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Master’s Thesis in Informatik

Real-Time Marker-Based Motion Tracking: Application to
Kinematic Model Estimation of a Humanoid Robot

Andre Gaschler
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Abstract

This master’s thesis deals with the implementation of a motion capture system in order
to measure joint angles and estimate the kinematic model of the humanoid robot ECCE.

The novel musculoskeletal robot ECCE reflects the compliant behavior of the human
muscles and their mechanisms. Unlike other humanoid robots, its skeleton is completely
molded by hand, the placements of its artificial muscles are not specified and its joints
are not equipped with angle sensors. This anthropomimetic design demands for both (i)
means for motion capturing and real-time measurement of the joint angles and (ii) model
estimation of its kinematic chain. The underlying principle of this work is that all neces-
sary kinematic model parameters can be derived from capturing the motions of the robot.
For this, we outline state-of-the-art techniques for motion capturing and specify the re-
quirements of our system. After that, we develop algorithms for the involved processing
steps and implement the motion capture system. We then present procedures for kine-
matic model estimation based on the motions of the robot.

The contribution of this work is twofold: First, we provide a system for real-time pose
and joint angle measurements of the robot. Second, we determine the kinematic model of
the same.

Applications of this work include model fitting approaches for both the steady state and
the dynamics of the robot in order to allow physics-based simulation.
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CHAPTER 1

INTRODUCTION

“In the South Seas there is a cargo cult of people. During the war they saw
airplanes land with lots of good materials, and they want the same thing to
happen now. So they’ve arranged to imitate things like runways, to put fires
along the sides of the runways, to make a wooden hut for a man to sit in, with
two wooden pieces on his head like headphones and bars of bamboo sticking
out like antennas–he’s the controller–and they wait for the airplanes to land.
They’re doing everything right. The form is perfect. (...) Now it behooves me,
of course, to tell you what they’re missing. But it would be just about as dif-
ficult to explain to the South Sea Islanders how they have to arrange things so
that they get some wealth in their system. It is not something simple like telling
them how to improve the shapes of the earphones. But there is one feature I
notice that is generally missing in cargo cult science. That is the idea that we
all hope you have learned in studying science in school–we never explicitly
say what this is, but just hope that you catch on by all the examples of scien-
tific investigation. It is interesting, therefore, to bring it out now and speak of
it explicitly. It’s a kind of scientific integrity, a principle of scientific thought
that corresponds to a kind of utter honesty–a kind of leaning over backwards.
For example, if you’re doing an experiment, you should report everything that
you think might make it invalid–not only what you think is right about it: other
causes that could possibly explain your results; and things you thought of that
you’ve eliminated by some other experiment, and how they worked–to make
sure the other fellow can tell they have been eliminated.”

Richard P. Feynman: Cargo Cult Science. Year of 1974 Commencement Address at
California Institute of Technology [14].
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1 Introduction

1.1 Motivation

The introductory quotation by Richard Feynman on the nature of scientific investigation
well describes the motivation for research on humanoid robotics. The most interesting
aspect of humanoid robotics is surely not copying the outward appearance of the human
form. Scientific interest is rather to gain insight into the dynamics of compliantly actuated
robots and to find control schemes for musculoskeletal humanoids.

This master’s thesis focuses on the measurement of joint poses and estimation of the
kinematic model of the humanoid robot ECCE. Modeling the kinematic chain is crucial for
almost all robot control tasks, as most robot control algorithms assume complete knowl-
edge of all dimensions and parameters. The novel musculoskeletal humanoid ECCE not
only demands new control schemes, its skeleton is completely molded by hand and the
placement of its artificial muscles is not specified [36]. The central objective of this thesis is
therefore to estimate the kinematic model of this extraordinary robot. Direct measurements of
the robot’s dimensions are cumbersome and especially difficult for the centers of rotation
inside the shoulder joints. We firmly believe that all necessary model parameters can be
derived from measuring actual motions of the robot. The second objective of this thesis is
therefore to deliver real-time data of the robot’s movements in order to allow investigation of
the dynamics of the robot. Only when motion capture data of the joint angles of the robot
are available, its kinematics and its physics-based model can further be investigated.

In the following, we first characterize the musculoskeletal robot ECCE and collate its
properties with those of other compliantly-actuated humanoids. After that, we review
the state of the art of suitable motion capturing techniques. In our comparison, we draw
special attention on measuring the motions and joint angles of our humanoid robot. As the
robot ECCE is completely manufactured by hand, the only way to model its kinematics is
to measure is actual motions. Our underlying assumption of this work is that methods for
human motion tracking are also adequate for humanoid motion tracking and finally allow
modeling estimation of the kinematic chain of the robot. Towards the end of this chapter,
we will draw a conclusion on applicable methods for robot motion capturing and move
on to the system specification.

1.1.1 Musculoskeletal Humanoid ECCE

In a nutshell, the humanoid ECCE is an exceptional musculoskeletal robot with a high
number of degrees-of-freedom. Contrary to many earlier humanoids, its actuation system
is very close to the human model. Not only the skeleton and joints reflect the human joints,
it rather copies the compliant and elastic behavior of human muscles and their mecha-
nisms [36, 27]. The underlying design principle of ECCE is referred to as anthropomimetic
by Holland [26]. As an anthropomimetic robot, ECCE mimics both the human skeleton
as well as the muscular system and features an extraordinary high number of compliant
actuators.

The design principle of the robot ECCE is unique in several respects, which also poses
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1 Introduction

Figure 1.1: Biologically-inspired humanoid ECCE [32]

certain challenges on robot simulation and control. First, its design replicates the inner
structure of the human body and its mechanisms. Holland and Knight expect that anthro-
pomimetic design allows more human-like movements, perception and actions [26, 36].

Second, the compliant multi-degrees-of-freedom structure behaves different to conven-
tional robots, rendering it difficult to model. Since elasticity and compliance are the most
important characteristics of the anthropomimetic design, the control task is drastically
different from conventional stiff robots. More specifically, the actual joint poses are not
measured directly by the robot’s sensors, only length and tension of the tendons will be
measured in a future version. This demands a completely new approach for robot control.
Most importantly, almost all single muscle movements lead to movements of the whole
body because of the highly elastic structure. For this reason, even simple movements re-
quire the actuation of multiple muscles in order to sustain the overall body posture [26, 25].

Third and most importantly, the skeleton of the robot is almost entirely molded by hand
and the placement of its artificial muscles are not specified. Unlike other humanoids, it is

3



1 Introduction

not manufactured by computer aided design and its dimensions and physical parameters
are not known. Of course, accurately modeling the robot is crucial in order to control
it. For this reason, its properties must be estimated in some sensible way so as to allow
forward estimation and control [35].

1.1.2 Compliantly Actuated Humanoid Robots

The underlying design principle of the humanoid ECCE was defined by Holland [26] as
the biologically-inspired replication of the inner structure of the body with its bones, mus-
cles and tendons. Up to now, many humanoid robots rather mimic the outer structure
of the human body. They usually use accurate servo motors to control their biped skele-
ton and their hands. Most notably, Sony Qrio and Honda’s Asimo show the forefront of
conventionally controlled humanoids.

However, various authors have shown that accurate force control is favorable for many
applications. Pratt et al. introduced the notion of series elastic actuators as means for com-
pliant actuation in 1995 [49]. Before that, compliance was often regarded as a disturbance
and interfering with conventional control. The main advantage of series elastic actuators
lies in force sensing and accurate control of force. Contrary to stiff actuators, where high
torques and high accelerations are common at the beginning of a movement, series elastic
actuators may be extremely low in impedance. Series elastic actuator (SEA) design has
been largely promoted by MIT CSAIL: Robinson and Pratt [52] made use of variable stiff-
ness control for bipedal walking. Another noteworthy example is the compliantly actu-
ated humanoid Domo by Edsinger-Gonzales et al. [12]. Vallery et al. [67] state that passive
torque control is favorable over stiff actuation, most notably for applications that include
human interaction. They give an overview of the different design and control approaches
and systematically analyze torque control schemes. All in all, series elastic actuation has
become a wide-spread design principle in human robot interaction and humanoid robotics
during the last 15 years.

Much closer to the biologically-inspired ECCE are the humanoids Kotaro [39] and Kojiro
[38] from JSK Laboratory at University of Tokyo, which are shown in figure 1.2. Both robots
are musculoskeletal and tendon driven. An outstanding feature is their high number of
degrees-of-freedom: Kotaro features 91 DoFs, its successor Kojiro has 82 DoFs reflecting
the human mechanisms to a very high degree. Another important property of their design
is the elasticity of the joints themselves. Elastic elements (i.e. in the spine of vertebrae)
serve as shock-absorbing, allow smooth actuation and help retain body posture. The goal
of Inaba’s group is clearly to provide humanoids with human-like mechanical properties,
most notably softness and elasticity. On the long run, the group is investigating the use of
artificial muscles such as pneumatic and electro-active polymer actuators [38].

Compared to these examples, the anthropomimetic principle goes even further in copy-
ing the essential physical structure of a human. Our anthropomimetic robot arm in Fig. 1.3
features a versatile, human-like shoulder joint with 8 degrees-of-freedom alone. Of course,
this compliant design poses new challenges on the control system. Jäntsch et al. [27] are
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1 Introduction

Figure 1.2: Humanoids Kotaro (left) and Kojiro (center and right) [38] [28]

positive that a distributed control scheme takes away some complexity from the control
task and off-loads parts of the control problem to the robot’s limbs. This approach may
allow a novel control architecture where some complexity lies in the physical behavior of
the body itself. Pfeifer et al. [45] have shown that the notion of embodiment has important
implications on the relation between physical and control processes. They explain that re-
search in biomechanics showed the great importance of elastic control of muscles rather
than precise control of joint trajectories.

Figure 1.3: Experimental shoulder test rig of robot ECCE [27]

All in all, bio-inspired robotics open up new challenges in control. There is a strong
conviction among several scientists [45, 26, 35, 27] that anthropomimetic design is crucial
in order to allow robot interaction in open environments and dexterous manipulation of
general types of objects.
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1 Introduction

1.2 Methods for Motion Capturing

It is clearly evident that anthropomimetic robots demand new approaches for robot sim-
ulation and control. For these approaches, the kinematic model of the robot needs to be
estimated at great accuracy. As our musculoskeletal robot ECCE does not feature inter-
nal joint angle sensors, it demands external sensing of motions and angles. In this work,
we address the tasks of real-time motion capturing and kinematic model estimation for
the humanoid ECCE. First, we review general state-of-the-art approaches on tracking and
motion capturing. We then discuss the implications and requirements of our specific ap-
plication. We thereby assess the advantages and disadvantages of various motion capture
systems. Finally, we decide on one general approach and move on to the system specifica-
tion, which will be given detail on in the next chapter.

The general problem of tracking and motion capturing has been well studied in a wide
variety of survey and overview papers [3, 1, 51, 40, 41, 69]. Even though tracking an object
in space may seem a simple task in the first place, there is no such thing as a gold standard
method suitable for all applications. Tracking and motion capturing are rather practical
tasks that require a closer look on the specific application and setting. It is therefore not
surprising that there exists a wide range of different techniques for measuring position
and pose of tracking targets in space. The design of a motion capture system allows for
different choices concerning the physical medium, the geometric arrangement of sources
and sensors as well as the frames of reference. These choices heavily affect accuracy and
precision of measurements, drift, latency and bandwidth, reliability and also the overall
cost of the system.

Allen, Bishop and Welch [3] give an extensive overview of viable tracking techniques
in their Siggraph Workshop “Tracking: Beyond 15 Minutes of Thought”. They classify
tracking systems by the nature of the physical medium as well as the sensor configuration.
A similar classification based on the physical principles is done by Welch and Foxlin [69].

In the following, we assess general approaches on motion capturing in the view of joint
angle measurements and kinematic model estimation of our humanoid ECCE. First, sum-
maries of the different means for tracking are given. After that, we take our specific re-
quirements of both real-time measurements of joint angles and kinematic model estima-
tion into account.

Acoustic Sensing

Acoustic transmitter and receiver pairs measure their distance, either by time-of-flight of
the signal or by acoustic phase coherence. The actual position is calculated by circle in-
tersection. For complete pose and orientation, three transmitters and three receivers are
necessary. In our limited working range, the delay of the slow speed of sound is only at
the order of a few milliseconds. However, the variance in the speed of sound depended
on temperature may easily introduce errors. Besides this complication, acoustic sensing is
of course susceptible to disturbances by ambient noise and reverberation, rendering relia-

6



1 Introduction

bility and bandwidth rather low. Some of these errors may be alleviated by coupling with
an inertial measurement unit [3].
All known commercial systems measure the time-of-flight of ultrasonic pulses [69]. Exam-
ple systems include Infusion Systems FarReach and Intersense Mark 2.
In our case, actuation of our robot is very noisy, possibly interfering with any acoustic
sensing system. We therefore expect acoustic sensing to be rather unreliable for our appli-
cation.

Inertial Sensing

Modern inertial measurement units contain three linear accelerometers and three angular
gyroscopes. They need no more gimbaled platforms and may be integrated into a single
microchip. As they purely measure accelerations, position and pose are obtained after
double integration and removal of the effect of gravity. Their main advantages are ex-
traordinary high bandwidth, low delay and robustness against ambient effects. On the
flipside, inertial measurement units suffer from substantial drift, even over very short time
scales. Even a deviation of one thousandth of gravity acceleration will sum up to a po-
sition error of several meters within a minute, rendering inertial measurement units by
themselves useless for most position measurement applications. However, sensor fusion
of high-frequency inertial measurements together with low-frequency modalities is a well
proven concept and applied in many hybrid tracking systems [69].
Integrated inertial measurement chips are readily available from Analog Devices and ST
Microelectronics. As for hybrid systems, Ascension 3D-Bird and Intersense Mark 2 include
inertial sensors besides other modalities.
Inertial measurement by itself is of course not sufficient for our application of joint angle
measurements. It may well serve as an auxiliary source for more accurate angular veloci-
ties we might consider for future versions of our motion capture system.

Magnetic Sensing

Magnetic tracking systems are based on the measurement of the local magnetic field,
which induces a current into measurement coils. The magnetic field may either be the
earth’s magnetic field, an actively generated constant field or staggered field for each axis.
The earth’s magnetic field however needs to be compensated using look-up tables and
only allows for measuring the heading, like a compass. Actively generated fields usually
consist of a repetitive sequence of three orthogonal fields. That way, the magnetic source
coils form a global coordinate system. Sensors contain three orthogonal measurement coils
and allow for computation of both position and orientation [69].
The main drawback of magnetic sensing systems is their vulnerability to ambient ferro-
magnetic and conductive material. Such material adversely affects the active magnetic
field and generates erroneous measurements when close to the sensors. Another serious
limitation is the cubic falloff of the magnetic field. The working area of most systems
is therefore limited to room size or even smaller. However, magnetic tracking systems are
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useful for many applications where ferromagnetic material is not an issue, especially when
high numbers of targets are to be tracked [69].
As magnetic tracking systems are easy to install and use, a number of commercial sys-
tems became quite popular, including Polhemus 3Space, Polhemus StarTrak and Ascen-
sion Flock of Birds [3].

Figure 1.4: Polhemus Liberty™[47]

Since magnetic tracking systems are easy to set up and can serve accurate results in the
absence of magnetic distortion, they are worth consideration for our application. The only
uncertainty lies in possible interference with the motors and metal parts of our robot.

In order to assess the practical applicability of magnetic tracking for the humanoid
ECCE, we installed a Polhemus Liberty™ motion capture system on the Eccerobot test
rig. We paid particular attention of how the strong DC motors influence tracking results.
For that, we installed three magnetic sensors on the robot’s limbs and actuated a typical
motion sequence of one minute at a sampling rate of 120 Hz. It should be noted that the
robot’s motions were rather smooth. Therefore, the high-frequency component of the mo-
tion capture data can be interpreted as noise. As a result, the magnetic sensors showed
different noise levels depending on how close they were placed to the motors and if the
motors were driven. The sensor on the torso was placed more than 80 mm away from
any metal parts. Its position data showed noise levels at 0.6 mm without and 1 to 3 mm
with motor actuation. In contrast to that, the upper arm sensor could not be placed further
than 30 mm from a motor. It showed noise levels at 1.8 mm and 3 to 6 mm during motor
operation. More importantly, its orientation data showed noise levels of up to 2.5 degrees
when motors were driven. It must be noted that these values reflect only high-frequency
noise between subsequent sampling values. Of course, there may also be a considerable
constant error, which may typically arise from the skewed magnetic field close to metal
objects.

In conclusion, we found that the Polhemus magnetic tracking device shows rather high
noise levels during the robot operations. Magnetic sensing may not be suitable for mea-
surements on our robot setup because sensors are heavily affected by our DC motors.

Mechanical Sensing

A very straightforward principle for tracking movements is mechanically connecting the
object to its environment. The physical linkage can then be measured by potentiometers
and shaft encoders. This method is of course highly dependent on the application and
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limited to the range of motions the mechanical skeleton allows. Naturally, bandwidth and
delay of the measurements are outstanding.
Popular devices employing mechanical sensors are haptic sensors by SensAble Technolo-
gies and tracked displays by Faro Technologies [69].
Mechanical sensors must of course be incorporated in the system itself and allowed for by
system design. Our robot does not feature direct angle sensors. Tendon length and strain
sensors will probably be added in future. However, we think that estimation of the kine-
matic chain is more practical to achieve by external means for motion capturing, as they
serve a global frame of reference.

Optical Sensing

Optical tracking systems consist of one ore more light sources and one or more optical
sensors. In general, optical sensing systems offer a great variety of configurations. The
system may be described with respect to the following dimensions:

• type, structure and geometric configuration of light source(s)

• properties of observed markers or other measured quantity

• type and setup of optical sensor(s)

• implicit processing or necessary steps for post-processing

As for the light source, there may be ambient light, directed light, structured light or light
emitted by the targets themselves. Structured light sources may project moving lines or
checkerboard patterns onto the target. In that way, even low contrast surfaces can correctly
be detected and properties like depth and surface structure can be estimated. Directed
light is useful together with retroreflective markers. Since these markers reflect light rays
into the source direction, only the center of the spherical marker will show the reflection
allowing the position of the marker to be estimated at great accuracy. Obviously, there
is a broad choice between light sources, may it be plain ambient light, active lighting or
structured light.

As the light may have different properties, the markers themselves may be of different
types. Marker-based optical tracking can be achieved by a wide range of different markers:

• Active optical markers emit light themselves, typically in the invisible infra-red part
of the spectrum. They may also emit staggered light pulses such that they can be
enumerated without any further processing [69, 3, 1].

• Spherical passive markers exhibit a circular shape in all projections. Their center is
straightforward to estimate. However, they alone do not give any information on
their orientation.

• Planar markers show a projective behavior that can be described by homographies
[24]. Of course, they can easily be manufactured and custom printed.
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• Barcodes and other distinctive patterns allow an efficient enumeration of the mark-
ers as well as a direct estimation of their orientation. Barcode-like markers may be
sufficient to give a 6DoF reference frame. However, resolution of orientation data
directly depends on the size of the marker.

For symmetric markers, tracking of multi-marker targets is necessary in order to obtain
orientation data at all. In that case, multiple markers are often fixed to one rigid body.
The larger the rigid body of markers, the more accurate orientation measurements can be
performed in general. This assemblage of markers is regarded as one target for tracking
and allows both position and orientation measurements.

Besides the different types of markers, one can of course leave out markers completely
and instead rely on natural image features and structures. Such a system is then referred
to as a marker-less motion capture system. Of course, this poses difficulties on the recog-
nition task and is subject to ongoing research [51]. Naturally, accuracy and robustness of
such a system is rather difficult to achieve and fundamentally limited by the visible image
structures and textures.

Due to the great variety of optical tracking systems, advantages and disadvantages can-
not be given universally. The only common property is the visibility constraint: There
must always be a light of sight between source and sensor. Besides this restriction, optical
systems greatly vary in their properties.

In the view of our application on joint angle measurements and kinematic model esti-
mation, we have to rely on systems that can permanently be attached to the robot. We
reviewed several state-of-the-art commercial motion capture systems, such as OptoTrak
by Northern Digital. The commercial systems reviewed deliver accurate position and ori-
entation data using active markers that emit staggered infra-red light pulses. However,
all reviewed optical motion capturing systems are too expensive for us, especially because
they should permanently be installed to a single robot. For these reasons, we reviewed
two passive marker-based optical tracking systems: First, we examined approaches with
planar labeled markers. One of those was the square marker tracking library ARToolkit-
Plus [53], which is designed towards augmented reality and needs rather large markers.
Second, we found that small spherical markers may permanently be attached to the robot’s
limbs. Many laboratory motion capture systems use passive retro-reflective markers with
infra-red illumination [57, 60, 46, 10]. Pintaric and Kaufmann [46] demonstrate that infra-
red retro-reflective markers allow for inexpensive construction of a motion capture system.
They state an accuracy of 0.5 mm, which is substantially better than that of the magnetic
tracking system we tested and sufficiently accurate for our application on joint angles mea-
surements.

