also a higher ASIL level can be achieved. In
case of the above example, both radar subSDegradar and LiDAR subSDeglidar
degradation can be included in the degradation rules of the function:

sfDeg0pedDet = subSDeg0camera∧(subSDeg0radar∨subSDeg0lidar)∧subSDeg0brake∧
subSDeg0pdswc

Based on the fact that the function developer also specifies the required re-
sources for each degradation level and the criticality level of the functions (as
shown in the meta-model Figure 2), the run-time system has the possibility to
react appropriately in case of resource scarce. For example, if not enough system
resources are available, the run-time system can deploy and run all high criti-
cality functions in the full functionality, but the less critical ones in a degraded
mode in which they require fewer resources. The mentioned decision is done
by the Reconfiguration Manager (RM) component that dynamically decides if
and at which degradation level to execute each function. An Execution Manager
component, which manages the scheduling and execution of functions, performs
the required schedule changes.

3.4 Approach benefits

To sum up, we enable adaptive graceful degradation for all system function
in a generic and uniform manner. Our degradation specifications have several
advantages. The specifications: 1) are high-level, ensuring that the user is not
overwhelmed by implementation details. Our specifications require users only
to describe desired behavior, not implement techniques for achieving it; 2) are
concerned only with describing functional behavior, yet they provide a natural

12 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

interface to the models used to describe the failures and degradation. Since the
system function developer only has to focus on the description of each function
instead of developing technical measures that manage graceful degradation, we
save his efforts and time, by providing a run-time system that does that auto-
matically for him. Furthermore, the formalized specification and the usage of
generated models@run-time guarantee consistency and completeness in the crit-
ical transition from the requirements engineering to software design, where lot
of errors can be introduced into the system by using conventional, non-formal
techniques.

4 Example

This section presents how the previously explained concept can be used in a
scenario, where pedestrian detection and auto brake system function in a vehicle
is composed from data coming from different sensors.

The pedestrian detection and auto brake technology usually relies on data
that come from camera, radar and/or LiDAR subsystems. Depending on the
available data sources the function requires different amount of resources to de-
tect pedestrians in the nearby environment of the vehicle. With the help of the
model-based development tool, the developer of the function specifies the degra-
dation rules for the different subsystem combinations and the different resource
requirements for each degradation level of the function. In our case, the degra-
dation rules stated in the previous section reflect the different possibilities for
describing the function. The function has a sfDeg0pedDet when all subsystems are

fully available (subSDeg0i). The function degrades to second level sfDeg2pedDet

when the radar subsystem is not available any more subSDegNradar. However,
since in the system the data coming from the LiDAR sensor (whose configura-
tion has been validated before) can substitute the data from the radar sensor the
pedestrian detection and auto brake function can be run again at sfDeg0pedDet.
This is important for autonomous vehicles where this functionality is very es-
sential and contributes to the overall system safety.

In addition to the rules, for each of them the requirements regarding the run-
time execution resources (worst-case execution time- WCET) and the RAM and
ROM are stated in ms and MBytes respectively. For example, for sfDeg0pedDet

where we have the full functionality the resource requirements are the following
ones: WCET = 800ms, RAM = 10MBytes and ROM = 10MBytes. In com-
parison to that for sfDeg2pedDet the WCET = 500ms, RAM = 5MBytes and
ROM = 5MBytes. This information is useful in case of computing resources
scarce, since a function can be executed in a degraded mode where it (normally)
requires less resources.

5 Related work

In this section, we discuss the related work and we present ones that are most
relevant to our work and state the differences between the approaches.

Adaptive Error and Sensor Management for Autonomous Vehicles 13

Tichy [7], suggest an approach that includes formal visual specification tech-
nique to describe known standard fault tolerance solutions. They propose fault
tolerance patterns (similar to our degradation rules) which capture the essential
structure and relevant deployment restrictions of these solutions. In contrast to
our approach, they do not aim at self-reconfiguration of the system at run-time
and do not offer any solution for sensor management.

A MDE approach for managing different sensor setups in a cyber-physical
system development environment to leverage automated model verification, sup-
port system testing, and enable code generation is presented in [4]. The models
are used as the single point of truth to configure and generate sensor setups for
system validations in a 3D simulation environment. This approach only focuses
on the validation process and the verification of possible pin assignments for con-
necting the required sensors and does not offers a run-time system that enables
usage of the data from different sensors and a possibility for degradation.

Authors in [14] aim at graceful degradation by adapting the functionality of
a system to the driving situation and the available resources. Since adaptation
significantly complicates the development of embedded systems, they present an
approach to the model-based design of adaptive embedded systems that allows
coping with the increased complexity posed by adaptation. Furthermore, they
show how the obtained models can be formally verified by a model checker. This
approach is similar to ours, but in our opinion it is applicable at design time.

