
A Neural Network Model for Inter-problem Adaptive
Online Time Allocation

Matteo Gagliolo1 and Jürgen Schmidhuber1,2

1 IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
2 TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

{matteo, juergen}@idsia.ch

Abstract. One aim of Meta-learning techniques is to minimize the time needed
for problem solving, and the effort of parameter hand-tuning, by automating algo-
rithm selection. The predictive model of algorithm performance needed for task
often requires long training times. We address the problem in an online fashion,
running multiple algorithms in parallel on a sequence of tasks, continually up-
dating their relative priorities according to a neural model that maps their current
state to the expected time to the solution. The model itself is updated at the end of
each task, based on the actual performance of each algorithm. Censored sampling
allows us to train the model effectively, without need of additional exploration
after each task’s solution. We present a preliminary experiment in which this
new inter-problem technique learns to outperform a previously proposed intra-
problem heuristic.

1 Problem Statement

A typical machine learning scenario involves a (possibly inexperienced) practitioner
trying to cope with a set of problems, that could be solved, in principle, using one
element of a set of available algorithms. While most users still solve such dilemmas
by trial and error, or by blindly applying some unquestioned rule-of-thumb, the steadily
growing area of Meta-Learning [1] research is devoted to automating this process. Apart
from a few notable exceptions (e.g. [2,3,4,5], see [6], of which we adopt the notation
and terminology, for a commented bibliography), most existing techniques amount to
the selection of a single candidate solver (e.g. Algorithm recommendation [7]), or a
small subset of the available algorithms to be run in parallel with the same priority (e.g.
Algorithm portfolio selection [8]). This approach usually requires a long training phase,
which can be prohibitive if the algorithms at hand are computationally expensive; it also
assumes that the algorithm runtimes can be predicted offline, based on problem features,
and do not exhibit large fluctuations. In more complex cases, where the difficulty of the
problems cannot be precisely predicted a priori, a more robust approach would be to run
the candidate solvers in parallel, adapting their priorities online according to their actual
performance. We termed this Adaptive Online Time Allocation (AOTA) in [6], in which
we further distinguish between intra-problem AOTA, where the prediction of algorithm
performance is made according to some heuristic based on a-priori knowledge about
the algorithm’s behavior; and inter-problem AOTA, in which a time allocation strategy
is learned by collecting experience on a sequence of tasks.

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 7–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 M. Gagliolo and J. Schmidhuber

In this work we present an inter-problem approach for training a parametric model
of algorithm runtimes, and give an example of how this model can be used to allo-
cate time online, comparing its performance with the simple intra-problem heuristic
from [6].

2 A Parametric Model for Inter-problem AOTA

Consider a finite algorithm set A containing n algorithms ai, i ∈ I = {1, . . . , n},
applied to the solution of the same problem and running according to some time allo-
cation procedure. Let ti be the time spent on ai; xi a feature vector, possibly including
information about the current problem, the algorithm ai itself (e.g. its kind, the values
of its parameters), and its current state di; Hi = {(x(r)

i , t
(r)
i), r = 0, . . . , hi} a set of

collected samples of these pairs; H = ∪i∈IHi the historic experience set relative to the
entire A.

In order to allocate machine time efficiently, we would like to map each pair in each
Hi to the time τi still left before ai reaches the solution. If we are allowed to learn such
mapping by solving a sequence of related tasks, we can, for a successful algorithm ai

that solved the problem at time t
(hi)
i , a posteriori evaluate the correct τ (r)

i = t
(hi)
i −t

(r)
i

for each pair (x(r)
i , t

(r)
i) in Hi. In a first tentative experiment, that led to poor results,

these values were used as targets to learn a regression from pairs (x, t) to residual time
values τ . The main problem with this approach is which τ values to choose as targets for
the unsuccessful algorithms. Assigning them heuristically would penalize with high τ
values algorithms that were stopped on the point of solving the task, or give incorrectly
low values to algorithms that cannot solve it; obtaining more exact targets τ by running
more algorithms until the end would increase the overhead.

The alternative we present here is inspired by censored sampling for lifetime dis-
tribution estimation [9], and consists in learning a parametric model g(τ |xi, ti;w) of
the conditional probability density function (pdf) of the residual time τ . To see how the
model can be trained, imagine we continue the time allocation for a while after the first
algorithm solves the current task, such that we end up having one or more successful
algorithms ai, with indices i ∈ Is ⊆ I , for whose Hi the correct targets τ

(r)
i can be

evaluated as above. Assuming each τ
(r)
i to be the outcome of an independent experi-

ment, including t in x to ease notation, if p(x) is the (unknown) pdf of the x(r)
i we can

write the likelihood of Hi as

Li∈Is(Hi) =
hi−1∏

r=0

g(τ (r)
i |x(r)

i ;w)p(x(r)
i) (1)