Conclusion

After the extensive research on systems for motion capturing, we came to the conclusion
that retro-reflective optical markers offer a very cost-effective, accurate and suitable solu-
tion. Also noted earlier, we spent considerable time on experimenting with a magnetic
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tracking system. However, we found that the magnetic measurements suffer from sub-
stantial interferences with the DC motors or the metal parts of the robot.

All in all, motion capturing with retro-reflective markers serves several advantages: In
our case, we can rigidly attach multiple spherical markers directly to the robot’s limbs.
Since the accuracy of orientation measurements is proportional to the distance of the in-
volved marker balls, accuracy in orientation data is likely to be high. Several groups have
set up similar systems and report accuracies that are sufficient for our needs [46, 11].

Now that we have decided on the principle design of the motion capture system, we
will specify the requirements and the architecture in the following chapter.
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CHAPTER 2

SPECIFICATION AND ARCHITECTURE

The central objective of this thesis is to deliver real-time data of the joint poses of the
humanoid robot ECCE. This serves a number of different purposes: First, we can examine
the unknown kinematics of the robot. Second, motion data may be be compared to that
of a simulation environment. This may allow insights in the parameters of the simulation
environment. Ideally, physics-based model parameters may be obtained in a quantitative
way running real experiments. Third, real-time motion data may lay the foundation for
experiments of closed-loop robot control. Here, it must be noted again that controlling the
muscle-driven ECCE is an inherently difficult task and subject to current research [35, 48].

In the following, we lay down the specification of the motion capture system. The sub-
sequent implementation should then be tailored to our specific needs. After that, the linear
structure of the processing steps is outlined. From the image acquisition to the final out-
put of joint angles, a great number of processing steps and algorithms are involved. In
this chapter, the algorithmic foundations are stressed. The actual software implementa-
tion will be covered in the following chapters. Function definitions, software interfaces
and technical notes are not included in the main part of this work – they are found in the
Appendix.

2.1 Specification of the Motion Capture System

For now, we deal with the specification of the motion capture system. At this point, we do
not discuss the actual implementation yet. The task of defining specifications and require-
ments concentrates on the purposes and objectives of the system. Design decisions and
the actual implementation are not in the scope of this section. They will be covered in the
subsequent section.

As outlined above, our motion capture system is to serve two purposes:

• First, the static properties of the robot should be explored. This involves the motion

12



2 Specification and Architecture

capturing of the joints. However, computations may be performed off-line, as no
time limit is given. The central objective of this task is to model the kinematic chain of
the robot. The details of this application will be discussed in Chapter 5.

• Second, the motion capture system is to supply real-time data of the joint poses and
angles. This problem is substantially different from the former. In contrast to the first
goal, the delay from image acquisition to data output is to be minimized. In order to
achieve real-time performance, the algorithms must be optimized for speed. In some
points, heuristics need to be applied to fit our particular setup.

Keeping these two purposes in mind, we organize the software requirements into two cat-
egories. First, features of the software systems are summed up as functional requirements.
These requirements basically determine the features of the software. Second, we enumer-
ate the non-functional requirements. In contrast to the functional requirements, these do
not state what the software is to perform, but at what level of quality. Non-functional
requirements are also called quality requirements for that reason.

2.1.1 Functional Requirements

1. The motion capture system is to track rigid bodies that consist of a number of infrared
retro-reflective marker balls. The imagery is made available by a wide baseline stereo
camera setup.

2. A kinematic structure between rigid body coordinate systems may be defined. The
motion capture system should calculate joint angles of hinge joints and ball-and-
socket joints.

3. Software scripts for calibration tasks are to be provided. These may be designed for
off-line usage and include:

a) Stereo camera calibration

b) Rigid body (marker target) calibration

c) Model estimation of the kinematic chain

4. The motion capture part of the software (excluding the calibration routines) should
make use of multi-threading. All parallelizable tasks should be parallelized. If pos-
sible, processing steps should be distributed over all available processor cores.

5. For all output data, errors are to be estimated.

2.1.2 Non-functional Requirements

1. The overall delay from image acquisition to data output should be well below 50
milliseconds in the average case when tracking movements of the Eccerobot test rig.
Ideally, the overall delay should be under 25 milliseconds so that reliable closed-loop
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2 Specification and Architecture

control is possible. We chose these numbers in agreement with the project partners
in charge of robot simulation and control.

2. Ideally, a marker target coordinate system should be tracked up to an error of 0.5 mm
or better. For all other coordinate systems, motion tracking should be accurate up to
1 mm or better. Even though there is no exact threshold what accuracy is absolutely
needed, we know that comparable motion capture systems achieve that accuracy
and strive to achieve the same accuracy.

3. Joint angles should be estimated up to accuracy of 1 degree or better. At worst, this
translates to an end-effector position error of 6 mm.

4. As the software is designed for laboratory usage, user-friendliness is of secondary
importance.

5. The system should be documented and source code should be commented so it can
easily be maintained by others.

In the next section, software design will be discussed. As the requirements demand a
tailor-made solution, we customized the design top down. In the following, the pipeline
structure will be discussed as a whole. Then, detailed descriptions for each processing step
are given.

2.2 Architecture of the Motion Capture System

The functional and non-functional requirements lay the foundation for all design decisions
and determine the design decisions to a high degree. In order to deliver real-time motion
data, we designed and implemented a motion capture system up to the requirements given
in the previous section. Several processing steps are involved from the initial image acqui-
sition to the actual joint angle output. Each of these steps needed to be designed to our
needs. Most importantly, every step needs to be considered for parallel execution. Useful
heuristics need to be applied in order to solve the search and correspondence problems
efficiently.

The overall structure of the pipeline architecture of the system is given in Figure 2.1. As
a whole, the motion capture system is characterized as follows:

From a very broad view, our motion capture system is a pipeline structure divided into
a sequence of four processing steps. The first step comprises the image acquisition and
the identification of the 2D marker balls. Essentially, 2D positions of the marker balls are
extracted from the pixel-based image planes. As shown in Fig. 2.1, this processing step
contains the three subtasks camera image acquisition, linear thresholding and labeling of
the marker balls. All these algorithms will be described in depth in Chapter 3.

The second processing step covers the transition from 2D to 3D. More specifically, 3D
correspondences are identified between the two camera views and are then triangulated.
For both these algorithms, the camera model needs to be known.
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Figure 2.1: Overview of the Motion Capture Pipeline with Error Estimation

Third, joint poses are recovered from the 3D marker ball positions. In Figure 2.1, this
step is called rigid body search. This involves the search and assignment of rigid marker
targets in the 3D point cloud as well as the recovery of the pose.

The forth and last step comprises the reconstruction of joint angles. Joint angles of ball
joints and hinge joints may be calculated from the poses of adjacent marker targets pro-
vided that the kinematic model is available. Both the kinematic model calibration as well
as the calculation of joint angles are extensively covered in Chapter 5.
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Besides these real-time processing steps, error estimation routines are available in the
off-line components of our motion capture software. Routines not included in the real-
time implementation are shown in dashed boxes in Fig. 2.1.

Figure 2.2: Overview of the Motion Capture System installed at the Eccerobot Test Rig

The actual setup of our motion capture system is shown in Fig. 2.2. As shown in the
photograph, the Eccerobot test rig features the three coordinate systems torso, upper arm
and lower arm. Each coordinate system is defined by a marker ball assembly of 4–5 retro-
reflective balls. The camera system features a relatively wide baseline, as visible in Fig. 2.2
on the left. For details on the mechanical properties and the actuation of the robot, refer to
[27] and [26].

Now that the system architecture is outlined, we can turn to the details of the processing
steps. The next part, Chapter 3, deals with the processing steps from image acquisition
to the recovery of marker positions and orientations. Joint angle calculation will not be
discussed until the end of Chapter 5, as we first need to calibrate the marker targets and
the kinematic chain of the robot. Camera and marker calibration will first be dealt with in
Chapter 4, kinematic model fitting is covered in the first half of Chapter 5.
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CHAPTER 3

ALGORITHMS FOR MOTION CAPTURING

This chapter deals with the description of all processing steps involved from image ac-
quisition to the output of 3D positions and orientations of our motion capture system.
The principle structure of the system was already specified and outlined in the previous
chapter. Now, we discuss possible algorithms for each processing step and rationalize our
choice. All processing steps will be set forth with the necessary mathematical background.
If appropriate, we will also discuss technical implementation.

The whole chapter is arranged according to the overview in Fig. 2.1. It reflects all pro-
cessing steps from image acquisition and thresholding up to the rigid body matching and
recovery of marker target poses.

3.1 Image Acquisition and Marker Detection

The very first step of our motion capture pipeline is the acquisition of images. Our stereo
setup consists of two PointGrey Flea 2 cameras with Pentax 6 mm optics. The cameras
are equipped with daylight elimination filters that block until 750 nm and pass infra-red.
Next to each camera, there are two infra-red LED clusters with a wavelength of 880 nm.
Their light is reflected by the retro-reflective markers into each camera. The whole setup
is shown in Fig. 2.2.

In order to interface the cameras, we use a IEEE 1394b card and capture the images
with the libdc1394 [44] library. This low-level access serves three purposes: First, we can
directly control all camera settings. Most importantly, we can set a constant shutter time,
which is crucial for repeatable brightness conditions and synchronization of the cameras.
Second, we can capture both camera images at the same time. This way, we keep the jitter
between both cameras well below 1 ms without the need for an external hardware trigger.
Taking these precautions, we can reliably synchronize the cameras. This is very important,
as imperfect synchronization together with rapid motion can lead to serious artifacts in 3D
measurements. Third, we capture the images directly by polling the buffer. In contrast to
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3 Algorithms for Motion Capturing

high level interfaces, which usually queue several frames, we can thereby minimize the
time between exposure and image processing.

These three adaptations allow us to acquire images at an acceptable delay with mini-
mum jitter between the two cameras. Now, we proceed to the actual image processing
pipeline.

3.1.1 Marker Detection

Marker detection is the first processing step and directly follows the image acquisition.
It sums up the identification, segmentation and calculation of the centroids of the visual
markers in 2D. The marker detection step is crucial for an accurate 2D measurement of the
marker balls.

Figure 3.1: Typical images acquired from the stereo setup

The problem definition is as follows: We acquire grayscale images from both cameras.
As shown in the two samples in Fig. 3.1, the images show a relatively high contrast. Most
of the image area is almost black. There are only few background objects that reflect near-
infrared light. Some metal objects, especially those with a glossy surface, may show some
grayish reflections. Only the visual markers are clearly visible as bright balls. Due to the
retroreflective coating, the center of the balls show as white specularities. Their contours
are not necessarily well defined, but rather blurry. In a nutshell, the objective of the marker
detection step is to determine the centers of the visual markers taking their blurry appear-
ance into account. The detection step is then to output the 2D position data as accurate as
possible.

3.1.2 Marker Thresholding

The segmentation between foreground pixels that are part of the markers and the image
background is fairly straightforward. Thanks to the infra-red illumination, the contrast of
the image is more than sufficient. The easiest solution would be to run a binary threshold-
ing between foreground and background pixels. However, the absolute brightness of the
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markers is not always constant. When markers are very close to the camera, the distance
between the infra-red light source and the camera is not negligible anymore. Since the
retroreflective coating directs the light into the direction of its source, very close markers
do not appear as bright as expected. We could observe this effect when the markers were
closer than ≈0.5 m to the camera. Obviously, markers also appear darker when far away
from the camera. The optimal working range appears to be at a distance between 0.5–2
meters. Above this distance, markers gradually become darker again.

Besides the fact that the marker brightness is far from constant, it is very important
to consider the blurry contours of the markers. The boundaries of the segments are not
well defined. For this reason, a simple binary threshold outputs rather arbitrary contours
within the blurry boundary of the markers. The contour will be poorly defined and suffer
from noise. This is a rather important issue: Uncertainties in the marker contours can
heavily affect the 2D point detection accuracy and therefore the accuracy of the whole
motion capture system. For this reason, we decided not to employ binary thresholding.
A viable alternative is to threshold the image with a transition between background and
foreground. Ideally, background will be defined as such. Marker areas, however, should
show a crossover from background to foreground through the blurry boundary. Inside the
markers, the area should be defined as foreground. Using linear transition thresholding,
marker centroids can be determined more accurately by weighted averages. For these
reasons, we decided to employ a linear threshold function.

For linear thresholding, the choice of the lower and upper threshold parameters is cru-
cial. The lower threshold should lie inside the marker boundaries, but all background
areas must be darker. Similar to that, the upper threshold should be chosen such that it
covers just the inner part of the blurry markers. Since brightness and contrast may con-
stantly change due to the movement of the markers, these thresholds need to be updated
on-line. For that, we automatized the choice of parameters by a simple histogram calcu-
lation. As for the lower threshold, it can be said that at least 99 percent of the image area
is darker. Similarly, the brightest 1/10000 fraction of the image is for sure inside the mark-
ers. We therefore implemented a simple histogram generator that calculates the brightness
value of quantiles of the image. DefineH(q) as the brightness value of the q-quantile of the
histogram of the image. Let c be the brightness value of a pixel. Then a linear thresholding
T may easily be performed using the function

T (c) =

8><
>:

1 c ≥ thigher
c−tlower

thigher−tlower
thigher > c > tlower

0 c ≤ tlower
(3.1)

where the thresholds are set as thigher = H(0.9999) and tlower = H(0.99).
After a few experiments, we noticed that this thresholding approach outputs rather

broad contours. In order to robustify it, we chose slightly tighter linear transition win-
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dow. After a few experiments, we found that the following parametrization is practical:

thigher = 0.8 H(0.9999) + 0.2 H(0.98)

tlower = 0.2 H(0.9999) + 0.8 H(0.98)

This way, the blurry boundaries of the markers are extracted correctly over various bright-
ness conditions. The quantiles are chosen so that they pick the correct foreground and
background values for all practical numbers of marker balls (4–40) within our specified
working space (0.5–3 meters in distance).

Optimizing Marker Detection

In order to allow real-time performance, we included three important steps of optimiza-
tion: First, our histogram calculation only uses every forth image scanline. We may do
that because selecting every forth row still yields a statistically representative histogram.
This speeds up the histogram calculation by a factor of four.

Second, all calculations are performed in fixed point arithmetics. For that, 32 Bit inte-
gers are used as 24 Bit integer values with 8 Bit decimal places. This led to a substantial
speed-up without any noticeable loss in accuracy. Third and most importantly, the actual
thresholding calculation in Eq. 3.1 is not done in a separate pass over the image data. It
is rather included in the subsequent component labeling step described below. That way,
the number of passes over the image data is minimized.

3.1.3 Component Labeling

In short, the component labeling step inputs the image and the thresholds tlower and thigher.
It is to extract connected components in the image and to calculate centroid and area of
each component. As output, the component labeling step should deliver the 2D coordi-
nates of all sufficiently large components.

The task of extracting parts of the image by color, texture or other features is usually
referred to as “segmentation”. Segmentation is to merge similar neighboring regions in the
image and output their contours or other region-based properties. The subtask of merging
similar regions together and enumerating them is referred to as “connected component
labeling”, or, in short “component labeling”. The terminology is not always consistent.
Some authors call this task region labeling, region extraction or blob discovery.

There is plenty of literature on efficient detection of connected components in images.
A very early solution is that by Rosenfeld and Pfaltz [54]. They are the first to describe
the efficient computation of connected components. Modern algorithms employ several
speed-ups such as run length encoding or chain coding of contours. A readily available
implementation is the findContours function in the well known OpenCV library [6].
It outputs chain codes of the region contours. Its implementation is based on the border
following algorithm by Suzuki et al. [62]. However, it only operates on a single binary
threshold. We ran several experiments with the findContours function. As a threshold,
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we set t = 0.5 H(0.9999) + 0.5 H(0.98). However, the contours did not adequately extract
the blurry markers, which can be explained as follows: Markers close to the image borders
are usually darker. This stems from the spot light property of the infra-red light sources.
Therefore, a fixed binary threshold cannot handle the blurry appearance of the marker
balls. Besides these difficulties, the subsequent centroid computations cannot take the
grayscale values into account. It only calculates the centroid equally weighting all pixels
within the contour. We found that some extracted contours were obviously deviating from
those we would visually expect. Even worse, the centroid of some contours was shifted
away from the supposed center of the marker balls.

Considering how sensitive the 3D triangulation is to errors in the 2D point extraction,
we realized that a binary thresholding is not acceptable. For this reason, we searched for
alternatives and reviewed other connected component labeling algorithms. The closest
candidate was cvBlobsLib by Ricard Borràs [4]. It is written after a very new linear-time
chain coding algorithm by Chang et al. [7].

However, we found that our problem does not necessarily require the complete chain
coding of all regions: First, the number of foreground pixels is extraordinarily low. Most
algorithms cited above minimize the worst case complexity. However, for our problem, a
tailored solution may be even faster. Second, we do not require the exact boundaries of
the regions. It is perfectly acceptable to simplify the algorithm so that only the centroid is
calculated. Keeping these two points in mind, we designed a different component labeling
algorithm which is described in the following.

Connecting Components by Union-Find

Our own implementation is largely based on the description in Shapiro and Stockman’s
2002 textbook “Computer Vision” (pp. 69–73) [58]. The algorithm given there works as fol-
lows: The image pixels are iterated in a first pass. For each foreground pixel, a union-find
structure is created. Then, the union-find union operation is performed with all neigh-
boring foreground pixels. Finally, the largest connected components may be extracted by
find operations on all foreground pixels in a second pass over the image.

As the union-find data structure is vital for an efficient connected component search,
we will explain it in depth. The union-find data structure was first described by Galler
and Fisher [17]. It has three methods: makeset, find and union. makeset creates a
new set from a single element, in our case from a foreground pixel. It works in constant
time. union merges two union-find structures together. find outputs a unique identifier
given an element. Most importantly, find outputs the same identifier for two pixels if
and only if they have been merged earlier and are therefore in the same connected compo-
nent. Union-find structures are implemented as trees, with two important improvements.
First, in every find operation, the path to the root element is collapsed. This is called
“path compression”. Second, a union operation is performed so that the lighter tree be-
comes the child of the heavier. This improvement is called “union by rank”. With these
very simple improvements, union may be executed in constant time O(1). find is al-
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most constant and bounded by the very slowly growing inverse Ackermann function α,
therefore O(α(n)). All in all, the operations performed on a union-find data structure are
almost constant in time. Considering the practical application, it must also be noted that
not only the complexity class, but also the actual number of computational steps is quite
low. In other words, the linear factor in the above complexity class is very low. This is an
important property in order to achieve acceptable running times.

Adaptation of the Connecting Component Search

Roughly speaking, our connecting components algorithm thresholds and merges the com-
ponents in a single pass. For that, it iterates over all pixels and performs the thresholding.
If a pixel is above the lower threshold, a union-find structure is created for it and merged
with the pixels left and above from it. This a equivalent to a 4-connected component search.
While merging, brightness value sums and brightness value sums weighted by the coor-
dinates are also handled. This will later allow easy calculation of the centroid. In a second
pass, root elements of the components are found and sorted by size.

However, we made a number of improvements to this scheme in order to improve speed
and gain real-time performance.

1. We reformulated the union-find structure so that root elements may contain a null
pointer to their parent element. Originally, root elements point to themselves [17]. In
our case, we would need to initialize a pointer for each pixel, which would well take
a few milliseconds. However, with this slight adaptation, the initialization of the
union-find structures becomes substantially faster. In the first step, we may simply
allocate an empty space of union-find structures with a single calloc(num pixels

* sizeof(union find)) call. This is computationally superior to any iterative
initialization.

2. Since we iterate over the image from top to bottom and left to right, we can make
some assumptions before merging with the neighboring elements. Most importantly,
the rank of a new union-find structure cannot be higher than that of the pixels left and
above. As a consequence, the union operation can therefore be heavily streamlined.
Path compression operations and rank comparison operations can be omitted. In
a addition to that, the tree structure stays completely flat in the common case of
foreground pixels visited at one stretch.