The industrial automotive AUTOSAR standard [15] describes a platform
which allows implementing future vehicle applications and minimizes the cur-
rent barriers between functional domains. One of the main objectives of AU-
TOSAR version 4 release is to support safety related applications by implement-
ing features to comply with the safety ISO 26262 standard requirements. The
AUTOSAR execution environment safety capabilities focus on the correct exe-
cution of software components only, and the monitoring of functional behavior of
the system functions is neglected. Currently 3 levels of statically pre-configured
mode managers that allow degradation are supported by AUTOSAR. However
they lead to a cluttered and complex implementation. In comparison to this
with our framework we enable easy and reusable system and function degrada-
tion by specifying intuitive degradation rules, so our approach can be seen as an
extension and improvement to AUTOSAR.

6 Conclusion and future work

Motivated by new challenges that automotive architectures face, we presented
a domain-specific meta-model that enables to compose different high-level func-
tions from different components, define their dependencies and their required
resources. Furthermore, we specified run-time system components that, based
on this information. are able to calculate the available degradation level of all
system functions at run-time, and based on the resources and the information
about the criticality of the functions, perform appropriate reconfiguration (self-
repair in case of failures).

14 Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll

Acknowledgment

The work presented in this paper is partially funded by the German Federal
Ministry for Economic Affairs and Energy (BMWi) through the project Robust
and Reliant Automotive Computing Environment for Future eCars.

References

1. Laprie, J.C. C. and Avizienis, A. and Kopetz, H.: Dependability: Basic Concepts
and Terminology. Springer-Verlag New York, Inc. (1992)

2. Lehmann, G. and Blumendorf, M. and Trollmann, F. and Albayrak, S.: Meta-
modeling Runtime Models. MoDELS Workshops (2010)

3. Roth, E. and Dirndorfer, T. and Kilian v. Neumann-Cosel and Fischer, M.-O. and
Ganslmeier, T. and Kern, A. and Knoll, A.: Analysis and Validation of Perception
Sensor Models in an Integrated Vehicle and Environment Simulation. Proceedings
of the 22nd Enhanced Safety of Vehicles Conference (2011)

4. Mamun, M. ; Berger, C. ; Hansson, J.: MDE-based Sensor Management and Veri-
fication for a Self-Driving Miniature Vehicle. Proceedings of the 13th Workshop on
Domain-Specific Modeling (2013)

5. Frtunikj, J. and Rupanov, V. and Camek, A. and Buckl, C. and Knoll, A.: A Safety
Aware Run-Time Environment for Adaptive Automotive Control Systems. Embed-
ded Real-Time Software and Systems (ERTS2) (2014)

6. Shelton, C.P. and Koopman, P. and Nace, W.: A framework for scalable analysis
and design of system-wide graceful degradation in distributed embedded systems.
Proceedings of the Eighth International Workshop on Object-Oriented Real-Time
Dependable Systems (2003)

7. Tichy, M. and Giese, H.: Extending Fault Tolerance Patterns by Visual Degrada-
tion Rules. Proceedings of the Workshop on Visual Modeling for Software Intensive
Systems (VMSIS) (2005)

8. Urmson, C. et al.: Autonomous driving in urban environments: Boss and the Ur-
ban Challenge. Journal of Field Robotics Special Issue on the 2007 DARPA Urban
Challenge, Part I (2008)

9. Bernhard, M. et al.: The Software Car: Information and Communication Technology
(ICT) as an Engine for the Electromobility of the Future, Summary of results of the
”eCar ICT System Architecture for Electromobility” research project sponsored by
the Federal Ministry of Economics and Technology (2011)

10. Dmitri, D. et al.: Path Planning for Autonomous Vehicles in Unknown Semi-
structured Environments. Sage Publications, Inc. (2010)

11. International Organization for Standardization: ISO/DIS 26262 - Road vehicles.
Functional safety. Technical Committee 22 (ISO/TC 22) (2011)

12. Broy, M. and Kruger, I.H. and Pretschner, A. and Salzmann, C.: Engineering
Automotive Software, Proceedings of the IEEE (2007)

13. Sommer, S. et al.: RACE: A Centralized Platform Computer Based Architecture
for Automotive Applications. Vehicular Electronics Conference (VEC) and the In-
ternational Electric Vehicle Conference (IEVC) (2013)

14. Adler, R. and Schaefer, I. and Schuele. T.: Model-Based Development of an Adap-
tive Vehicle Stability Control System, Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen (MBEFF) (2008)

15. AUTOSAR Group: AUTomotive Open System ARchitecture (AUTOSAR) Release
4.1 (2013)