For the unsuccessful algorithms, the final time value t
(hi)
i recorded in Hi is a lower

bound on the unknown, and possibly infinite, time to solve the problem, and so are the
τ

(r)
i , so to obtain the likelihood we have to integrate (1)

Li/∈Is
(Hi) =

hi−1∏

r=0

[1 − G(τ (r)
i |x(r)

i ;w)]p(x(r)
i) (2)

A Neural Network Model for Inter-problem Adaptive Online Time Allocation 9

where G(τ |x;w) =
∫ τ

0
g(ξ|x;w)dξ is the conditional cumulative distribution function

(cdf) corresponding to g.
We can then search the value of w that maximizes L(H) =

∏
i∈I L(Hi), or, in a

Bayesian approach, maximize the posterior p(w|H) ∝ L(H |w)p(w). Note that in both
cases the logarithm of these quantities can be maximized, and terms not in w can be
dropped.

To prevent overfitting, and to force the model to have a realistic shape, we can use
some known parametric lifetime model, such as a Weibull distribution [9], with pdf
g(τ |x, t;w) = λββτβ−1e−(λτ)β

and express the dependency on x and w in its two
parameters λ = λ(x;w),β = β(x;w). In the example we present here, these will
be the two outputs of a feed-forward neural network, which will be trained by back-
propagation minimizing the negative logarithm of L(H), whose derivatives are easily
obtainable, in a fashion that is commonly used for modelling conditional distributions
(see e.g. [10], par 6.4).

From the time allocation perspective, one advantage of this approach is that it allows
to learn also from the unsuccessful algorithms, suffering less from the trade-off between
the accuracy of the learned model, and the time spent on learning it.

3 An Example Application

If the estimated model g was the correct one, the time allocation task would be trivial,
as we could allocate all resources to the expected fastest algorithm, i.e., the one with
lower expected run time

∫ +∞
0

τg(τ |x)dτ , periodically re-checking which algorithm is
to be selected given the current states {xi}. In practice, however, the predictive power
of the model depends on the how the current task compares to the ones solved so far,
so trusting it completely would be too risky. In preliminary experiments, we adopted
a time allocation technique similar to the one in ([6]), slicing machine time in small
intervals ∆T , and sharing each ∆T among elements of A according to a distribution
PA = {pi}; the latter is updated at each step based on the current model g, which is
re-trained at the end of each task on the whole history H collected so far, as follows:

for each problem r

while (r not solved)

update {τi} based on current g and current {xi}:
τi =

∫ +∞
0

τg(τ |xi)dτ

update PA = {pi} based on {τi}
for each i = 1..n

run ai for a time pi∆T
update xi

end
end
update H
update g maximizing L(H)

end

10 M. Gagliolo and J. Schmidhuber

To model g we used an Extreme Value distribution1 on the logarithms of time values,
with parameters η(x;w) and δ(x;w) being the two outputs of a feedforward neural
network, with two separate hidden layers of 32 units each, whose weights are obtained
by minimizing the negative logarithm of the Bayesian posterior p(w|H) obtained in
Sect. 2, using 20% of the current history H as a validation set, and a Cauchy distribution
p(w) = 1/1 + w2 as a prior.

At each cycle of the time allocation, the current expected time τi to the solution
is evaluated for each ai from g(τ |xi;w); these values are ranked in ascending order,
and the current time slice is allocated proportionally to (log(m+1−j)

log(m))−ri , ri being the
current rank of ai, m the total number of tasks, j the index of current task (from 1 to
m). In this way the distribution of time is uniform during the first task (when the model
is still untrained), and tends through the task sequence to a sharing pattern in which
the expected fastest solver gets half of the current time slice, the second one gets one
quarter, and so on. We ran some preliminary tests, using the algorithm set A3 from [6],
a set of 76 simple generational Genetic Algorithms [11], differing in population size
(2i, i = 1..19), mutation rate (0 or 0.7/L, L being the genome length) and crossover
operator (uniform or one-point, with rate 0.5 in both cases). We applied these solvers to
a sequence of artificial deceptive problems, such as the “trap” described in [3], consist-
ing of n copies of an m-bit trap function: each m-bit block of a bitstring of length nm
gives a fitness contribution of m if all its bits are 1, and of m − q if q < m bits are 1.
We generated a sequence of 21 different problems, varying the genome length from 30
to 96 and the size of the deceptive block from 2 to 4. The problems were first sorted by
genome length, then by block size, such that the resulting sequence is roughly sorted by
difficulty (see Table 1). The feature vector x included two problem features (genome
length and block size), the algorithm parameters, the current best and average fitness
values, together with their last variation and their current trend, the time spent and its
last increment, for a total of 13 inputs.