3. Again, all calculations are performed in fixed point arithmetics. This saves consider-
able computation time over floating point operations.

4. The second pass does not need to iterate over all pixels. Since we are only interested
in extracting connected components of at least 4 × 4 pixels in size, we will always
find all connected components iterating only over every forth row. This of course
speeds up the second pass by a factor of four.
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The second pass over the image outputs a sorted list of the largest connected compo-
nents. Each component contains sums of brightness values and sums of brightness values
weighted by image coordinates. With this data, the centroid of a connected component can
easily be calculated. Let T (x, y) be the brightness value of the linearly thresholded image
T at the coordinates (x, y). Then, the centroid weighted by brightness C is given by

C =

�
Cx
Cy

�
=

� P
x,y x T (x, y) /

P
x,y T (x, y)P

x,y y T (x, y) /
P
x,y T (x, y)

�
=

�
M10 / M00

M01 / M00

�
. (3.2)

Here, the summation is performed over the area of the component. The momentsM00,M10

and M01 are those accumulated in the first pass over the image. It should be noted that the
centroid C is calculated with sub-pixel accuracy. Thanks to the weighting by brightness, it
is very robust against poor contour detection and highly varying brightness conditions. In
our experiments, we experience very low noise in the resulting 2D centroids at the order of
1/100 of a pixel. We are confident that this algorithm is well engineered towards the needs
of our application. All an all, we have implemented a tailor-made algorithm that extracts
the connected components in real-time and delivers precise 2D point data of the detected
markers.

3.2 3D Matching and Triangulation

In the previous section, we have seen how to acquire the 2D positions of the marker balls.
Now, we will turn to the transition from 2D to 3D. In stereo setups, the process of fusing
corresponding 2D points to a 3D position is referred to as 3D triangulation.

The 3D matching and triangulation steps cover the all necessary subtasks from the input
of 2D points in both images to the output of 3D world coordinates. First, 2D image coordi-
nates need to normalized. Since the 2D coordinates are given as plain image coordinates,
they first need to be transformed to undistorted camera coordinates. This subtask is called
lens undistortion. Of course, the resulting camera coordinates are only defined up to scale.
Since the measurement is taken in 2D, depth cannot be recovered. Only the direction of the
3D point is given by the normalized camera coordinates. Next, corresponding points be-
tween the left and right image need to be found. This is usually done in two steps [24]. In
the first step, a rough distance measure can be established by the epipolar geometry. Due
to the stereo setup of the camera, corresponding points must lie on corresponding epipolar
lines. Enforcing this constraint, we can sort out almost all non-correspondences by apply-
ing the fundamental matrix of the stereo setup. This step can be tuned to a low false-negative
rate and still leaves moderate numbers of false-positives. In the second step, the resulting
correspondence candidates are optimized by a 2D maximum likelihood estimator. This
step applies a slight correction on the point positions so that they perfectly fit the epipolar
constraints (given by the fundamental matrix). In the end these steps output a reasonable
number of 2D correspondence candidates.

After that, a 3D triangulation algorithm is run on all remaining correspondence candi-
dates. The 3D triangulation algorithm is to find the maximum likelihood 3D point that
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projects on the 2D point correspondence. Since the point correspondences are corrected
and perfectly fit the epipolar geometry, a simple ray matching will output the maximum-
likelihood estimate of the 3D point.

In the following, all steps of the 3D matching and triangulation are described in detail.
Special care is taken on efficient implementation in order to allow real-time performance.

3.2.1 Lens Undistortion

The first step, which precedes the actual 3D matching, is the undistortion of 2D point coordi-
nates. Every camera system suffers a number of non-linear properties, which do not allow
simple back-projection of image rays. The camera calibration will not be discussed yet, it
will be dealt with in depth in Section 4.1 on page 37. For now, we will take the camera pa-
rameters as granted. The single most important non-linear property of our camera model
is the radial lens distortion, which is defined on page 40. The radial lens distortion function
L is defined by the parameters κ2 and κ4 and transforms normalized image coordinates
[xn yn]T into distorted image coordinates [xd yd]

T as follows [24] [34]:
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In this notation, the 2D marker coordinates output by the marker detection step are
distorted coordinates. As the parameters κ are available from the camera calibration, we
can now invert the function L and calculate normalized image coordinates from the dis-
torted 2D coordinates. The most straightforward way to do so is a numerical solution by
Newton’s method. Thankfully, L is close to constant for all practical lenses. 5–10 Newton
iterations on L are therefore sufficient to obtain the correct normalized image coordinates.
For this computational step, we rely on the OpenCV [6] function cvUndistortPoints,
which features a readily available implementation of the described algorithm.

3.2.2 3D Triangulation

The 3D triangulation step leads from the normalized image coordinates to 3D camera coor-
dinates. Triangulation itself is defined as the following problem: Given two corresponding
points x and x′ in a stereo image pair and the camera projection matrices P and P ′, one
is to reconstruct the 3D point X that projects on x and x′. The properties of a two cam-
era setup can be mathematically described by the well known epipolar geometry, which is
illustrated in Fig. 3.2.

In general, the problem may be formalized as solving for X so that x = PX and
x′ = P ′X . Of course, this problem is over-parameterized. x and x′ contain four known
variables, X however has only three unknowns. For this reason, a solution can only be
established minimizing a certain error measure [24].

One method to triangulate points is the Direct Linear Transform (DLT). All coordinates
are given as homogeneous coordinates. Because of that, x = PX is only defined up
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Figure 3.2: Epipolar Geometry [23]

to scale. A viable way to linearize the expression is the cross product. We can therefore
reformulate the problem for each view to

x × PX =

2
64

x1(p3TX)− p1TX

x2(p3TX)− p2TX

x1(p2TX)− x2(p1TX)

3
75 = 0. (3.4)

Here, p are the rows of the projection matrix P . Only two of the above equations are linear.
Therefore, it is sufficient to set up a linear system with the first two rows for each view.
The system to solve is finally

AX =

2
6664
x1p

3T − p1T

x2p
3T − p2T

x′1p
′3T − p′1T

x′2p
′3T − p′2T

3
7775X = 0. (3.5)

The best fit solution of this system can easily be obtained by linear least squares minimiza-
tion under the condition that ‖X‖ = 1. This can be done by a singular value decomposi-
tion of A. Then, the minimizing X is given by the null space vector corresponding to the
smallest singular value. This solution minimizes the linear error defined by A. Hartley
and Zisserman [24] argue that the above method is not invariant to projectivities. Besides
that, it does not minimize a geometrically meaningful quantity. Taken this limitation into
account, one may ask for a maximum likelihood estimation of the 3D point X . A viable
solution for ML estimation of X is given in the following.

3.2.3 Optimal Triangulation

The problem of optimal triangulation is usually defined as a best fit in the image space for
3D triangulation. For many practical purposes, the 2D measurements in the images may
be expected to suffer from Gaussian noise. It this case, the minimization of sum of squared
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distances in the image space yields the maximum likelihood estimate of the points. This
argument will be derived in detail in Eq. 4.12 on page 45.

For the optimal triangulation, we search for an estimated point correspondence pair x̂
and x̂′. This pair is required to perfectly fit the epipolar constraints x′TFx = 0 and mini-
mize the spatial distance to the measured points x and x′. This problem may be formulated
as the constrained optimization problem

arg min
x̂,x̂′

‖x̂− x‖2 +
x̂′ − x′2 subject to x̂′TFx̂ = 0 (3.6)

There exist different methods for solving this problem. A widely adopted algorithm is the
optimal triangulation by Hartley and Sturm [22]. They were the first to give a non-iterative
solution for the maximum likelihood triangulation.

Figure 3.3: Optimal Triangulation. (Figure taken from p.12 in [23])

Hartley and Sturm reformulate the above cost function in terms of which epipolar lines
l and l′ the points estimates x̂ and x̂′ lie on. Since the estimated points are to fit the epipo-
lar constraint, their epipolar lines are exactly corresponding. Furthermore, the pencil of
corresponding epipolar lines may be parameterized by a single scalar value t. Since the
shortest spatial distances are perpendicular to the epipolar lines, the problem 3.6 may be
reformulated in terms of point-line distances:

arg min
t

d (x̂, l(t))2 + d
�
x̂′, l′(t)

�2
(3.7)

Now, the problem is reduced to solving a polynomial with a single variable. The notation
and derivation are according to [22].

First, rigid transformations are applied on the camera image coordinates so that the
measured points move to the image origin. The appropriate transformation matrices are

T =

2
64

1 −x1

1 −x2

1

3
75 and T ′ =

2
64

1 −x′1
1 −x′2

1

3
75 (3.8)
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After that, the fundamental matrixF is transformed accordingly to T ′−1FT−1. The epipoles
e and e′ in the new image coordinates may be computed from the left and right null space
of F , i.e. by a singular value decomposition of F . Since they are homogeneous points, they
first may be scaled to e1

2 + e2
2 = 1. Then, rotation matrices may be applied to map the

epipoles onto the x-axis. The appropriate rotations are

R =

2
64

e1 e2

−e2 e1

1

3
75 and R′ =

2
64

e′1 e′2
−e′2 e′1

1

3
75 . (3.9)

Because of the coordinate system transformation, F needs to be replaced by R′FRT .
Now, the minimization problem 3.6 is in a form suitable for algebraic solution. Because

of the transformations, the corresponding points are at the origin. The two epipoles have
the form e = (1, 0, f)T and e′ = (1, 0, f ′)T . As shown in [22], F has the form

F =

2
64
ff ′d −f ′c −f ′d
−fb a b

−fd c d

3
75 . (3.10)

One suitable parametrization for corresponding epipolar lines is now to define l(t) to be
the line through e and (0, t, 1)T . Then, the epipolar lines l(t) and l′(t) are given by

l(t) =

2
64
tf

1

−t

3
75 and l′(t) =

2
64
−f ′(ct+ d)

at+ b

ct+ d

3
75 . (3.11)

Now, the minimization problem in Eq. 3.7 can be rewritten as a rational function C(t).
The details involve the computation of point-line distances and are given in [22]. Most
importantly, the problem can now be minimized algebraically. Simplifying the derivative
of the rational error function C, Hartley and Sturm [22] finally find the minimizer solving
the sixth-degree polynomial

t
�
(at+ b)2 + f ′2(ct+ d)2

�2 − (ad− bc)(1 + f2t2)2(at+ b)(ct+ d) = 0. (3.12)

For that, all six roots and the asymptotic values are computed and evaluated. The min-
imizer tmin and the minimum C(tmin) are of course global. Now, the optimal epipolar
lines l and l′ can be computed. From that, the estimated correspondences x̂ and x̂′ can be
calculated as the closest points of l and l′ to the origin.

Finally, x̂ and x̂′ need to transfered back to the original image coordinate systems. This
is done by replacing x̂ by T−1RT x̂ and x̂′ by T ′−1R′T x̂′. These two corresponding points
perfectly fit the epipolar constraints. Due to this property, any triangulation on these will
find the maximum-likelihood estimated 3D point X̂ .

Figure 3.4 shows again the difference between direct triangulation and optimal triangu-
lation. On the left, a simple mid-point algorithm estimates the 3D point. However, this
solution is not the maximum-likelihood estimate. A far better solution is the described
optimal triangulation, which is illustrated on the right.
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Figure 3.4: Mid-point and optimal triangulation [29]

Implementation of the Optimal Triangulation

Even though the above deviation may seem complicated at first glance, the implemen-
tation is rather straightforward and numerically stable. The algorithm involves only a
comparably small number of operations. The only iterative step is the numerical solution
of the sixth-degree polynomial.

OpenCV [6] features an implementation of Hartley and Sturm’s optimal triangulation
with the library function cvCorrectMatches. Notably, this OpenCV function does ac-
tually not triangulate the points. It performs the above algorithm within a small number
of floating point operations. The only time-consuming step is solving the sixth-degree
polynomial in Eq. 3.12. For that, OpenCV has a built-in implementation of Kerner and
Durand’s [31] method for numerically finding the roots of a polynomial.

In sum, 3D triangulation outputs best estimates of the 3D positions of all identified
marker balls. The next step is the matching and pose recovery of the rigid marker tar-
get in the set of 3D points. As rigid constellations are to be found within a 3D point cloud,
we call this process rigid body detection, which is the title of the next section.

3.3 Rigid Body Detection

Rigid body detection is usually defined as the recovery of a rigidly transformed set of
known 3D points. Practically speaking, we have obtained a set of 3D marker coordinates
from the triangulation process. In this step, we want to identify the rigid marker targets
and then estimate their pose.

In the simplest form of the rigid body detection problem, both the original and the trans-
formed set of points are labeled, which makes the matching step redundant. This special
case is also known as the absolute orientation problem and can be solved efficiently. In our
case, neither set of points is labeled. Even worse, in both sets of points, there may be
points that do not correspond. Put differently, we want our motion capture system to han-
dle both falsely detected markers (false positives) and even the absence of markers (false
negatives). More specifically, the challenges of our matching problem are characterized as
follows. From the rigid body calibration, we know the constellation of marker balls in the
marker target M . M is a set of k 3D point coordinates, typically of 4–8 points. From the 3D
triangulation, we obtain a set of n point candidates P . Typically, n is between 20–100.
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• Both sets of points are unlabeled. As there are n!/(n − k)! possible assignments, an
extensive search is computationally impossible.

• The motion capture system should be robust against the absence of a marker ball.
If the best matching with only k − 1 or even k − 2 correspondences is significantly
better than that of k correspondences, the former is favorable.

• The observed number of 3D points n is relatively large, in the way that most points
in P do not correspond to any point in M .

All these complications call for an efficient heuristic as a solution. On the one hand, the
described matching between M and P is very similar to the largest clique problem, which
was proven NP-complete by Karp in 1972 [30]. From theoretical considerations, the rigid
body search is computationally very expensive. An extensive search is intractable, even
for practical problem sizes. On the other hand, we expect a match between M and P to
have an average geometric distance of only a few millimeters at maximum in practice. This
allows us to sort out possible candidate matchings by geometric considerations. From a
strategic perspective, we can perform a depth search of promising matches, consider their
geometric distances and cut down all branches of the search tree that already show a higher
geometric distance.

In mathematical notation, our rigid body search is the problem of finding a matching
selection of m from k points ΠM and m from n points ΠP and their rigid transformation
RT simultaneously. ΠM and ΠP are binary matrices that select and permute 3D points of
M and P , respectively. As noted earlier, they need not to select all k points, there should
rather be a compromise between the number of matches and the residual geometric dis-
tance of the transformation. This combined selection and absolute orientation problem can
be rewritten into a cost function:

arg min
ΠM ,ΠP ,RT

‖ΠPP −RTΠMM‖2
C(m)

m
(3.13)

Here, C(m) is a penalty factor for low numbers of matching points. By design, this penalty
factor leads to a compromise between the maximum number of matching points and the
best fit of the transformation RT . This is very common approach for robust estimation
and often included in the Random Sample Consensus algorithm (RANSAC) by Fischler
and Bolles [15] [24] or similar robust estimation algorithms. We define the penalty factor
C(m) as follows:

C(m) =

¨
+∞ m ≤ 3

1.5k−m else
(3.14)

The basis of 1.5 is a design parameter – the greater it is, the more likely higher numbers of
matching points are favored, as it penalizes lower number of matches.

It is obvious that Eq. 3.13 cannot be solved by evaluating all possible assignments of
Π. We therefore have to rely on heuristics. There are a number of approaches on this or
similar problems, which we will discuss in the following.
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3.3.1 Approaches to Rigid Body Matching

There have been different suggestions on how to cut down the search space and tackle the
combined matching and rigid transformation problem. In the following, we summarize
the results of our literature research. Note that the naming of the problem is not consis-
tent – it may also be called “motion and correspondence estimation”, “multi point model
fitting” or “rigid body model fitting”.

Several groups have designed similar motion capture systems that rely on markers in-
discernible from each other. Ultimately, each group faced a similar problem of simultane-
ous matching and absolute orientation. Bernd Schwald gives an extensive description of
3D tracking of unlabeled markers in his 2005 PhD thesis [57] (in German). He also gives
a short summary of the rigid body detection algorithm in [56]. The crucial point of his
algorithm is to use “distance lists” to quickly cut down the search tree. A distance list is
the matrix of mutual point-to-point distances. For practical applications, it is appropriate
to choose a maximum distance d (at the order of a few millimeters). Having the mutual
distances of the point sets M and P , they reduce the search problem to a small number of
candidates.

Steinicke et al. [60] use a similar method for rigid body detection. They also generate
a two-dimensional map of point-to-point distances. Then, they pick edge matches within
a given tolerance. Similar to the approach above, they iteratively search for a third point
correspondence. With a three-point model, they try to locate the remaining points of the
rigid body. It their 2007 paper [60], they also stress the importance of carefully designed
markers. Their main contribution is a new algorithm that optimizes the rigid body design
so that more characterizing point-to-point distances allow for easier detection.

Pintaric and Kaufmann [46] describe a very similar algorithm that also relies on point-
to-point distances for complexity reduction. After that, they apply a graph search to find
a clique within the set of candidate edges. This may yield one or a few solutions, on
which the geometric error is compared to find the best fit. A notable point of their motion
capture system is the correct handling of partially overlapping markers, possibly making
their system more robust than others. Mehling [37] describes a similar approach on the
rigid body matching.

All Schwald [57], Steinicke et al. [60], Pintaric and Kaufmann [46] and Davis [10] [9]
stress the importance of designing marker targets as distinguishable as possible. They
recommend to avoid similar point-to-point distances among the different marker targets.
That way, distinctive point-to-point distances allow for a fast and robust correspondence
search.

Another low-cost motion tracking system was developed at Postech, South Korea by
Chung et al. [8]. The system uses a setup of four low-priced cameras and retro-reflective
tapes for human motion tracking. However, their system is not made for exact recovery of
poses.

The above authors focus on the application of marker correspondence search for mo-
tion capturing. More generally, several groups have dealt with the problem of combined
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permutation and transformation estimation beyond the scope of motion capturing:
Trucco, Fusiello and Roberto [63] presented “RICP”, a robust algorithm for finding cor-

respondences in sets of 3D points that may contain some outliers. Their algorithm is based
on the iterative closest point method (ICP). In order to withstand outliers, they use a ran-
domized sampling approach that is applicable for outlier rates up to 50%. Optimization
is then based on least median squares. RICP is computationally quite complex and not
yet capable of real-time. Besides that, their method is geared towards matching of similar
point clouds. Since our outlier rate is rather high in the set of world points, we cannot
adapt their method to our needs.

Wang et al. [68] made different contributions to the general rigid body matching prob-
lem. First, they showed a closed form solution for the rigid body matching problem in
the absence of outliers and noise. Second, they presented an iterative algorithm that can
handle a large number of points and a moderate percentage of outliers. Their algorithm
is based on eigenvector decomposition and maximum weighted matching of a bipartite
graph between the two point clouds. They emphasize that the general rigid body match-
ing problem is intrinsically difficult because transformation and permutation need to be
solved at the same time. However, their algorithm is rather complex and cumbersome to
implement. Besides the complexity, we believe that the iterative usage of the eigenvec-
tor decomposition and the bipartite graph matching are computationally time-consuming.
We also expect that, extrapolating their results in [68], their algorithm can probably not
handle the case of more than 50% outliers. It must be noted, that in our motion capture
pipeline, only 4–6 matches out of 20–50 points are very normal. Wang et al.’s algorithm is
probably not designed towards this percentage of outliers.

The bottom line is that almost all motion capturing groups use point-to-point distances
to reduce the complexity of the search problem. After that, they tackle the search tree in
different ways, such as clique search [46] or successive addition of point matches [60]. We
borrow several ideas of the above algorithms, especially from [46], [60] and [56]. In the
following, our adapted algorithm for real-time rigid body matching is laid forth.

3.3.2 Rigid Body Matching Algorithm

Our rigid body matching algorithm is very close to the above noted. Essentially, it is de-
signed like a random sample consensus [15]. In addition to that, we make three important
observations that drastically improve performance and ultimately allow real-time perfor-
mance in practice:

1. We impose an upper threshold t and reject all matchings that show a higher average
geometric distance. t is derived from the specification on page 12. For our setup, it
is set to 5 millimeters, which is for sure a loose upper bound. Now, this threshold
may already be applied to edge correspondences and all further partial matchings.
We may simply prune all matchings with a higher average geometric distance than
t, as we shall see in the proof below. This drastically reduces the search space.
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2. Once we find a complete n-matching in our depth-first search, we may shrink t to
the average geometric distance of that rigid body matching. The proof below shows
that this pruning does not remove all paths to the best matching. In practical cases,
the “greedy” depth-first search quickly finds a complete matching and reduces the
threshold t to a fraction of its size.

3. Before the actual robust estimation, we generate a map of edge matches, similar to
[60, 46, 10, 9]. There are k2n2/4 possible edge correspondences. However, in practice,
only a very small number is below a certain threshold t, usually not much more than
k2, and most of these are inliers. Evidence for the sparsity of edge correspondences
is given in Fig. 3.5. We sort these edge correspondences as a priority queue and
perform the depth-first search along that queue. In practice, we almost always find
the best rigid body matching within the first 2 or 3 queue elements. We therefore
limit the queue to only 30 elements for real-time purposes. This limitation is the only
heuristic we apply in our algorithm.

Figure 3.5: Typical similarity between known rigid body edges (rows) and measured edges
(columns) up to 10 mm (top) and 1 mm (bottom)

Lemma. For each rigid body matching Π of n correspondences, there is a path of subset
matchings from 2 correspondences (edges) down to n on a path of non-decreasing average
geometric distance. Likewise, when we find an n-matching Π with an average geometric
distance d, we may prune all branches in the search tree that have an average geometric
distance greater than d. If there exists a better n-matching, there will still be a branch left
in the search tree that leads to that better matching.

Proof. By construction. Let Π be a rigid body matching of n correspondences and an
average geometric distance d. Now, each point of that matching contributes to the total
geometric distance nd. We can therefore remove the worst point with the highest geometric
distance, which is not lower than d. We then obtain an n − 1-matching with an average
geometric distance less or equal d. By induction, this leads to a non-decreasing path from
a 2-matching down to the n-matching. Pruning all knots with greater average geometric
distance will therefore leave at least one path to Π and all better n-matchings.

32



3 Algorithms for Motion Capturing

Implementation

Considering the three pruning and thresholding steps given above, our actual implemen-
tation is very straightforward. In a first run, we iterate over all edge combinations between
P×P andM×M and insert them into a priority queue ordered by their geometric distance.
After that, the actual robust estimation is performed in a RANSAC-like fashion. In contrast
to the usual RANSAC, there is no termination criterion on the residual distance, but rather
a fixed number of iterations is performed. This limitation of iterations is the only heuristic
in our algorithm. Incomplete matchings are weighted by the penalty function C(n)/n as
described earlier. In every recursive step, the matching is checked against the threshold
t. In practice, this leaves very few evaluations in the initially exponential search space.
For 2-matchings, which are edge correspondences, only the average geometric distance
is computed. From 3-matchings on, we completely evaluate the rigid transformation RT
from the model ΠMM to the observed points of the candidate matching ΠPP . This rigid
transformation is computed by the well-established solution by Umeyama [65], which is
described below. The rigid transformation allows us then to find inliers very efficiently.
Inliers are then recursively added to the model Π. Finally, the rigid transformation RT

and the permutation Π of the best matching are output.
In the following, the evaluation of the rigid transformation from ΠMM to ΠPP is de-

rived. This sub-function is called in each recursion of the rigid body search.

3.3.3 Rigid Transformation between ordered Sets of Points

Finding the best-fit rigid transformation between two enumerated sets of 3D points is a
well studied problem. It is also known as the “Rigid Body Movement Problem” or the
“Absolute Orientation Problem”. Given two corresponding sets of points x := ΠMM and
y := ΠPP with n points each, the best fit rigid transformation RT is to be found. The
transformation RT consists of a rotation matrix R and a translation vector t. As an error
measure, we choose the sum of squared differences. This error norm is geometrically
meaningful and even the maximum-likelihood estimator (MLE) in the common case of
independent Gaussian noise. The problem then becomes a least squares fitting of two
point sets. The problem formulation is then

arg min
RT

nX
i=1

‖yi −RTxi‖2 = arg min
RT

‖y −RTx‖F (3.15)

= arg min
R,t

‖y −Rx− t‖F (3.16)

where F denotes the Frobenius norm, the sum of squared matrix elements. The optimiza-
tion is subject to the constraint that R is a proper rotation matrix, i.e. det(R) = 1.
Arun, Huang and Blostein [2] studied this problem and gave an exact closed form solution
in 1987. Their method does not need any iterative steps, the actual optimization is done by
an appropriate singular value decomposition. However, Umeyama [65] showed in 1991
that Arun et al.’s solution sometimes fails to give a correct rotation matrix but a reflection
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instead. Umeyama introduced an additional check of the determinant and therefore gives
a correct solution in all cases, even when the data is severely corrupted. In the following,
Umeyama’s algorithm is used as described in [65].
The error norm in Equation 3.16 is written in terms the rotation matrix R and translation
vector t. This expression can be simplified by appropriate scaling so that the centroids of
x and y match the origin. Calculating the centroids x̄ = 1

n

Pn
i=1 xi and ȳ = 1

n

Pn
i=1 yi we

may obtain scaled x′ and y′.

x′ = [x1 − x̄, ..., xn − x̄] , y′ = [y1 − ȳ, ..., yn − ȳ]

The scaled problem then becomes an orthogonal Procrustes problem

arg min
R

y′ −Rx′F (3.17)

and can be solved using the singular value decomposition of the matrix y′Tx′. Calculating

USV T = svd(y′Tx′) (3.18)

the rotation matrix approximation is given by

R = U diag(1, 1,det(UV T )) V T . (3.19)

The translation vector may easily be calculated after undoing scaling:

t = ȳ −Rx̄ (3.20)

Finally, the best-fit rigid transformation RT is output as [R t].
The main advantage of this algorithm is computational speed. Iterative optimization

solutions have been known for a long time. However, Arun et al. [2] have shown that the
method above outperforms other methods in terms of speed. In our application, 3D-to-3D
matching is a crucial step in the motion capture process.

In our rigid body matching algorithm, the above computation is called in every RANSAC
recursion that has 3 or more correspondences. Therefore, the efficiency of the closed-form
solution is very important for the overall latency of the motion capture system. For these
reason, we chose Umeyama’s method given by the steps above. The actual implementa-
tion and software interface of the algorithm is described in the appendix on page 84.

Summary

In sum, we have given a useful solution and software implementation for the rigid body
movement problem. This method is not only used in for the actual rigid body match-
ing, but also later in the joint angle estimation steps throughout the course of the motion
capture process.

Our algorithm for rigid body matching and the efficient recovery of marker target poses
borrows several features from earlier approaches. We combined these ideas to a RANSAC-
like algorithm and scrutinized three important improvements that substantially prune the
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search tree. All in all, we think that our rigid body matching algorithm is designed above
the specified expectations and is a particular well thought out step in the processing steps
of our motion capture system. This chapter closes with the recovery of 3D poses. In the
next chapter, we will turn to the calibration of the camera system and the marker targets.
After that, we will return to our motion capture pipeline and discuss the processing steps
from 3D poses to joint angles.

35



CHAPTER 4

CALIBRATION

This chapter deals with the calibration of the motion capture system. As we shall see, the
overall accuracy of the motion capturing results are highly dependent on the accuracy of
the calibration. In our understanding, calibration is defined as the estimation of all static
parameters of a model in order to allow later measurements of dynamic values. From a
very broad kind of view, a calibration routine generally exhibits the following properties:

• Measurements for the static parameter estimation (calibration) are taken within the
same system that is used for later dynamic measurements. Calibration is essentially
a model fitting procedure for the static parameters.

• As calibration is a model fitting procedure, the sheer number of measurements may
improve the calibration results. The more measurements are taken, the more precise
calibration becomes in general.

In this chapter, we will cover all static model parameters that are used up to the joint
pose estimation step. For joint angle measurements, the kinematics of the robot first need
to be understood. For that reason, calibration steps for joint angle measurements are not
covered here – they will be discussed within the kinematic model estimation in the course
of the next chapter. Here, we will restrain ourselves to camera calibration and the calibra-
tion of the marker targets, as these two sets of parameters are sufficient the recovery of
joint poses. In terms of the overview Fig. 2.1 of the whole motion capture system shown
on page 15, we consider the calibration of camera parameters and rigid body parameters.
The kinematic model will be derived and calibrated in the subsequent Chapter 5.

In the first section, we will specify the requirements for an accurate camera calibration
procedure. We outline the camera model suitable for describing the optical properties of
our cameras. Then, we mathematically derive a state-of-the-art stereo camera calibration
routine. Practical results and estimation errors are also given.

In the second section, we develop the calibration routines for the rigid body tracking
targets. In our understanding, a rigid body denotes a fixed constellation of multiple marker
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balls. These are used as tracking targets for pose estimation. Usually, the number of mark-
ers is between 4–8, as any number greater than 3 makes the pose estimation problem over-
determined and more robust. The rigid body calibration performs the initial estimation
of the set of 3D points of a rigid body. It is crucial to achieve a proper calibration and an
accurate estimation, as all future measurements rely on the rigid body parameters. Ulti-
mately, the accuracy of all output data of the motion capture system is highly dependent
on the accuracy of the rigid bodies. Therefore, the rigid body calibration routine will be
discussed in depth. Errors will also be estimated.

4.1 Calibration of the Stereo Rig

The stereo camera setup is to deliver accurate 3D point coordinates of the observed mark-
ers. The accuracy of 3D measurements is mainly influenced by the following:

• Accuracy of the 2D feature segmentation, which is of course depended on camera
resolution, image noise and lightning.

• Relation between object distance and the baseline between the two cameras: As
depth information is proportional to the camera baseline, a sufficient distance be-
tween the two cameras is crucial.

• Accuracy of the parameters of the stereo camera setup: The stereo camera setup
needs to be calibrated accurately. Even though we use high-end cameras, we can
still experience a substantial distortion. Besides these optical aberrations, the stereo
rig also needs to be calibrated in order to obtain the camera matrices and the trans-
formation between the two camera coordinate systems.

The following section deals with the general mathematical properties and the calibration
of the camera setup.

4.1.1 Camera Model

From a very general point of view, a camera is a device that maps the brightness of incom-
ing light rays to a two dimensional array of pixel values. For many applications, every
incoming light ray stems from a sole point in 3D on an observed object. We may assume
that there are no transparent objects in the view. Beyond that, it is useful to neglect the
optical properties of the camera lens. Instead, the camera is modeled by a pinhole camera
model [24, 58].

The pinhole camera model is a very good model of common cameras with a single lens
and a planar image sensor. An overview of the pinhole camera model is shown in Figure
4.1. In the following, we consider the mapping of a world point onto the image coordi-
nate frame. The notation is similar to that by Hartley and Zisserman [24]. In general, a
world point X in 3D space may be described by three world coordinates x, y and z. This
inhomogeneous 3-vector is sufficient. The rigid transformation from the world coordinate
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frame to the camera coordinate frame can be described by a 3-by-3 rotation matrix R and a
translation 3-vector t. Mapping the world point X onto the camera coordinate frame then
leads to the following relation:

X 7→ R X + t = Xc (4.1)

Xc is the same point in the camera coordinate system. However, in homogeneous coordi-
nates, the rigid transformation may be expressed by a single matrix multiplication. Written
in homogeneous coordinates, the world point X is given by the 4-vector [x y z 1]T . This
notation is useful as it leads to simpler expressions. The rigid transformation from world
coordinates to camera coordinates then becomes

X 7→
�
R t

0T 1

�
X = Xc. (4.2)

This rigid transformation covers all unknowns that are not given by the optical properties
of the camera. They are also called extrinsic camera parameters. The rigid transformation
obviously has six degrees of freedom. The 3-by-3 rotation matrix R may also be written
in an axis-angle notation such as Rodrigues angles. The extrinsic camera parameters then
become a set of six independent scalars. It should be noted that some authors defineR and
t as the pose of the camera in space. This is exactly the opposite of the definition above.
We however find it more convenient to define the world coordinate system with respect to
the camera. In the case of two cameras we further define world coordinates to be equal to
the left camera coordinates. The mapping from world coordinates to camera coordinates
then becomes the identity matrix for the left camera and a rigid transformation [R t] for
the right camera.

Figure 4.1: Geometry of the basic pinhole camera. [24] [58]

Camera coordinates are still 3D points in the reference frame of the optical center of
the camera. The axis perpendicular to the image plane, also called principal axis is de-
fined as the z-axis. Now, the 3-dimensional camera coordinates are projected onto the
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2-dimensional image plane. First, depth information is lost due to the central projection.
Camera coordinates [x y z 1]T are mapped to the so-called normalized coordinates as follows:

Xc = [x y z 1]T 7→ [x/z y/z 1]T =

2
64

1 0

1 0

1 0

3
75Xc = xn (4.3)

Finally, these normalized coordinates are mapped to coordinates on the image plane. In
the most common CCD cameras, pixels are square or rectangular shaped. First, normal-
ized image coordinates are scaled by the focal length in pixels. These scale factors are given
by fx in the direction of the x-axis and fy along the y-axis. For most cameras, both values
are close to be equal. Second, the normalized coordinates are shifted by the distance of
the image sensor origin to the principal axis, also known as the principal point. This shift is
given in cx pixels along the x-axis and cy pixels along the y-axis. In most cameras, the prin-
cipal point is close to the center of the image sensor. In terms of normalized coordinates
xn, the mapping on pixel coordinates x is given by a linear mapping. The involved matrix
is called camera calibration matrix and usually referred to asK. It contains all optical camera
parameters, also known as the intrinsic camera parameters. The mapping from normalized
coordinates to image coordinates is then written

xn =

2
64
x

y

1

3
75 7→

2
64
fx x+ cx
fy y + cy

1

3
75 =

2
64
fx cx

fy cy
1

3
75

| {z }
K

xn = K xn = x. (4.4)

Together with Eq. 4.2 and Eq. 4.3 the projection of a world point X onto the image sensor
is written compactly as

X 7→

2
64
fx cx

fy cy
1

3
75
2
64

1 0

1 0

1 0

3
75
�
R t

0T 1

�
X

= K [I 0]

�
R t

0T 1

�
X

= K [R t]X (4.5)

= P X = x (4.6)

Obviously, intrinsic and extrinsic parameters can be combined to a single matrix P . P is a
3-by-4 matrix encoding all intrinsic and extrinsic camera parameters and referred to as the
camera projection matrix. It must be taken into account that x is a homogeneous vector. In
order to obtain the pixel coordinates, x must be scaled so that its last entry is 1.

The pinhole camera model is most often augmented by a radial distortion term. Up to
now, all relationships are purely linear. The underlying assumption of the pinhole model
is that all world points and their image points span a line through the optical center of the

39



4 Calibration

camera. However, this assumption does not hold for real optical lenses. Optical lenses suf-
fer different deviations from the pinhole model. For almost all practical applications, the
radial distortion is the single most important optical aberration [24]. Radial distortion can
easily be modeled as a fourth- or sixth-degree polynomial of the distance to the principal
axis. Since the distance to the principal axis is given by r =

È
x2
n + y2

n, the camera pro-
jection formula then becomes non-linear. For most cases, it is perfectly adequate to model
radial distortion by a forth-order polynomial L(r):�

xn
yn

�
7→ L(r)

�
xn
yn

�
=
�
1 + κ2r

2 + κ4r
4
� � xn

yn

�
=

�
xd
yd

�
(4.7)

Deviating from the above derivation of the pinhole central projection, the radial distortion
function L is applied to the normalized camera coordinates. It is further important to
normalize the homogeneous coordinates before the distortion so that the homogeneous
component is 1. In practical experience, optics with small focal lengths are more prone to
suffer substantial radial distortion. In our case, the focal length of only 6 mm requires a
forth-order radial distortion model. We also experimented with a joint radial-tangential
distortion model, but the additional parameters did not show any improvement. Under
the consideration to keep the camera model as simple as possible, we chose a purely radial
distortion model.

It should be noted that the inversion of the distortion function L has no simple closed-
form expression. For our motion capture application, accurate measurement of 3D points
in space is the most important influencing factor for the overall accuracy of the system.
Since we can only measure the projections of the point in our cameras, we need to perform
an accurate stereo triangulation to recover depth. For that, the distortion function needs
to be inverted. A very common approach to solve L−1(y) = x is to minimize ‖L(x)− y‖2

with a few Newton iterations. Since L is very close to constant for real world lenses, 5 or
10 iterations are sufficient to invert L and calculate the undistorted camera coordinates up
to machine precision [5].

All in all, the pinhole camera model augmented with a radial distortion term is a very
adequate model for many camera setups [24]. It is a good trade-off between the number of
parameters and its accuracy to describe the optical properties of camera systems. Adding
more parameters further complicates the calibration process and does not improve the
residual error of the camera calibration. Leaving parameters out, for instance the distortion
term, leads to heavily degraded calibration results.

4.1.2 Stereo Camera Calibration

In order to allow accurate 3D triangulation, we need to perform a stereo camera calibra-
tion. There are different well-established routines how to calibrate a stereo camera system.
Most methods need a calibration pattern with known dimensions visible in a number of
images. Since the late nineties, camera calibration methods are known that require only
planar calibration patterns. Zhengyou Zhang [70] proposed such a plane-based calibra-
tion method at ICCV 1999. Of course, planar patterns can easily be manufactured with an
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ordinary office printer at great accuracy. Before that, camera calibration patterns needed
to be precisely machined and were very expensive.

Stereo Camera Calibration Software

Based on Tsai’s general approach on camera calibration [64] and Zhang’s planar-based
calibration [70], there exist several software packages for interactive or semi-automatic
camera calibration. Bouguet [5] published the well known “Camera Calibration Toolbox”
for Matlab as well as the respective C++ implementation within the OpenCV project. These
functions have been used for a wide variety of computer vision applications. The Matlab
functions are well documented, easy to adapt and have been maintained for almost 10
years. The routine is almost automatic. However, corners of the calibration patterns need
to be labeled by hand. Strobl et al. [61] developed the “DLR Camera Calibration Toolbox”.
The latter is fully automatic and allows parts of the calibration pattern to be outside of the
image boundaries. Both of these camera calibration routines use chessboard-like patterns.

A completely different approach is the self-calibration of stereo setups. Schmidt [55]
gives in extensive overview on self-calibration of stereo camera setups for augmented re-
ality tasks in his 2006 doctoral thesis. His typical camera setup is somewhat similar to
our motion capture setup as he aims to obtain rigid body poses in real-time. However, his
aim is to calibrate the camera setup without or with little knowledge about the parameters.
Our objective is rather to calibrate the cameras with all given knowledge up to a maximum
of accuracy and further to estimate errors and error propagation.

Since our central objective is to obtain motion data and joint angles of a humanoid robot
in real-time, we focus on a calibration as accurate as possible. For this reason, we fa-
vor a conventional camera calibration routine. Considering the necessary real-time imple-
mentation of stereo correspondence matching and 3D triangulation, we chose Bouguet’s
calibration routine. It is both available for interactive use in Matlab as in a fast C++ imple-
mentation. First, we can observe every step during the camera parameter estimation and
estimate uncertainties. Second, we can later use the compatible 3D triangulation routines
available in the OpenCV package within our 3D triangulation processing step.

4.1.3 Stereo Calibration Routine

The actual camera calibration starts with the manufacture of a pattern and acquiring im-
ages of it in different poses. For that, we prepared a checkerboard calibration pattern with
known square sizes. The calibration pattern is then captured in various poses in space.
In order to gain accurate results within the whole working space, the calibration pattern
was held at different angles and distances within the common field of view of the stereo
rig. As described by Bouguet et al. [5], it is important to utilize the whole working space
and capture the calibration pattern in 10–20 poses within the visible range. We adjusted
illumination and shutter times so that motion blur was well below the visible range.

The stereo camera parameter estimation consists of two steps. First, each camera is cali-
brated independently. For that, both intrinsic camera parameters and extrinsic parameters
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are estimated. Intrinsic parameters are set of six constants per camera. In contrast to that,
extrinsic parameters reflect the poses of the calibration pattern within set of images. For
this reason, there are six unknowns per frame. Since the chessboard pattern shows 100

corner features in each image, we have 200 known measurement values per frame. For a
single camera, on the contrary, the intrinsic parameters f , c and κ are to be solved. The
extrinsic parameters RT are to be solved for each of the n frames.

Single Camera Calibration

Let i be the index over the set of frames and j be the index over the set ofm corner features
X . The measured projections of each corner feature for each image is given by x. Then,
the camera calibration objective function for a single camera reads

arg min
f,c,κ,RT

nX
i=1

mX
j=1


2
64
fx cx

fy cy
1

3
75 Lκ(r) RTi Xj − xij


2

. (4.8)

During the first step of the camera calibration, this objective function is minimized for each
camera. Bouguet’s routine [5] uses a the Gauss-Newton method to solve this non-linear
least squares problem. It usually converges after 20–30 iterations.