We compared the presented inter-problem AOTA with the intra-problem AOTAga,
the most competitive from [6], in which the {τi} were heuristically estimated based on
a simple linear extrapolation of the learning curve. In figure 1 we show the significant
improvement over AOTAga, which by itself already greatly reduces computation time
with respect to a brute-force approach.

4 Conclusions and Future Work

The purpose of this work was to show that a parametric model of algorithm performance
can be learned and used to allocate time efficiently, without requiring a long training
phase. Thanks to the model, the system was able to learn the bits of a-priori knowl-
edge that we had to pre-wire in the intra-problem AOTAga: for example, the fact that
increases in the average fitness are an indicator of potentially good performance. Along
the sequence of tasks, the model gradually became more reliable, and NN-AOTA was

1 If τ is Weibull distributed, l = log τ has Extreme Value distribution g(l) =
1
δ
e{[(l−η)/δ]−e(l−η)/δ}, with parameters δ = 1/β, η = − log λ. The distribution of the log-

arithm of residual times was used to learn a common model for a set of tasks whose solution
times have different orders of magnitude.

A Neural Network Model for Inter-problem Adaptive Online Time Allocation 11

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
6

Task sequence, from 1 to 21

C
um

ul
at

iv
e

tim
e

(f
itn

es
s

fu
nc

. e
va

ls
)

UNKNOWN BEST
NN−AOTA Inter−P
AOTAga Intra−P
BRUTE FORCE

Fig. 1. A comparison between the presented method, labeled NN-AOTA Inter-P, and the intra-
problem AOTAga, on a sequence of 21 tasks. Also shown are the the performances of the (a
priori unknown, different for each problem and for each random seed) fastest solver of the set
(which would be the performance of an ideal AOTA with foresight), labeled UNKNOWN BEST,
and the estimated performance of a brute force approach (running all the algorithms in parallel
until one solves the problem), labeled BRUTE FORCE, which leaves the figure and completes
the task sequence at time 3.3 × 107. The cumulative time spent on the sequence of tasks, i.e. the
total time spent in solving the current and all previous tasks, is plotted against current task index.
Time is measured in fitness function evaluations; values shown are upper 95% confidence limits
calculated on 20 runs.

Table 1. The 21 trap problems used, each listed with its block size m and number of blocks n

m n m n m n

1) 2 15 8) 3 16 15) 4 18
2) 3 8 9) 4 12 16) 2 40
3) 4 6 10) 2 30 17) 3 28
4) 2 20 11) 3 20 18) 4 21
5) 3 12 12) 4 15 19) 2 45
6) 4 9 13) 2 35 20) 3 32
7) 2 25 14) 3 24 21) 4 24

12 M. Gagliolo and J. Schmidhuber

finally able to outperform AOTAga. In spite of the size of the network used, the obtained
model is not very accurate, due to the variety of the algorithms behavior on the different
tasks; still, it is discriminative enough to be used to rank the algorithms according to
their expected runtimes.

The neural network can be replaced by any parametric model whose learning al-
gorithm is based on gradient descent: in future work, we plan to test a more complex
mixture model [12], in order to obtain more accurate predictions, and even better per-
formances.

As the obtained model is continuous, and can give predictions also before starting
the algorithms (i.e. for ti = 0), it could in principle be used to adapt also the algorithm
set A to the current task, guiding the choice of a set of promising points in parameter
space.

Acknowledgements. This work was supported by SNF grant 16R1GSMLR1.

References

1. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18
(2002) 77–95

2. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm,
adaptive Levin search, and incremental self-improvement. Machine Learning 28 (1997) 105–
130 — Based on: Simple principles of metalearning. TR IDSIA-69-96, 1996.

3. Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of the
Genetic and Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA, Mor-
gan Kaufmann (1999) 1867

4. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In:
Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA
(2000) 511–518

5. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A bayesian
approach to tackling hard computational problems. In: UAI ’01: Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc. (2001) 235–244

6. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to search algo-
rithms. In Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., eds.: Machine Learning:
ECML 2004. Proceedings of the 15th European Conference on Machine Learning, Pisa,
Italy, September 20-24, 2004, Springer (2004) 134–143 — Extended tech. report available at
http://www.idsia.ch/idsiareport/IDSIA-23-04.ps.gz.

7. Fürnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the use of fast subsampling estimates for
algorithm recommendation. Technical Report TR-2002-36, Österreichisches Forschungsin-
stitut für Artificial Intelligence, Wien (2002)

8. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126 (2001) 43–62
9. Nelson, W.: Applied Life Data Analysis. John Wiley, New York (1982)

10. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press (1995)
11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts.

Neural Computation 3 (1991) 79–87

	Problem Statement
	A Parametric Model for Inter-problem AOTA
	An Example Application
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