Stereo Camera Calibration

In the second step, both cameras are jointly calibrated. For accurate 3D triangulation, it is
of greatest importance to know the precise rigid transformation between the two optical
centers of the cameras. The best practice solution is therefore to run a stereo camera cali-
bration in order to obtain the optimal R and t parameters. R and t are defined as the rigid
transformation parameters to be applied to right camera coordinates in order to obtain
left camera coordinates. Let f ′, c′, κ′ and x′ be defined as above but for the right cam-
era. Now, Bouguet [5] offers a bundle-adjustment routine that optimizes both the static
parameters and the dynamic parameters. The static parameters contain the instrinsics of
both cameras as well as the transformation between the camera coordinate systems. The
dynamic parameters include the poses of the calibration pattern visible in both cameras
for each frame. In comparison to the objective function in Eq. 4.8, the bundle-adjustment
has only six unknowns per frame. Compared to that, the two independent single cam-
era calibrations solve for twelve unknown extrinsics per frame. Besides that, measured
data used stays exactly the same. Therefore, the optimization problem as a whole is better
conditioned.

During the bundle-adjustment for stereo camera calibration, the following error function
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is minimized:

arg min
f,c,κ,f ′,c′,κ′,R,t,RT

nX
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mX
j=1
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(4.9)

4.1.4 Error Consideration of the Stereo Camera Calibration

One can argue for several reasons what cost function is minimized in Eq. 4.9. First, the
quantity that is minimized should ideally have a geometric meaning. As Hartley and Zis-
serman [24] point out, purely algebraic cost functions may lead to unexpected results. The
minimization may or may not deliver useful parameter estimations. It further may suffer
from badly normalized values since the estimation may not be the maximum-likelihood
estimation. Second, it is highly favorable to formulate the optimization problem in such a
way that it performs a maximum-likelihood estimation for a specific noise model.

It may seem superfluous and pedantic to prove the maximum-likelihood property of
the stereo camera calibration routine at first glance. However, in the course of this thesis,
we will use a number of optimization processes that minimize sum-of-squared-differences
errors in 2D or 3D. In the following, we will prove the maximum-likelihood (ML) property
for the stereo camera calibration routine. Once this is established, the proof for the other
parameter estimation problems is fairly analogous. At this point, the proof is given in great
detail–in later sections, it will be referred upon this.

Error Model

X̄true position

measurement error

yy

estimation error

%%
Xmeasured position

residual error // X̂estimated position

Figure 4.2: Relationships between different types of errors

In the following, we will distinguish between three types of errors as shown in Fig. 4.2.
This is also reflected in the notation of variables. Usual variables such as X denote mea-
sured values. A true variable, which is usually neither known nor measurable, is denoted
with a bar X̄ . The difference between the true and the measured is called measurement
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error. Usually, the measurement error is expected to follow a specific noise model. Further-
more, variable estimates are marked with a hat X̂ . The residual error between estimated
and measured variables is to be minimized by the estimation algorithm. This is of course
to a achieve an estimation error as small as possible. Since the true position is not known,
the estimation error can only be estimated with the help of the noise model.

In consideration of the first point, we regard the geometric interpretation of the cost
function in Eq. 4.9. The error function is the sum of squared differences between all esti-
mated projections of the points and the visually detected corners of the calibration grid.
These residuals are measured in pixels. The average of the residual values is also called
the average reprojection error. In sum, the overall cost conforms the overall geometric dis-
tances between the estimated and the visually measured points. We can therefore observe
that the residuals of the camera calibration routine above are geometrically meaningful.

Statistical Consideration of the Error Function

Now, we consider the statistical meaning of the cost function. Ideally, the calibration rou-
tine should output the optimal estimate of the camera parameters for a specific noise model
in the measurements. For that, we first need to make assumptions on the precision of the
measurements. The only measured quantities are the detected corner features. A common
assumption is that the corner detector outputs the 2D coordinates of the true corners plus a
Gaussian noise with a standard deviation of σ. It is further reasonable to assume the noise
in each measured corner is independent and that the camera model can perfectly describe
the optical properties of the cameras. As for all other input data, we may assume that the
calibration pattern is perfectly manufactured and its dimensions are known exactly.

Assuming Gaussian noise and statistical independence between the two dimensions,
the probability density function (PDF) of a single 2D point measurement x with as true
location x̄ is given by

Pr(x) =
�

1

2πσ2

�
e−‖x−x̄‖

2/(2σ2). (4.10)

Note that ‖x− x̄‖2 may be viewed as the squared distance, which reduces the distribution
to one dimension.

Now, we consider the probability density function for all measured quantities in the
stereo camera calibration. Since the measurements are assumed to be independent, we
can simply multiply all probabilities. As above, xij and x′ij are the measured 2D points
of the corner feature j in the ith frame for each camera view. Let P and P ′ be the set of
camera parameters of each camera and P (Xj) and P ′(Xj) the estimated projections of the
j true calibration grid coordinates Xj . Then, the overall probability density function of all
measurements is

Pr
�
{xij}, {x′ij}|P, P ′, RTi

�
=
Y
i

Y
j

�
1

2πσ2

�
e
−
�
‖xij−P (RTi Xj)‖2+‖x′ij−P ′(RTi Xj)‖2

�
/(2σ2)

.

(4.11)

44



4 Calibration

For the ease of computations, we define the estimated 2D points as x̂ij = P (RTiXj) and
x̂′ij = P ′(RTiXj). The logarithmic likelihood of all measurements in the stereo camera
calibration is therefore

log Pr
�
{xij}, {x′ij}|P, P ′, RTi

�
= −

�
1

2σ2

�X
i

X
j

‖xij − x̂ij‖2 +
x′ij − x̂′ij2

+ c (4.12)

plus a constant value c. The maximum likelihood estimator (MLE) is defined as the maxi-
mizer the logarithmic likelihood. Obviously, the logarithmic likelihood in Eq. 4.12 is max-
imized if and only if the sum of squared differences between the measured points x and
the estimated points x̂ is minimized. Therefore, the maximum-likelihood estimation is
identical to the minimization of objective function 4.9.

As a result, under the assumption of Gaussian noise in the projected corner detection
routine and an otherwise perfect setup, stereo camera calibration by minimization of the
reprojection error is equal to a maximum-likelihood estimation of the camera parameters.

Back-of-the-envelope Estimation of the Calibration Error

Considering the accuracy of the stereo camera calibration, estimation errors can mainly
arise from two sources: First, the corner detection always has a limited accuracy. Bouguet
[5] states that the precision of their corner detection algorithm is under 0.1 pixels. Natu-
rally, this poses a limit on the overall accuracy of the calibration. Most importantly, the
reprojection error is usually at the same order of magnitude. It can therefore be assumed
that corner detection is a bottleneck for the accuracy of the camera calibration.

Second, the camera model makes some assumptions that do not hold perfectly in prac-
tice. The most important assumption is that the calibration pattern is a perfectly planar
body. However, it is not unlikely that the chessboard calibration pattern is slightly curved.
We found that in our case, a spatial deviation perpendicular to the plane of 1 mm leads
to a projected error between 0.1–0.5 pixels depending of the pose of the plane. Therefore,
imprecisions in the manufacture of the calibration pattern are easily in the same order of
magnitude as the residual error. It can be summed up that even in a carefully performed
camera calibration, both physical imprecisions and limitations of the corner detection pose
a boundary on the camera calibration that is most probably at the order of one tenth of
pixel.

All in all, the stereo camera calibration solves for all the necessary camera parameters
used in the motion capturing process.

Results of th Stereo Camera Calibration Procedure

For an accurate estimate of the camera parameters, we performed a stereo calibration with
13 images of the calibration grid in several poses. The calculations were done as described
above. First, cameras were calibrated independently. In the single camera calibration, the
left camera could be calibrated up to a residual reprojection error of [0.0528 0.0641]T px.
For the right camera, the residual reprojection error was [0.0611 0.0722]T px. This is a very
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Left camera Right camera
Intrinsic parameters
Focal Length fx 832.79± 0.37 836.32± 0.38

fy 833.76± 0.38 836.27± 0.39

Principal Point cx 316.69± 1.44 318.77± 1.51

cy 240.22± 0.66 257.80± 0.73

Radial Distortion κ2, κ4 1−(0.236±0.003)r2+(0.304±
0.018)r4

1−(0.223±0.003)r2+(0.201±
0.016)r4

Extrinsic parameters
Rotation R [0.021 0.227 −0.013] rad

‖R‖ 13.09± 0.105◦

Translation t [−474.36 −1.49 51.03]mm

‖t‖ 477.10± 0.79 mm

Residual error
Reprojection Error errorx 0.052 px 0.061 px

errory 0.064 px 0.072 px

Table 4.1: Camera Parameters of our Motion Capture System

good result, as the residual error is at the order of the corner extraction error. The model
perfectly explains the camera physics up to the accuracy of the corner measurements.

Second, we ran the stereo calibration routine. The results of the estimated camera pa-
rameters and uncertainties are shown in Table 4.1. Note that the rotation R is given in
Rodrigues angles. The 3-vector points in the direction of the axis of rotation. Its magni-
tude gives the rotation angle in radians, ‖R‖ shows the rotation angle again in degrees. It
should be noted that, in contrast to the well known Matlab Camera Calibration Toolbox,
the estimation errors were given as the actual standard deviations (and not as 3σ confi-
dence intervals). As a result, we achieved an accurate camera calibration. Together with
the wide baseline stereo setup, this lays the foundation for an accurate 3D triangulation for
motion capturing. Of course, the stereo camera calibration only estimates the parameters
that allow the reconstruction of 3D points. Naturally, the next step is to calibrate marker tar-
gets. As our markers targets are made of multiple marker balls and form a rigid structure,
we call this step rigid body calibration. The rigid body calibration is discussed and carried
out in the following section.

4.2 Rigid Body Calibration

As noted earlier, we characterize rigid body calibration as the accurate estimation of the set
of 3D points of a rigid body. The rigid body points are given by the set of 3D positions of
the marker balls which are fixed together. Thanks to the camera calibration in the previous
section, we can now recover 3D points at great accuracy.
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At first glance, one may argue that all necessary data are given by a single frame capture.
However, this is not sufficient in practice. As the accuracy of the rigid body calibration
heavily affects the overall accuracy of the motion capture system, we took special care to
achieve measurements of the 3D marker positions as accurate as possible. From that, the
rigid body points can be estimated at great precision. In order to achieve good accuracy,
certain precautions were taken:

• Most importantly, measurements of the marker positions may be taken at a great
number. Underlying a Gaussian noise model in the 3D point estimation, accuracy
may substantially be improved by increasing the number of measurements. We usu-
ally take at least 10 measurements, which is obviously a great improvement over
taking just a single measurement. It is not clear, however, if much more than 10 mea-
surements can improve practical results at all. A possible explanation would be that
the relation between unknown parameters and measurement parameters (which is
6n+3k−6

3kn ) quickly converges to the constant number 6/3k, where k is the number of
marker balls of the rigid body and n the number of measurements. Consequently,
additional measurements hardly improve the condition of the problem.

• Measurements should be taken from substantially different perspectives. This may
easily be justified by the fact that 3D triangulation features great accuracy in the di-
mensions parallel to the image plane. In z-direction, however, accuracy is typically
reduced. This stems from the acute-angled triangle between the world point and the
cameras. In order to overcome this imprecision, it is useful to take measurements
from a variety of different viewing angles. Besides the reason already noted, mul-
tiple measurements from different angles also help alleviate the effect of systematic
errors. Errors that arise from imperfect camera calibration or other non-Gaussian
aberrations may in part be compensated.

• Measurements should be taken in the area of highest accuracy. The accuracy of 3D
triangulation is far from being uniform over the whole working range. Usually, best
results are achieved rather close to the camera with the object visible close to the
image center. Any motion or shaking should be avoided in order to minimize motion
blur.

With these points in mind, measurements can easily be obtained at an adequate accuracy.
We could easily calibrate rigid body targets up to an accuracy of one tenth of a millimeter.

4.2.1 Rigid Body Optimization

The optimal rigid body points can again be obtained by a model fitting process. The 3D
measurements Pi are given a number of frame captures. Note that the points must be
ordered correctly over the number of frames. Unless there is no natural ordering, an ar-
bitrary ordering may be chosen from the first frame. However, for all subsequent frames,
points must be given in correct order. The ordering must therefore be reconstructed by
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a correspondence search of matching points between the first frame and all subsequent
frames. The search algorithm is the same as that given in Section 3.3. Since our rigid
body correspondence search is robust against a great number of outliers, all but the first
frame may contain outliers and artifact 3D correspondences. If a correspondence cannot
be found at great precision, the respective frame should be dropped and not included in
the rigid body optimization.

Once the 3D measurements are ordered, the optimization is very straightforward. Its
objective is to minimize the spatial distances between measured points Pi and modeled
points Ti M . The optimization function is therefore

arg min
M, Ti

X
i

‖Pi − Ti M‖2 (4.13)

For practical implementation, it is not necessary to perform a joint optimization process
over both parameter sets. Since the optimal Ti may efficiently be calculated by the proce-
dure described in Section 3.3.3, we reformulated the optimization only in terms of the rigid
body model M . Ti are then recalculated in every iteration. As a good initial estimate, M
may simply be taken from the first frame P1. With this initialization, only few optimization
steps are necessary. The typical convergence of a rigid body calibration is shown in Figure
4.3.
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Figure 4.3: Typical Convergence of the Rigid Body Calibration

Normalization of a Rigid Body

The optimization problem above is clearly over-parameterized: A constellation of ordered
3D points M is only defined up to a rigid transformation T . Any set T M describes the
same constellation of points and therefore the same rigid body target for motion tracking.

Resolving this over-parameterization has two major advantages:
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• The reference frame may be chosen so that it is easier to visualize. For example, the
origin may be defined to be the first marker ball. This helps visualizing the coordi-
nate systems in space.

• Estimation of errors becomes much easier in non-overparameterized problems. In
an over-parameterized model, parameters highly correlate. Then, it is not obvious to
give estimation errors, as there is no obvious scalar error for each parameter. There
is rather a full correlation matrix between all parameters. With a good set of pa-
rameters, the correlation matrix of the parameter estimates is rather confined to the
main diagonal. It is then obvious to read off the estimated standard deviation of the
parameters.

The task is now to find an appropriate rigid transformation T for any given point set
M . Ideally, T should map all equivalent ordered sets of points M to a unique M ′ = T M .
Put differently, for a normalized set of points M ′, there must not exist an equivalent set of
points that is also in a normalized form.

In following, the normalization procedure is described. It is proven by construction that
T is a rigid transformation. Let M be a ordered set of 3D points

M =

�
p1 p2 p3 . . .

1 1 1

�

It is obvious that a translation can be applied to shift M to the origin. Obviously, the
following rigid transformation moves p1 to the origin:

Torigin =

2
6664

1

1 −p1

1

1

3
7775 (4.14)

We can further normalize ToriginM by applying a rotation. A viable tool to “normalize”
using a rotation is the QR decomposition. The QR decomposition factors a given matrix
into a rotation Q and an upper triangular matrix R, as described by Golub [20]. Since
a rotation leaves the first point of ToriginM unchanged, we only consider the remaining
points and perform a QR decomposition on those.

�
p2 − p1 p3 − p1 . . .

�
= Q R (4.15)

Now we compose a rigid transformation T of the translation Torigin and the inverse ro-
tation QT .
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First, we realize in Equation 4.16 that T is a valid rigid transformation, as it consists of a
rotation and a translation. Therefore, M ′ is equivalent to M as a set of rigid body points.

Second, we consider the properties of the normalized M ′. Note that normalization led
to a set of points M ′ that has at least six zero elements, as shown in Eq. 4.17. In the general
case, the normalization procedure removes six degrees of freedom from a given point set
M . Since a rigid transformation has exactly six degrees of freedom, this is the best result
we can achieve by applying a rigid transformation. More importantly, the normalized M ′

cannot be rigidly transformed to a different normalized set of points M ′′ in the general
case.

This argumentation is not new. Many computer vision and robotics problems involve
ambiguities up to a rigid transformation, i.e. recovery of the metric geometry from images
[24]. It is also common to use the QR decomposition in order to obtain triangular matrices
[20]. In the following, we set down the relation of the rigid transformation ambiguity in
terms of our ordered point sets:

Lemma. If two ordered sets of points are equivalent up to a rigid transformation, nor-
malization will lead to the same output set of points.

Proof. Assume that a normalized ordered set of points M ′ can be rigidly transformed
into another normalized ordered set of points M ′′. For M ′′ to be normalized, the transla-
tion component of that rigid transformation would need to be zero. Otherwise, the first
column of M ′ would transform to a point different from the origin. Note that, in the gen-
eral case, R will be a triangular matrix without zeros in the main diagonal. Any rotation
applied to R will therefore lead to a non-triangular matrix. Because of this, M ′ cannot be
rigidly transformed to another normalized set of points. As a result, the normalization
of two rigid bodies that are equivalent up to a rigid transformation is therefore uniquely
defined in the general case.
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Rigid Body Fitting with Error Estimation

Now that we can normalize rigid body point sets, we can thereby reduce the set of param-
eters of the rigid body calibration problem given in Equation 4.13. Since the normalized
parameterization of an ordered set of points is now invariant to rigid transformations, the
problem is not over-parameterized anymore. The objective function can be reformulated
to

arg min
M

O(M) =
X
i

‖Pi − Ti M‖2 s.t. M is normalized (4.18)

As noted earlier, Ti can be recalculated as described in Section 3.3.3 in each iteration. This
is computationally superior to a joint optimization of M and all Ti. The side condition for
M is also easy to implement: It is sufficient to normalize the initial value of M and then
parameterizing M only as the strict upper triangle, which simply reduces the number of
variable parameters by six.

Most importantly, there is now much less correlation between the estimated parameters.
We can easily estimate the standard deviation of the values of M . For that, we need the
covariance matrix ΣP of the measurements Pi. These may be given as 3-by-3 matrices for
each point. In practice, the covariance of a triangulated point is usually not a constant
diagonal matrix. As the lines of sight form a acute angle, the uncertainty may be much
greater in depth direction. As a useful simplification, the distributions of the 3D points
in Pi are considered independent. The covariance matrix of the measurements ΣP is then
constructed of a diagonal of the 3D point covariance matrices.

Now we can propagate the measurement uncertainties back to the parameter uncertain-
ties. Let ΣM denote the covariance of the rigid body points M . Then we can estimate
ΣM with the help of the first-order partial derivatives of the optimization function at point
M . The partial derivatives of the residuals of the optimization function with respect to its
parameters at the minimum are given by the Jacobian matrix JO. ΣM is then given by

ΣM =
�
JTO Σ−1

P JO
�+
. (4.19)

Note that the +-sign denotes the pseudo-inverse. The derivation is given in [24] on
page 144. In a well parameterized problem, the covariance will mostly be confined to the
diagonal. The estimated standard deviations of the rigid body points can be read off as the
square roots of the diagonal elements of ΣM .

With this procedure, we have not only calibrated the rigid body targets, but also given
estimates for the errors of the calibration. In our experience, the errors of the rigid body
targets may be well below those of the 3D triangulation. Figure 4.4 shows the relation
between the number of frames that were used and the precision of the rigid body cali-
bration procedure. It is obvious that the number of frames decreases the estimation error.
Note that the uncertainty of the rigid body points becomes substantially lower than the
uncertainty of 3D marker positions.

All in all, we have given a set of tools to calibrate rigid body targets. The rigid body
points can be calibrated at high accuracy using measurements over a set of frames.

51



4 Calibration

1 2 3 4 5 6 7 8 9
0

0.25

0.5

0.75

1

1.25

1.5
1.6

Frames used for Rigid Body Calibration

R
ig

id
 B

od
y 

P
oi

nt
 S

td
 D

ev
 / 

3D
 P

oi
nt

 S
td

 D
ev

Figure 4.4: Relation between of the number of frames used and the rigid body calibration
error

In the next section, we will discuss the related problem of joint model estimation. As
rigid body calibration is invaluable for accurate tracking of the marker target poses, joint
models are necessary in order to measure joint angles.
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CHAPTER 5

KINEMATIC MODEL ESTIMATION

The following chapter deals with the creation of models of the kinematic chain for multiple-
joint robots. Modeling the kinematic chain is crucial for almost all robot control tasks.
Only when all dimensions of the joints and all axes of rotation are known precisely, we
can derive all necessary control parameters and successfully control the robot. Without
the knowledge of the kinematic chain, only few control approaches can be used. With
few notable exceptions of visual servoing and neural network based approaches, almost
all robot control algorithms assume joint dimensions and rotation axes as given up to a
negligible error. For these reasons, a kinematic model of the joints and axes is crucial for
all subsequent control tasks.

In contrast to conventional kinematic chain modeling, our approach is specifically geared
towards the compliantly actuated humanoid ECCE. As already noted in the introduction
in Chapter 1, the novel muscle-based actuation of the humanoid ECCE poses several chal-
lenges on robot control. Most importantly, joint dimensions are not known because its
skeleton was molded by hand. During the prototyping process, the robot is regularly
tested, its Friendly Plastic® parts may be remodeled multiple times until all specifications
are met [26]. All in all, the construction of the robot is not planned giving exact dimensions,
but rather functional requirements. In contrast to almost all robots, axes of rotation and
spatial dimensions cannot be obtained from a construction plan. The only way to model
the kinematic chain is to perform measurements. Direct measurement of the dimensions
is cumbersome and especially difficult for the center of rotation as it is located inside the
shoulder joint. The most practical way to estimate the kinematic properties of the robot is
to estimate its kinematic model from a set of motion data of the actual robot. However, we may
still measure some dimensions directly in order to scrutinize the model fitting results.

Beyond that, the humanoid ECCE features ball-and-socket joints in its shoulders. It must
be noted that ball joints are only utilized in very few mechanical systems. If at all, they
are almost never actuated, as ball joints cannot incorporate a direct angle sensor and are
therefore hard to control. Creating a three-dimensional angle sensor for a spherical joint
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is a very demanding task. Other musculoskeletal robots are equipped with complicated
sensors for ball joint angle measurements. For instance, Urata et al. [66] employ a micro
camera in order to estimate angles in a spherical joint. Nakanishi et al. [42], also working at
the same lab at University of Tokyo, estimate the posture of ball-and-socket joints based on
the measurement of tendon lengths. Both authors discuss the challenges and limitations of
proprioceptive sensing for ball-and-socket joints. In conclusion, there is no one-size-fits-all
solution for spherical joint angle measurement yet.

In this chapter, we want to derive the necessary mathematical tools for the estimation
of the kinematic chain. Spatial dimensions of all joints are to be estimated underlying a
suitable joint model. In all steps, uncertainty measures are to be given. That way, not only
the estimated model, but also the approximated errors of the estimation are delivered.
Ultimately, an accurate model of the kinematic chain allows (i) more accurate physics-based
modeling of the robot and (ii) motion capturing of joint angles and angular speeds in real-
time. Physics-based modeling deals with the creation of the robot model that is simulated
by a physics engine. The research project Eccerobot specifically focuses on physics-based
modeling of the compliant robot ECCE. One of the fundamental tools developed within
the Eccerobot project is the physics-based simulator Ecceos [36, 27]. It is used both for off-
line controller development and testing as well as on-line as an internal model for robot
control. For that it is essential that an accurate simulation model of the physical robot
can be acquired. Currently, Evolution Strategies are investigated as a tool to optimize
the simulation model parameters based on data provided by our motion capture system.
Preliminary results are promising and it is likely that this approach will lead to the required
accuracy of the simulation model for both, the steady-state and the dynamics. In a nutshell,
accurate measuring of the robot’s kinematics, its pose and its joint angles are of crucial
importance for the work on physics-based simulation.

The main contribution of this work is to collect and elaborate an appropriate set of tools
for estimating the kinematic chain and capturing real-time motion data. Thus, robot sim-
ulation and control is provided with

• accurate static parameters of the robot, i.e. joint dimensions,

• real-time measurements of the robot pose and

• all joint angles as well as

• estimations of the errors of all values given above.

In the main part of this chapter, we consider the estimation of the kinematic chain. We will
derive a general routine to calibrate kinematic chains consistent of the two most important
types of joints: First, we consider ball-and-socket joints, which feature 3 axes of rotation.
Then, hinge joints with a single axis of rotation will be discussed. From a general point
of view, estimating the kinematic chain is also a calibration task. In our definition, the
kinematic chain calibration is the accurate estimation of all transformations between mea-
surement coordinate systems and coordinate systems that are defined by joint axes. As
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the rigid body points of the marker targets are important for all 3D pose measurements,
the kinematic parameters are of equal importance for all joint angle measurement tasks.
Therefore, attention will again be drawn on accuracy and estimated errors. Kinematic
chain estimation may be conducted for a single joint as well as for the kinematic chain as a
whole. First, we discuss and perform calibration routines for each joint. Then, we derive a
overall calibration model that optimizes all joints as a whole. The overall calibration is to
minimize the remaining estimation error in a joint optimization process.

5.1 Ball Joint Fitting

Of the two important joint types, ball-and-socket joints and hinge joints, ball joints are the
mathematically easier to model. We therefore start with the modeling of ball-and-socket
joints in this section. In the next section, we will move on to modeling hinge joints–in some
respect, a hinge joint may be described as a constrained model of a ball-and-socket joint.
Ball-and-socket joints are also called universal joints.

Ball-and-socket joints have mathematically been modeled for a long time. Recent meth-
ods for finding the center of rotation are described in [43, 21, 18]. Gamage et al. [18] present
a method that only uses the translations to the center of rotation and does not assume
strict rigidity. Halvordsen, Lesser and Lundberg [21] also describe a closed-form solution.
Ehrig et al. [13] compare different joint fitting techniques for use in biomechanical mea-
surements. In contrast to their approach, we can underly exact rigid transformations c1

and c2. As our marker targets are rigidly attached to the joints of the robot, robustness of
the method is only of secondary importance. It is rather important that the calibration is
as accurate as possible.

The principle arrangement of a ball-and-socket joint is shown in Figure 5.1. A ball joint
has a center of rotation C. The socket of the joint is attached to a marker target S1, whose
position and orientation can be measured. Similarly, the ball of the joint is rigidly attached
to another marker target S2. The ball can rotate freely in the socket and therefore has three
degrees of rotation. Mathematically, the model does not differ between ball and socket,
it just describes a center of rotation. The two measured coordinate systems S1 and S2 are
connected by a center of rotation which is located at c1 w.r.t. S1 and at c2 w.r.t. S2. [59]

Ideally, the following equation holds:

R c1 S1 = c2 S2 (5.1)

Here, R is an appropriate 3D rotation composed of the joint angles.
For the sake of consistency, we will impose the following restrictions:

• The transformations from the marker poses to the rotational reference frames, c1 and
c2, are confined to pure translations. This choice is possible, as the central rotation R
will include the remaining rotational component. With this restriction applied, the
model is almost uniquely defined.
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Figure 5.1: Ball-and-Socket Joint

• The only other restriction is that we regard the rotation as the rotation from the socket
to the ball. The rotation R therefore transforms in the direction “from the torso to the
limb”.

These restrictions complete our ball-and-socket joint model. In the following, we will stick
to these restrictions and the notation in Figure 5.1.

Now that the model is complete, we turn to the calibration task. Calibration means again
estimating the model parameters as accurate as possible. Here, the model parameters are
the translations c1 and c2. They describe the static properties of the ball-and-socket joint.

It is not straightforward at all to estimate these two model parameters. One can easily
visualize that the space of possible parameters may have local minima: Suppose that we
measure S1 and S2 over rotational movement around a single axis. The parameters cannot
be reconstructed from this measurement, as the center of rotation C may be anywhere
on this single axis. More importantly, any movement within a small region can lead to
degenerate cases. One can imagine that there will be at least another local minimum C ′

for the center of rotation of the opposite side of that region, as shown in Figure 5.2. This
case is important for practical applications. It shows the crucial importance of the global
search for the center of rotation. It is therefore necessary to perform measurements over a
wide range of angles. Equally important, rolling motions must occur. Only when all three
types of angles are measured over a wide range, we can be sure that the joint calibration
problem is well posed. In case of uncertainty, we may inspect the results and compare to
manually measured values.

Because of all these points, we estimate the parameters in two steps. This allows us to
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Figure 5.2: Local Minima Solutions for the Center of Rotation

first search globally and then iteratively find the minimizer.

1. First, an initial estimate of the center of rotation needs to be calculated. In its purest
form, the ball joint calibration objective function may be highly non-convex with
multiple local minima. Justification for this fact is given by Figure 5.2 and the above
paragraph. For this reason, we cannot directly find the center of rotation by local
optimization and must rely on methods for global optimization. For this, we present
a simple method that is a closed-from algebraic error minimization based of singular
value decomposition. This step is very similar to [43, 21, 18].

2. As a second step, we perform a non-linear optimization on a more natural error
function. From the first step, we can obtain a rather coarse estimate of the center
of rotation. The first step does not provide the maximum-likelihood estimate, but
only a minimizer for a simpler error function. This minimizer is then taken as an
initial estimate for a non-linear optimization. The objective is to minimize both the
projection error from the reference frame S1 to S2 as well as from S2 to S1 (see Fig.
5.1). Technically, a symmetric-projection error function is minimized.

These two steps will be discussed in detail in the following sections.

5.1.1 Initial Estimate of the Center of Rotation

As described above, it is crucially important to globally search for the center of rotation. No
matter if the solution of the global search is accurate–any inaccurate but global solution
may give us an initial value for non-linear optimization. It is common practice for many
robotics and computer vision estimation problems that a crude linear solution precedes a
more accurate non-linear optimization [24].
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Therefore, we derive a linear algebraic error function that can globally be solved by a
singular value decomposition. Similar linear algebraic solutions are described in [43], [21]
and [18]. Here, we use the notation as shown in Figure 5.1.

Considering Figure 5.1 on page 56, we make the following ansatz:

c1 ≈ Tic2 for all i (5.2)

This equation can readily be transformed into the following optimization problem.

arg min
c1,c2

X
i

‖c1 − Tic2‖2 (5.3)

This minimization is not linear in the first place. It uses homogeneous coordinates for
c1 and c2 such that the rigid transformation Ti can easily be applied. However, it can be
reformulated to a purely linear least squares problem, which is easy to solve [21]. Differing
from the above notation, we now use inhomogeneous coordinates. LetRi be the rotational
and ti the translational part of our measurements Ti. Then, we obtain the following linear
least squares problem.

arg min�
c1

c2

�



2
66664
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I −R3

...

3
77775
�
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c2

�
−

2
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t2
t3
...

3
77775



2

(5.4)

The above equation can easily be solved for c1 and c2, as it is a linear least squares problem.
Almost all mathematical optimization libraries can solve this problem very fast at the nec-
essary numerical stability. For our Matlab implementation, we use the built-in mldivide

function. Our Matlab calibration routine is documented in the appendix on page 86. For
the optimized C++ version, we use the cvSolve function of the OpenCV library, which
internally solves the problem by singular value decomposition.

This procedure is very similar to the algorithms described in [43] or [18]. There are sev-
eral other methods for finding the center of rotation. Notably, one can find the center of
rotation even when the orientation of the attached targets is unknown [59] or measure-
ments are very noisy, as in the case of marker-less tracking [16].

5.1.2 Non-linear Optimization of a Ball-and-Socket Joint

In the preceding section, we obtained an estimate of the position of a center of rotation C
with respect the two involved coordinate systems S1 and S2. The problem was solved glob-
ally by minimization of a simple error function. Thanks to the global search, we can expect
the estimate to be close to the true value, it is unlikely to be stuck in a local minimum.

Now, we set up a more comprehensive error function. Given is a number of n mea-
surements of the transformation Ti. As described earlier, the measurements should cover
the full range of possible angles of the joint, including the roll angle. By roll angle, we
understand rotations around an axis that goes through C and S2.

58



5 Kinematic Model Estimation

Let Ri denote the rotation of the joint that fits measurement i best. Again, it is useful to
parameterize the rotation as Rodrigues angles [34, 24]. We define a Rodrigues angle v as in
[24] and [5]: The Rodrigues angle [v1 v2 v3] is equivalent to a rotation of 180 ‖v‖ /π degrees
around the axis v. We will not repeat the advantages and disadvantages of Rodrigues
angles here, they are well covered in [34] and [24]. The single most important property of
Rodrigues angles are that they are not over-parameterized, i.e. we do not need any side
conditions (in contrast to quaternion angles). At the same time, singularities can easily
be avoided by keeping its absolute value sufficiently smaller than 2π (in contrast to Euler
angles, which have more complicated singularities).

Now, we consider the symmetric reprojection error. When a set of points p is transformed
by c1,R and c2, it should be equivalent to a transformation with the measured Ti. Similarly,
an appropriate inverse transformation involving c2, R and c1 should be equivalent to a
transformation with the inverse of Ti. Note that in this case, the error function has two
important properties: First, the error is modeled in the measured coordinate system and
therefore more meaningful. Second, the formulation is again symmetric.

Mathematically, the minimization of the described error function reads as follows:

arg min
c1, c2, Ri

X
i

c−1
2 Ric1p − Tip

2
+
c−1

1 RTi c2p − T−1
i p

2
(5.5)

Up to now, we have not defined the set of points p. It is meaningful to choose the three unit
vectors and their inversions. That way, all directions have equal influence. However, it is
not obvious how to scale these values. A compromise has to be made between importance
of position and orientation. The more accurate the orientation measurement, the larger the
vectors in p may be scaled. A suitable parametrization is to choose vectors in p at the same
order of magnitude as the physical marker targets.

The minimization problem in Eq. 5.5 may easily be solved by a non-linear least squares
algorithm. Good initial values for c1 and c2 may be obtained from the previous section. Ri
also need be initialized – this can be done by a simple point cloud fitting as discussed in
Section 3.3.3 on page 33. The Matlab implementation of our ball-and-socket joint calibra-
tion routine is documented in the appendix on page 86.

The typical convergence of the calibration of a ball-and-socket joint is shown in Fig. 5.3.
The initial estimates for c1 and c2 were calculated by the closed-form solution in Eq. 5.3
on page 58. The initial estimates for Ri were calculated by point cloud fitting as discussed
in Section 3.3.3 on page 33. Then, a non-linear optimization was performed to minimize
above Eq. 5.5. Obviously, the minimum is found after few iterations. Even though the
number of parameters is at the order of a few hundreds (due to the parameterization of
Ri), good initial estimates ensure rapid convergence.

As a result, we obtain precise estimates for the translations c1 and c2 that parameterize
the ball-and-socket joint model.
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Figure 5.3: Convergence of the Shoulder Joint Fitting

5.1.3 Ball Joint Angle Calculation

Now that we have calibrated the ball joint setup, we may finally perform ball joint angle
measurements. Let T be a measured translation from S1 to S2 as shown in Figure 5.1.
Then, the joint angles R, which we want to measure, hold the following equation:

R c1 S1 = c2 T S1 (5.6)

For S1, we may plug in any set of points. However, in order to ensure the problem to be
well-conditioned, we make the following choice: We pick the three unit vectors and their
negative counterparts. The problem above is clearly an orthogonal Procrustes problem, as
a rotation is to be found. We have already described its solution in Section 3.3.3 on page
33. In that section, a more general calculation of a rigid transformation was derived. The
rotational part R is given within that rigid transformation [2]. We found that the transla-
tional part d is still very useful, as it may serve as an error measure. It shows the geometric
deviation of the best-fit center of rotation (concerning a given T ) from the calibrated center
of rotation C. This geometric distance ‖d‖ is given in millimeters and useful as a residual
measure in ball angle calculations. In our practical measurements, we usually observe a
residual ‖d‖ of 0.5 to 2.0 millimeters.

In sum, we have described a concise way how to calculate ball joint angles. A residual
value is given in order to estimate precision.

Error Estimation for Ball Joint Angles

We now turn to the error consideration of the ball joint angles. The angle error estima-
tion inputs the 3D poses S1 and S2 and a correlation matrix ΣP for the uncertainties in all
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these 12 parameters. Note that the correlation matrix is readily given by the rigid body
fitting routine described in Section 3.3. Also notice that the above calculation of ball joint
angles is computationally very fast (see Appendix on page 84). We therefore decided to
simply numerically differentiate the ball joint angles computation. Essentially, we com-
pute the Jacobian J of R in Eq. 5.6 with respect to S1 and S2 by finite differences. We can
now forward-project the 3D pose correlation ΣP and obtain the ball joint angle correlation
matrix ΣR.

ΣR = J ΣP J
T (5.7)

In our experience, ΣR is sufficiently diagonal, i.e. the three angles are little cross-correlated.
We can simply output the square roots of the diagonal elements of ΣR as standard devia-
tion errors for the ball joint angles.

Sample Ball Joint Measurements

A sample sequence of various shoulder movements is shown in Figure 5.4. Note that the
upper arm poses were measured at low residual errors over the whole sequence, which are
shown in the third row. The first row shows the upper arm positions, i.e. the translations of
S2, with respect to the left camera coordinate system. The second row shows the rotational
part of S2 as Rodrigues angles. It is obvious that the movements involve all three degrees
of freedom, which is important for accurate calibration. The last row indicates the residual
error of the joint angle calculation, which is well inside the acceptable range of the model.

All in all, we have presented the necessary set of tools to both model ball-and-socket
joints and use the ball-and-socket model to calculate joint angles. In the next section, we
proceed to the slightly different problem of modeling hinge joints.

5.2 Hinge Joint Fitting

Hinge joints are essentially a special case of ball-and-socket joints. Of the three axes rota-
tion, two of them are fixed. For this reason, the derivation is in part analogous. However,
there is no well-defined center of rotation, as any point on the axis of rotation may serve
as a pivot. In literature, hinge joints are sometimes also referred to as rotational joints or
single-axis joints [21, 43, 18].

In our notation, a hinge joint is modeled as shown in Figure 5.5. The movement of
the joint may be measured by the poses of the two attached marker targets S1 and S2.
Analogous to the ball-and-socket joint, we are to estimate the rigid transformations c1 and
c2. Note that, in contrast to ball joints, c1 and c2 must contain a rotational part to align
an axis to the rotational axis of the joint. By our definition, the rotation axis is always the
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Figure 5.4: Motion capturing of some shoulder movements
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Figure 5.5: Hinge Joint

z-axis. Therefore, the rotation R(α) around an angle α reads

R(α) =

2
6664

cosα − sinα

sinα cosα

1

1

3
7775 . (5.8)

Let S1 and S2 be the observed poses of the same-named reference frames. The properties
of the ideal hinge joint are then given by the following equation:

R(α)c1S1 = c2S2 (5.9)

5.2.1 Approaches to Hinge Joint Fitting

There are several approaches to model a hinge joint in a set of motion data. The first algo-
rithm to estimate an axis of rotation from two measurements in 2D was given by Reuleaux
as early as 1875 [50]. More recently, there was extensive research on finding axes of rotation
with the advent of motion capturing [13, 43, 21, 18].

Almost all authors reconstruct the axis of rotation by consideration of the null space of
a measurement matrix [43, 21, 18]. Their main idea is to set up a linear system with the
center of rotation as the variable and extract the direction of the rotational axis from the
null space of the coefficient matrix.

Gamage et al. [18] show a method that does not assume strict rigidity, but rather con-
stant distance from the axis of rotation. Halvordsen, Lesser and Lundberg [21] present a
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similar closed-form solution. Ehrig et al. [13] give an overview of joint fitting techniques
for applications in biomechanics.

For our motion capture system, the requirements are slightly different. Most of the re-
cent authors discuss marker-less human tracking with all its imprecisions. In our case,
however, markers are rigidly attached to a robot. Similarly, joints are manufactured rather
precisely. Because of that, our joint calibration process does not need to specifically handle
imprecisions, it rather needs to be as accurate as possible. Furthermore, accuracy itself
should be modeled and estimated. Keeping these points in mind, we designed our hinge
joint calibration routine different from common biomechanics literature:

• We underly strictly rigid transformation c1 and c2. Uncertainties are only modeled
in the pose measurements S1 and S2, but not in the rigid transformations.

• We make use of the orientation of the marker targets. Even though positions of the
markers targets are sufficient to find an axis of rotation, we run a second optimization
task that takes all measurement data into account.

5.2.2 Parameterization of a Hinge Joint

A single rotational axis can in general be parameterized by only four parameters [21]: The
location of the closest point p⊥ to the rotational axis is given by a 3-vector. As the rotational
axis must be perpendicular to that point, its direction may be given by a single angle. In
sum, the axis itself has only four degrees of freedom.

Our hinge joint model is slightly different: As shown in Figure 5.5, our hinge joint is
calibrated by a number of measurements Ti of the poses of two coordinate systems S1 and
S2. The axis of rotation is therefore not only defined with respect to a single coordinate
system, but also with respect to a second one. For the sake of easy model-fitting, we
parameterize a hinge joint as follows: The position of a point C on the axis of rotation
is given by the translational parts of c1 w.r.t. S1 and c2 w.r.t. S2. The rotational part of c1

and c2 must be given such that their z-axis is mapped to the physical rotation axis. Then,
Eq. 5.9 is fulfilled.

Of course, this model is highly over-parameterized. In order to reduce ambiguities, we
impose the following constraints:

• The x-axis defined by c1 and c2 must be in the same plane as the rotational axis and
S1 and S2, respectively.

• The translational part of c1 and c2 should be minimal. For that, C should be chosen
such that the sum of distances to S1 and S2 is minimized.

The main purpose of the parameterization is again to reduce the possible degrees-of-
freedom to a more adequate set. It is not necessary to choose the minimal set of parameters
at all costs [24]. Still, a sensible parameterization helps to visualize the results and simpli-
fies consideration of parameter errors as it may reduce correlation between parameters.
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5.2.3 Closed-Form Hinge Joint Parameter Estimation

The estimation process of the hinge joint parameters is in part analogous to that of ball-
and-socket-joints. For the reasons noted earlier, we first find a rough global minimizer.
This can be done by a closed-form solution, which is described in this section. After that,
the model parameters will be improved by a non-linear optimization. The non-linear part
will be dealt with in the next section.

As in the case of ball-and-socket joint calibration, we first globally search for the axis of
rotation. Under some perspective, the hinge joint may be seen as a special case of the ball-
and-socket joint. Halvorsen [21] therefore applies the ball-and-socket joint error function
again. Its solution certainly yields a point on the axis of rotation. However, its location
may be anywhere on that axis, possibly far away.
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In the calculations, care must be taken. Since c1 and c2 may be located anywhere on the axis
of rotation, A is singular. A solution may still be found by its pseudo-inverse, however,
that solution may have a large norm, i.e. C may be arbitrarily far away from the physical
setup. As specified earlier, we would like to parameterize C such that the distances are
minimized. Gamage et al. [18] therefore propose a slightly different solution. They sug-
gest to calculate the singular value decomposition of A, discard the lowest singular value
and obtain the rank-5 approximation A5. Discarding the lowest singular value essentially
removes the degree-of-freedom that corresponds to the axis-of-rotation. The solution for
[c1c2]T is then A+

5 b, where + denotes the pseudo-inverse (which is readily available from
the SVD of A). This solution fulfills our convention that C should be as close as possible to
S1 and S2. Justification for this procedure is given in [18].

Up to now, we only have the translational part c1 and c2. In contrast to the ball-and-
socket joint model, however, the orientation of the axis of rotation is essential. In the
following, let C1 and C2 denote the rigid transformations (not just the translations to C).
By definition, the orientation of the axis of rotation is the z-axis of C1 and C2. We will
therefore first reconstruct cz1 and cz2, the axes of rotation with respect to S1 and S2. After
that, we will determine the other directions cx1, cx2, cy1 and cy2 and thus estimate the rigid
transformations C1 and C2.

Estimation of the Axis of Rotation

In order to estimate the direction of the axis of rotation, we can again refer to Eq. 5.10.
Since the location [c1c2]T has a degree of freedom along the axis, the direction of the axis
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is given by the null space of A. This relation is (among others) used by [21] and [18].
Mathematically, we can solve the following equation:

arg min�
cz1
cz2

�
A

�
cz1
cz2

�
2

s.t.


�
cz1
cz2

�
2

= 1 (5.11)

The solution of this equation [cTz1 c
T
z2] is given by the null space vector v6 corresponding

to the smallest singular value in the singular value decomposition of A = USV T . More
details are given by Gamage et al. [18]. The smallest singular value itself may serve as an
indicator of precision. The lower the smallest singular value, the better the measurements
can be modeled by a single axis. In our experiments, the smallest singular value σ6 of A
was usually at the order of 10−2, whereas the other singular values were between 100 and
101. This shows that the axis is well defined by the measurement data.

Finally, we have obtained the direction of the rotational axis and therefore the z-rotational
component our the rigid transformations C1 and C2 of the hinge joint.

Estimation of the Rigid Transformations

Now that we have the translation and the z-axis components, we are still to estimate the
x-axis and the y-axis to complete the rigid transformations. In other words, we need to
estimate cx1, cy1, cx2 and cy2. In contrast to the values already estimated, these remaining
values are not given directly by the measurements. In principle, we may choose any val-
ues that will result in proper rigid transformations. The only necessary constraint is that
the x and y-vectors form a proper rotation with their respective z-vector. This remaining
ambiguity represents a rotation around the common z-axis of the hinge joint coordinate
frames C1 and C2. In the outcome, it only affects the baseline of our hinge joint angle mea-
surements, but not the relative angles.

One way to overcome this remaining ambiguity is to constraint the rotational reference
frames with respect to S1C and S2C. For that, we may define the x-axis of C1 and C2 to
lie in in the same plane as the rotational axis and S1 and S2, respectively. With this side
condition, the hinge joint model is well defined and has no more ambiguities. Plus, all
involved transformations can be visualized geometrically. From a practical point of view,
one can even measure the distances of the axis to the marker targets with a ruler as a rough
check if the estimation is correct.

Finally, the remaining parameters can be calculated with the cross product as follows:

cy1 = c1 × cz1 (5.12)

cx1 = cz1 × cy1 (5.13)

cx2 and cy2 are obtained analogously. Note that the order of cross-products is not arbitrary
as we want to construct a right-handed system.
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With all these parameters, we can finally compose the rigid transformations.

C1 =

2
64

cx1

‖cx1‖
cy1

‖cy1‖
cz1
‖cz1‖

c1

0T 1

3
75 (5.14)

Of course, C2 is constructed analogously. Using the described procedure, we can estimate
all parameters of a hinge joint in a robust way. The hinge joint parameters are geometri-
cally meaningful and ambiguities are taken care of. In all, we have given a general proce-
dure for hinge joint fitting.

5.2.4 Hinge Joint Angle Calculation

Similar to the angle calculations for ball joints, we now derive the angle calculation for
hinge joints. In some respect, this is a special case of ball joints. The key point is to regard
the single axis rotation as a 2D rotation of the points in the plane perpendicular to the axis of
rotation. Analogous to our ball joint calculation, we start again with the relation

R(α)C1S1 = C2S2. (5.15)

We now evaluate the actual values for C1S1 =: P1 and C2S2 =: P2. As we constrain
ourselves to single axis rotations, P1 and P2 are projected to 2D coordinates on the plane
perpendicular to the axis of rotation. For this, we multiply P1 with the null space of the
axis of rotation and obtain the corresponding set of points p1 and p2. Now, we realize that,
in an ideal case, the following equation holds.

�
p1x −p1y

p1y p1x

� �
αcos
αsin

�
=

�
p2x

p2y

�
(5.16)

This equation may easily be solved for αcos and αsin by linear least squares minimization.
This minimization is appropriate, as it minimizes geometric distances in the specific plane.
After that, we obtain the rotation angle α by the two-valued arctangent function:

α = arctan
αsin
αcos

(5.17)

Finally, we have shown a general way how to calculate estimated angles for a hinge joint.

Sample Measurements of a Hinge Joint

Some sample measurements are shown in Figure 5.6: The lower arm was moved over the
possible range in all directions (see first row). Notice that the elbow rotation covers a wide
range, a property that is important for calibration routines. This is shown in the second
to last row. The last row shows the residual geometric distance of the rotated coordinate
systems.
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Figure 5.6: Motion capturing of some elbow movements

Error Estimation for Hinge Joint Angles

For hinge joint angles, the error consideration is perfectly analogous to that of ball joint
angles as described on page 60. We again perform a sensitivity analysis. The whole calcu-
lation described in the paragraph above is differentiated by finite differences. From that,
we obtain a Jacobian matrix J , which has only a single column. Let the correlation of
the involved 3D poses S1 and S2 again be given by ΣP . Then, we forward-project this
correlation and obtain the correlation of the joint angle

ΣR = JT ΣP J. (5.18)
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Finally, the standard deviation of the hinge joint angle α simply reads
√

ΣR.
All in all, we have described a comprehensive set of tools to calibrate, measure and

estimate errors of both ball joints and hinge joints. In the following section, we move on to
the calibration of the kinematic model as a whole.

5.3 Kinematic Model Fitting

In the preceding section, we have performed model estimations for ball joints and hinge
joints. Up to now, the joints were calibrated separately. In this section, we derive a
maximum-likelihood approach for a comprehensive kinematic model estimation. This
model fitting approach is characterized by two properties:

• First, all joint kinematics of the robot should be estimated as a whole. Since the
joints are not independent from each other and measurement data are dependent
on multiple joints, a unified optimization process is highly preferable. Note that the
Eccerobot test rig features only two joints and is therefore of limited complexity.

• Second, the optimization process should follow a maximum-likelihood approach. In
other words, the estimation should underly a statistical distribution in the measure-
ment data and find the most probable set of parameters.

Concerning the second point, we are to select a statistical distribution that characterizes
the measurement data. In our point of view, the most viable distribution is to assume
Gaussian noise in the 3D marker ball positions.

In terms of notation, we use the variable names as shown in Figure 5.7 on page 70. Let
Sij denote the 3D pose of a measured reference frame j at time i. Mj give the rigid body
configuration of the marker balls attached to Sij . For all estimated quantities, we use the
-̂notation. In other words, Ŝij is the estimated 3D pose of a reference frame. As measured
quantities, we only input the measured 3D marker ball positions Pij . The estimated 3D
marker ball position are defined with respect to the estimated 3D poses:

P̂ij = MjŜij (5.19)

Besides these estimations, we of course estimate the static kinematic parameters Ĉ1, Ĉ2, Ĉ3

and Ĉ4. The joint angles are estimated as R̂1
i for the shoulder and R̂2

i for the elbow joint.
The objective function for the unified kinematic chain estimation is then given as fol-

lows:

arg min
Ŝij ,Ĉj ,R̂

j
i

X
i

X
j

Pij −MjŜij
2

s.t. Ŝi2 = Ĉ2R̂
1
i Ĉ1Ŝi1

Ŝi3 = Ĉ4R̂
2
i Ĉ3Ŝi2 (5.20)

The implementation of this kinematic estimation is done straightforwardly by iterative
minimization. Initial estimates for the kinematic parameters Ĉk are readily available from
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Figure 5.7: Joint Fitting Parameters for the Eccerobot Test Rig

our results in the earlier sections. Likewise, the joint angles are initially given. For the
3D poses, we have to make sure that the two constraints are initially fulfilled. One way
to ensure this is to initialize Ŝi2 from the measurements Si2 and then calculate Ŝi1 and
Ŝi3 so that they fulfill the side conditions. With this procedure, we easily obtain all initial
variables.

Similar to many other optimization problems in this work, we also solved this by non-
linear least squares minimization. Figure 5.8 shows the results of the computations. The
convergence was reached after 20 iterations. The residual geometric distance was only 0.35
mm on average per 3D point.

In short, we have shown a general method how to estimate kinematic parameters by motion
capturing. The parameter estimation process is designed up to two important specification
requirements: First, all joint kinematics are estimated in one unified optimization. Second,
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Figure 5.8: Convergence of the ML Kinematic Model Estimation of the Eccerobot Test Rig

estimations fulfill the maximum-likelihood criterion for Gaussian noise in the 3D domain.

Sample Results from Kinematic Motion Capturing

In order to demonstrate the general characteristics of our motion capture system, we show
sample data in Figure 5.9 on page 72. Several movements were performed and captured
over a sequence of 2 minutes. This is equivalent to a number of 2000 frames. The move-
ments were not restricted to any specific type, but rather cover the whole range of possible
motions. The first six rows of Figure 5.9 refer to the 3D pose of the reference frames. The
last four rows show the results of the joint angle calculation module. Positions are given
as millimeters with respect to the camera coordinate system. Rotations are given as Ro-
drigues angles. Residuals are calculated as the sum of residual geometric distances (in
millimeters) of the re-projected marker balls divided by the number of marker balls.

We make several important observations: First, there are no missing values over the
entire sequence. At all times, 3D poses are given at very low residual errors. It is a very
important property of our motion capture system that it can handle marker ball occlusions
to some extent and still reliably deliver 3D poses. Second, the joint angles are reconstructed
over the entire sequence. For the elbow, residuals at the order of 2–5 mm are common, as
a hinge joint is a very restricted and highly constrained model. For the shoulder, resid-
uals are usually lower and below 2 mm. There are some overshoots towards the end of
the sequence, but these are still at an acceptable range and may be explained by a slight
dislocation of the shoulder joint (which is easily possible in the Eccerobot test rig).

All in all, we have constructed a reliable motion capture system that delivers both 3D
poses and joint angles in real-time. Together with the system, we have compiled the nec-
essary set of tools and explicated the mathematical background of all algorithms and cal-
culations.
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Figure 5.9: Motion capturing various shoulder and elbow movements
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CHAPTER 6

EVALUATION

The following chapter constitutes the final part of this thesis. It is serves two purposes:
First, we experimentally evaluate the accuracy of our system. For that, we assess the qual-
ity of the motion capturing not only from residuals, but also by physical measurement.
Second and last, we summarize the results of this work and get to the conclusion of this
thesis.

6.1 Error Consideration by Sensitivity Analysis

In this section, we analyze the accuracy of the output of our motion capture system by
mathematical means. A common way to do so is error propagation. When the error distri-
bution of all input data can be modeled, we can propagate the uncertainties through all
processing steps of the motion capture system. An appropriate assumption we can make
is the uncertainty in the 2D point detection step, which was described in Chapter 3 on page
17. As justified there, it is reasonable to expect a Gaussian error in the 2D point positions
with a standard deviation of σ = 0.1 pixels in each direction. The justifications will not
be repeated here – mainly, the value is the residual camera calibration error. This 0.1 pixel
uncertainty is our underlying assumption for all calculations in this section.

Note that even if the assumed σ is slightly larger or smaller in practice, the sensitivity
analysis behaves linearly. In other words, if σ is doubled, all error measures derived from
it are also doubled. Consequently, all relative statements stay true irrespective of the actual
value of σ. The only real limitation of our sensitivity analysis is that we assume all cali-
brated parameters to be exact. Put differently, we assume that the single most important
source for errors can be modeled by Gaussian noise in the 2D point data.

The error propagation is fairly straightforward. From the assumed 2D point position
standard deviation σ, we construct its error correlation matrix

Σ2D =

�
σ2

σ2

�
. (6.1)

73



6 Evaluation

For all subsequent processing steps, we can then calculate the Jacobian matrix of output
sensitivities with respect to input perturbations. Computationally, we finitely differentiate
the functions mocap_find_3d_correspondences and mocap_find_rigid_body by
the higher order function mocap_jacobian. The details of all these functions are given
in the appendix. As a result, we obtain the Jacobian matrices of the 3D reconstruction
step J3D and the marker model fitting step JRT . Note that these functions do not behave
linearly. The Jacobians are rather evaluated for each set of input parameters. We can now
propagate the error given the input error correlation matrix and obtain the output error
correlation [24].

Σ3D = JT3D Σ2D J3D (6.2)

ΣRT = JTRT Σ3D JRT (6.3)

As the output correlation matrices are only moderately cross-correlated, we can simply
extract the square roots of their diagonal elements as standard errors.

For the subsequent angle measurements, the error propagation is analogous. It was
already described on page 60 of ball joints and on page 68 for hinge joints.

6.1.1 Observation of Errors in 3D
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Figure 6.1: Relation between the distance to a single marker ball and the accuracy of its 3D
position

Our most important observation is that all uncertainties increase dramatically with the dis-
tance to the camera baseline. This result can be explained by the tilted stereo camera setup.
As a first order approximation, errors scale linearly with the distance to the camera. How-
ever, for moderate distances up to 1 meter, the triangulation triangle between the two
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Figure 6.2: Relation between the distance to a sample marker target and accuracy of its 3D
position (left) and its orientation (right)

cameras and the world point is sufficiently equilateral because of the tilted camera setup.
For greater distances, the triangulation triangle becomes more acute-angled and 3D recon-
struction becomes less accurate.

Figure 6.1 shows the relation between depth of a single marker ball and the propagated
error of its 3D position. Our immediate observation is that almost all uncertainty lies in depth
direction, which is an obvious result of the triangulation.

In contrast to Figure 6.1, Figure 6.2 shows the position and orientation error of a typical
marker target of five marker balls. We observe that the uncertainty of a target of multiple
markers is considerably smaller than that of a single marker. Also note that the orientation of
marker target is very well defined up to the fraction of an angle, even though the marker
target observed in Figure 6.2 has a diameter of only 98 mm. Smaller marker targets still
allow orientation measurements up to 1 or 2 degrees.

6.1.2 Observation of Angular Errors

After the error estimation of 3D positions and orientations, we calculated the uncertainties
of a typical ball joint and a hinge joint. The former is the shoulder joint of our Eccerobot
test rig, the later the elbow joint.

Again, all measurement errors are highly dependent on camera distance. Figure 6.3
shows the angular error of the shoulder and its three components. As a result, we observe
that the estimated errors of ball joint angles are only slightly larger than those the typical
orientation error of the two marker targets attached to the ball joint.

Finally, we also considered the estimation error of hinge joint angles. Obviously, a hinge
joint possesses more constraints than a ball joint. Its uncertainty is slightly smaller and at
the order of a single axial component of a ball joint rotation.
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Figure 6.3: Relation between shoulder joint distance and its angular error

All in all, under the assumption of moderate noise in the 2D input data, we model all
error estimates for both 3D positions and orientations as well as joint angles. The pro-
jected accuracy is beyond our expectations. At a camera distance of 1 meter, we expect
position errors of 0.25 mm and orientation errors at the order of 0.3 degrees. At the same
camera distance, joint angle errors are at the order of 0.4 degrees for a ball joint and 0.3
degrees for a hinge joint. Nevertheless, we observe a great increase in error estimates for
larger distances. It is therefore our strong recommendation to the reader to perform all
measurements at the closest possible camera distance.

Granted, these arguments are only made with the underlying assumption of a Gaussian
noise model in the 2D position, but we will present direct measurement results in the
following section.

6.2 Error Consideration by Experiment

In order to verify the accuracy of our motion capture system, we made a number of real-
world measurements. Essentially, we chose two different approaches to assess the quality
of the output data:

• First, we made number of measurements with known ground truth. However, with our
limited equipment, we were only able to perform position measurements by a ruler.

• Second, we made measurement from different camera angles. It is our strong belief that
inaccurate measurements will lead to different values when taken from different an-
gles. In other words, we are sure that the accuracy of the motion capture system can
be estimated by the variance of measurements from different perspectives.
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Figure 6.4: Relation between elbow joint distance and its angular error

Accuracy of 3D position
Accuracy along axis [mm]

Marker Target x y z

Torso 0.4990 0.5155 0.3720
Upper Arm 0.5271 0.6155 0.1340
Lower Arm 0.7012 0.8100 0.5588

Table 6.1: 3D position accuracy compared to ground truth

The results of the position measurements with known ground truth are shown in Table
6.1. The base of the robot was very carefully moved over the length of 400 mm, leaving
the robot’s joints unchanged. The measurements were performed at a camera distance
of 900–1100 mm for x and y and 700–1000 mm for the z-movements. The table shows
the standard deviations of the differences between the known 400 mm and the captured
translations over the course of 5 measurements. Note that our ground truth measurements
were made with a regular ruler and are therefore of limited accuracy. More specifically, we
think that our ground truth measurements are in fact less accurate than the motion capture
system itself. For this reason, the 3D position accuracy may be better than indicated in the
table. The values given should rather be seen as upper limits of the real accuracy at that
camera distance.

In a second approach, we measured the precision of the measurements when the camera
is moving. It is our strong belief that the real accuracy of the motion capture system is at
the same order of magnitude as the precision of multiple measurements taken from all
possible perspectives. Apart from a possible error in the overall scaling, which does not
influence the precision measurement, we believe that almost all error sources will show
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Precision of transformations
Translation Rotation

Transformation [mm] [rad] [degrees]
Upper Arm wrt Torso 0.4833 0.0042 0.2382
Lower Arm wrt Torso 0.5668 0.0026 0.1469
Lower Arm wrt Upper Arm 0.5638 0.0040 0.2304

Precision of joint angles
Rotation

Joint [rad] [degrees]
Shoulder 0.0036 0.2060
Elbow 0.0010 0.0546

Table 6.2: Precision when measuring from different camera angles

up when measurements are taken from different angles.
For this experiment, the pose of the robot was unchanged. Instead, the camera was

moved over a sequence of 2000 frames including widely differing camera angles. In Ta-
ble 6.2, the standard deviations of the measured values are given. For 3D positions, the
precision is at the same order of magnitude as the accuracy in Table 6.1, as far as we can
compare absolute positions with translation measurements. All orientation and joint angle
measurements are very precise below one forth of a degree.

From the data, we draw the following three conclusions: First, for moderate camera dis-
tances, the motion capture system is able to measure 3D positions with an error of approx.
0.5 mm. We could verify this by comparison to ground truth. Second, even though ground
truth is not available, we expect 3D orientations to be accurate up to 0.2–0.6 degrees. Third,
the joint angle measurements are very precise. Assuming a sufficiently good calibration,
we expect their accuracy to be better than 0.5 degrees.

6.3 Conclusion

In this work, we have described and developed a versatile motion capture system that
serves two purposes: First, we can estimate the kinematic model of the musculoskeletal
humanoid ECCE. Second, we can deliver real-time data of its pose and its joint angles,
which opens up several areas for application. Both static and dynamic data may be cap-
tured and put to use for various applications in robot simulation and control. One of
the central objectives of the Eccerobot project is physics-based robot simulation both for
off-line controller development as well as on-line as an internal model for robot control
[36, 27]. Our motion capture system is therefore of great use for simulation parameter es-
timation and creation of a simulation model. Evolution strategies are currently applied in
order to optimize the physics-based simulation model. Preliminary results appear promis-
ing and it is likely that this approach will lead to the required accuracy of the simulation
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model.

6.3.1 Future Work

Besides future work that makes use of motion data, there is still room for improvement
of the motion capture system itself. An improvement of high practical importance is the
correct handling of partially overlapping markers. When two circular markers are overlap-
ping, segmentation treats them as a single marker. In our system, this essentially removes
two markers from the set used for pose calculation in that frame. However, overlapping
markers may still be recovered by shape detectors such as the Hough transform. Pintaric
and Kaufmann [46] successfully recognize overlapped markers and can reconstruct their
centers. Adopting their approach could improve the robustness of our system.

Future work could also include visual tracking of the markers over time. Many motion
capture systems use tracking and forward-modeling to simplify the correspondence search
and minimize overall delay from image exposure to data output. For that, we may imple-
ment visual tracking of markers in 2D as a local search between subsequent frames. In the
absence of ambiguities and fast motions, this approach can replace our global search, will
save considerable time and reduce the overall delay. We have already developed a frame-
work for epipolar-based region tracking [19] that works well with wide baseline stereo
setups and may adapt our technique for marker tracking.

Better forward-estimation and substantial reduction of the marker search problem can
also be achieved by Kalman filtering, which is of wide-spread use in tracking and motion
capturing [37, 46, 57, 33]. As a general tool for estimation and prediction, an Extented
Kalman Filter (EKF) could even model the overall state of the system by a set of parameters
as little as the camera perspective and the joint angles of the observed robot. It can reliably
predict the marker movements under the assumption of steady angular velocities of the
robot’s joints. Augmenting our motion capture system with visual tracking and Kalman-
filtering of the kinematic motions may both improve the reliability and the delay of the
system.

6.3.2 Summary

In the course of this work, we have developed a motion capture system to measure joint
angles and estimate the kinematic model of the humanoid robot ECCE. First, we specified
the requirements of such a system and compared different techniques for tracking and
motion capturing. More specifically, we assessed the suitability of magnetic tracking and
optical tracking by infra-red-reflective markers. As a result, we decided to build a stereo-
scopic optical motion capture system using infra-red retro-reflective markers. Concerning
the software, we outlined the series of processing steps from the initial image acquisition
to pose recovery and joint angle calculations. For each processing step, we reviewed appli-
cable algorithms and adapted them to our specific needs. Most particularly, we described
a RANSAC-like algorithm for efficient 3D-3D matching of the marker targets. For each
processing step, we laid down the mathematical foundations. After that, we implemented
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the motion capture software in Matlab and later in parallelized C++. With this motion
capture system, we are able to deliver real-time data of the pose and the joint angles of the
robot.

Together with the motion capture system, we laid down methods for calibration. After
the calibration of the cameras and the marker targets, we discussed methods for kinematic
model estimation. For this, we compiled the mathematical models for ball joints and hinge
joints and derived procedures for parameter estimation. With these procedures, we were
able to model the kinematic chain of the robot at great precision. The kinematic model
finally serves two purposes, and these are the main contributions of this work: First, our
kinematic parameters help creating a physics-based model for robot simulation, which is
one of the objectives of the research project Eccerobot. Second and most importantly, our
motion capture system can deliver precise joint angle data in real-time. Joint angle mea-
surements finally lay the foundation for further research on model fitting and parameter
estimation for physics-based simulation as well as the control of the musculoskeletal robot.
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CHAPTER 7

APPENDIX

The appendix deals with the documentation of the software that was developed in the
course of this work. It does not include, however, the descriptions and the mathematical
foundation of the algorithms – all that is covered in the main part of this work. Here, we
focus solely on the technical details and, most especially, the software interfaces.

Both our Matlab and C++ code follows some technical conventions which will be taken
as granted in the following:

• Distances are always given in millimeters.

• Angles are always given as radians.

• Rodigues angles v are defined as in [24] and [5]. The Rodrigues angle [v1 v2 v3] is
equivalent to a rotation of 180 ‖v‖ /π degrees around the axis v.

• A quaternion q reflects a rotation by an angle φ around an axis v such that q =

[v sin(φ) cos(φ)]. This is the same notation as in [24]. However, some tracking sys-
tems like Optotrak and Polhemus may use a notation with the cos(φ) part as the first
element. As a rule of thumb, the last parameter q(4) of a quaternion q should always
be non-negative, not the first one.

• All camera parameters are defined exactly as in Bouguet’s Camera Calibration Tool-
box [5] and the OpenCV library [6].

• Rigid transformations that transform from one reference frame to another are named
in the scheme RT_from_to. Rigid transformations that transform to the world coor-
dinate system are also called poses and are named RT_markername. In this scheme,
poses and transformations are related as follows:
RT_to = RT_from_to * RT_from
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7.1 Documentation of the Matlab Functions

In the following, the most important Matlab functions that were programmed in the course
of this work are documented. In principle, the function library we created is almost self
contained. The only important dependency is Jean-Yves Bouguet’s Camera Calibration
Toolbox [5] – some of his functions are needed by our library. Besides the initial stereo
calibration, it is also used for 3D triangulation and projection. Besides this, we tried to
keep the package as self contained as possible. Most functions are platform independent
and compatible with GNU Octave.

It should be noted, however, that the Matlab functions are not meant for a production
usage. The motion capture functions included are not efficient enough for real-time per-
formance. They were rather developed in order to evaluate the underlying algorithms.
For actual motion capturing, we refer to the C++ methods documented in the subsequent
section. In contrast to the on-line functions, all the off-line calibration and kinematic model
estimation routines are exactly made for that purpose – they may well be used for accurate
kinematic model estimation and the calibration of a motion capture system.

7.1.1 Basic Mathematical Functions for 3D Vision

mocap_skeysym_from_v function

mocap_skeysym_from_v calculates the skew-symmetric matrix [v]× from a given three-
vector v. [v]× is defined such that the cross product of v with any vector w equals the
matrix product [v]× w.

Input Variables
v 3× 1 Three-vector
Output Variables
skewsym 3× 3 Skew-symmetric matrix of v

mocap_jacobian function

mocap_jacobian computes the numeric Jacobian matrix of a given function f(x) at point
x by central differences. The output matrix contains ∂fi(x)/∂xj at location (i, j). f must
be sufficiently smooth so that differentiation by central differences is possible. Note that
both f and x must be column vectors. We implemented this function in order to avoid
dependencies and allow platform independence as well as support for GNU Octave. If the
Matlab Optimization toolbox is present, finitedifferences may be more powerful in
some cases.

Input Variables
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f n× 1→ m× 1 Column vector valued function. f must be numeri-
cally differentiable by central differences.

x n× 1 Column valued vector x where the Jacobian should
be evaluated

epsilon 1 Optional: Interval for finite differencing, should be at
half the order of magnitude of the machine epsilon.
Default value is 1e-5.

Output Variables
J m× n The computed Jacobian is a numerical approximation

of

2
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∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
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mocap_nonlinear_least_squares function

mocap_nonlinear_least_squares is an rather simple implementation of the Levenberg-
Marquardt algorithm for unconstrained non-linear least squares minimization. Implemen-
tation and notation is based on the algorithm given on pages 600–602 in [24]. The function
minimizes the sum of squares of a given vector-valued function f(x).
If the Matlab optimization toolbox is available, it is sometimes favorable to use lsqnonlin
instead of this function. Matlab’s included Levenberg-Marquardt implementation may be
more likely to converge in difficult cases, as it uses more sophisticated means for condi-
tioning. The input and output format is similar. The only important restriction is that
in contrast to lsqnonlin, our function only allows column vectors as input and output
variables and not matrices.
We included this function in order to avoid the dependency on the Optimization Toolbox
and allow platform independence. mocap_nonlinear_least_squares works fine for
well-posed least squares problems and was also tested for GNU Octave.

Input Variables
f n× 1→ m× 1 Column vector valued function of the residuals. The

output values must neither be squared nor summed.
fmust be numerically differentiable by central differ-
ences.

x0 n× 1 Initial guess for x
tol_grad 1 Optional: Gradient norm accepted as termination cri-

terion, useful values are 1e−8 to 1e−4. Default value
is 1e− 6.
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max_iter 1 Optional: Maximum number of iterations, a useful
number is 3–20 times the number of variables. De-
fault value is 10n

debug 1 Optional: If 1, results are shown. If 2, results are
shown for each iteration. Default value is 0.

Output Variables
x n× 1 Minimizing variable vector
e_norm 1 2-norm of the residuals
e m× 1 Vector of residuals
exit_code 1 0 indicates convergence, −1 means that the maxi-

mum number of iterations was reached.
grad_norm 1 Norm of the gradient

mocap_fit_two_point_sets function

The mocap_fit_two_point_sets function returns the best fit rigid transformation RT

from a enumerated point set p1 to another enumerated point set p2. Technically, p2 - RT*p1

is minimized. The function features an implementation of Arun, Huang and Blostein’s al-
gorithm [2] with Umeyama’s correction [65] as described on page 33. As the solution is
closed form and only built-in functions are used, it is comparably fast.

Input Variables
p1 3× n First set of points (inhomogenous coordinates)
p2 3× n Second set of points (inhomogenous coordinates)
Output Variables
RT 4× 4 Minimizing rigid transformation from first to second

set
dev 1× n Residual spatial deviation per point
avgdev 1 Average reprojection error

7.1.2 Camera Calibration and 3D Triangulation

mocap_find_3d_correspondences function

The function mocap_find_3d_correspondences is given to sets of points, points_left
and points_right. Together with a structure of stereo camera parameter camparam, it
calculates the mutual distances of all possible point correspondences. It then triangulates
correspondence candidates and outputs a set of triangulates 3D points. Naturally, the
input sets of points need not be of same length. Technically, it finds correspondence candi-
dates correlated by the fundamental matrix. It then triangulates these candidates with the
mid-point algorithm. A detailed description on stereo correspondence matching and 3D
triangulation is given earlier on page 23. The C++ version of this function is much faster.
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In addition to that, mocap_find_3d_correspondences may also calculate the Jacobian
matrices of the 3D points. This calculation is rather slow, as it calculates finite differences
for all point coordinates.

Input Variables
points_left 2× n Set of n 2D points in the left image
points_right 2×m Set of m 2D points in the right image
camera_parameters structure Camera parameters as given by the

Matlab Camera Calibration Toolbox in
Calib_Results_stereo.mat

Output Variables
points_3d 3× k Column vector valued of triangulated 3D points
points_3d_jac 3× 4× k Jacobian matrices of the triangulates 3D points.

7.1.3 Rigid Body Calibration and Detection

mocap_normalize_rigid_body function

mocap_normalize_rigid_body normalizes a rigid body. The given rigid body M is
transformed by a rigid transformation RT−1 such that

• the first point is the origin (zero vector),

• the second point lies on the positive half line of the x-axis and

• the third point is on the x-y-plane (its y-coordinate is positive).

The order of the markers is preserved. After the normalization, the normalized rigid body
Mnorm fulfills M = RT−1Mnorm.

Input Variables
M 4× n Rigid body of n 3D points in homogeneous coordi-

nates.
Output Variables
M_norm 4× n Normalized rigid body with the properties noted

above.
RT_inv 4× 4 Inverse of the rigid transformation that was applied.

mocap_find_rigid_body function

mocap_find_rigid_body detects a given k points rigid body in a given unordered set
of n points. It outputs the estimated pose RT of the rigid body as well as an error measure
and the index list of the points that establish the correspondence.
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The details of the underlying algorithm a discussed on page 32 and following and not cov-
ered here. The algorithm is tailored for practical application. Its heuristics can handle up
to ≈ 100 points. Most importantly, it may also find a useful subset of 4 to k corresponding
points. This is especially useful when some rigid body points are occluded, as in most
cases 4 correspondences yield sufficient accuracy. In order to speed up the heuristic algo-
rithm, it is important to set max_distance appropriately. When max_distance is close
to but not inside the noise limit of the 3D measurements, the depth-first search can reject
almost all false correspondence candidates and substantially shrink the search tree.
This implementation is not optimized for speed. For a real-time capable solution, refer to
its C++ counterpart.

Input Variables
points 3× n Set of unordered 3D points
rigid_body 4× k Rigid body of k 3D points in homogeneous coordi-

nates.
max_distance 1 Optional: Maximum average distance of the rigid

body points and the measured points. The lower, the
more false correspondence can be sorted out during
the search. Default is 10 mm.

min_correspondences 1 Optional: Minimal number of corresponding points
between the rigid body and measured points. Must
be between 4 and k, default is 4.

Output Variables
RT 4× 4 Estimated pose of the rigid body. If no correspon-

dence was found, a nan matrix is returned.
avgdev 1 Average reprojection error of the rigid body points. If

no match was found, Inf is returned.
points_index k × 1 Index list of the measured points found. If

no match was found for a rigid body point i,
points_index(i) will be nan.

7.1.4 Kinematic Model Fitting

mocap_fit_single_ball_joint function

mocap_fit_single_ball_joint performs the kinematic model estimation of a single
ball-and-socket joint. The naming of the parameters follows a shoulder joint model for the
reasons of clarity. Of course, it may still be applied to any ball-and-socket connection. The
shoulder then corresponds to the marker target closer to the torso, the upper arm to
that closer to the limb.

In order to avoid over-parameterization, the following constraints are applied:
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• rotational part of RT_ball_shoulder(1:3,1:3) is the identity

• rotation for the first frame rot(1:3,1) is the zero vector

Obviously, there is no natural choice for the rotational coordinate system. The frame of ref-
erence is simply given by the constraint that RT_ball_shoulder and RT_upper_ball

are pure translations. The details on the underlying constraints are covered in Section 5.1
on page 55.
For this kinematic model estimator, an initial guess may optionally be given. If no initial
guess is given, the sphere joint estimation will be initialized by the global closed-form so-
lution described in Section 5.1. That procedure should deliver good results provided that
good measurements are input.

Input Variables
RT_upper_shoulder 4× 4× f Poses of the upper arm w.r.t. the shoulder rigid body

over f time frames
use_frames variable If scalar, number of the frames to use. These will

equally be spaced over the available f frames. If a
vector is given, its values are interpreted as indices of
the frames to be used.

RT_ball_shoulder 4× 4 Optional: Initial estimate for the translation from the
sphere w.r.t. the shoulder rigid body.

RT_upper_ball 4× 4 Optional: Initial estimate for the transformation from
the upper marker target w.r.t. the rotated sphere joint
coordinates.

Output Variables
RT_upper_ball 4× 4 Estimated transformation from the upper arm to the

“ball” of the ball-and-socket joint
RT_ball_shoulder 4× 4 Estimated transformation from the shoulder marker

target to the “socket”.
rot 3× f Estimated Rodrigues angles (as column vectors) that

transform from shoulder socket coordinates to ball
coordinates.

error 1× 2f Spatial residual error, alternating between upper arm
and shoulder coordinates.

mocap_fit_single_elbow_joint function

mocap_fit_single_elbow_joint performs the kinematic model estimation of a sin-
gle hinge joint. Since the rotation axis is a straight line, any point of the line may be a
best fit location for the center of rotation. Several constraints are applied to overcome this
ambiguity. More details on the algorithm and the constraints is given in Section 5.2 on
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page 61. Most importantly, the rotation is perform around the z-coordinate of the elbow
coordinate system.

Input Variables
RT_lower 4× 4× f Poses of the lower arm over f time frames
RT_upper 4× 4× f Poses of the upper arm over the same f time frames
use_frames variable If scalar, number of the frames to use. These will

equally be spaced over the available f frames. If a
vector is given, its values are interpreted as indices of
the frames to be used.

Output Variables
RT_lower_elbow 4× 4 Estimated transformation from the lower arm to the

elbow
RT_upper_elbow 4× 4 Estimated transformation from the upper arm to the

elbow socket. Several constraints are applied in order
to avoid over-parameterization. Details are given in
Section 5.2.

rot f × 1 Estimated angles around the z-axis that transform
from elbow socket coordinates to elbow coordinates.

error 1× 2f Spatial residual error, alternating between lower and
upper arm.

mocap_ball_joint_angle function

mocap_ball_joint_angle calculates the rotation rot of a sphere joint given the marker
target poses and the kinematic properties of that joint. It may be used to capture joint an-
gles once the kinematic model of the scene is calibrated. It minimizes the symmetric repro-
jection error of the two rigid body coordinate systems involved. However, this function
uses an iterative minimization technique. It may be several orders of magnitude slower
than the C++ version that uses a closed-form SVD solution.

Input Variables
RT_shoulder 4× 4 Pose of the shoulder
RT_upper 4× 4 Pose of the upper arm
RT_ball_shoulder 4× 4 Transformation from the ball “socket” to the shoulder

coordinate system.
RT_upper_ball 4× 4 Transformation from the upper arm to the ball joint.
Output Variables
rot 3 Estimated Rodrigues angles of the ball joint
avgdev 1 Average spatial deviation of the reprojected points
error 1× n Spatial deviation of the reprojected points
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mocap_hinge_joint_angle function

mocap_hinge_joint_angle calculates the angle α of a hinge joint given the marker
target poses and the kinematic properties of the joint. Analogous to the function above, it
may be used to capture joint angles. It also minimizes the symmetric reprojection error of
the two rigid body coordinate systems involved. However, this function uses an iterative
minimization technique. It may be several orders of magnitude slower than the C++ ver-
sion that uses a closed form (albeit not maximum-likelihood) SVD solution.

Input Variables
RT_upper 4× 4 Pose of the upper arm
RT_lower 4× 4 Pose of the lower arm
RT_elbow_upper 4× 4 Transformation from the elbow “socket” to the upper

arm.
RT_lower_elbow 4× 4 Transformation from the lower arm to the elbow.
Output Variables
alpha 1 Estimated angle of the elbow joint
avgdev 1 Average spatial deviation of the reprojected points
error 1× n Spatial deviation of the reprojected points

7.2 Documentation of the C++ program Motion-Capture

The C++ program motion-capture is an efficient implementation of our motion capture
pipeline outlined in Figure 2.1 on page 15. It is geared towards a minimal delay between
the physical image acquisition and the output of joint angles. For that, it makes use of
multi-core architectures, parallelizes image processing into two threads and the rigid body
search into that of the number of marker targets. The software architecture object-oriented:
motion-capture contains a class mocap that implements all methods needed by our
motion capture pipeline. Its methods behave mostly analogous to the Matlab function
described earlier.

The only dependencies of this software are the Firewire library Libdc1394 [44] and the
computer vision library OpenCV [6]. The distribution includes a Debian package for au-
tomatic installation on Ubuntu and a CMake script for installation from source on most
Linux and MacOS systems. Libdc1394 has recently announced support for Windows in
near future [44], possibly making our software also portable to Windows.

7.2.1 Usage of the program Motion-Capture

Our program is interfaced by command line and expects all camera, motion capture and
kinematic settings in an XML configuration file. A sample configuration file for our cali-
brated system is included in the distribution. The program may be run by the command
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motion-capture [OPTIONS] [XMLFILE], where [XMLFILE] is the path to the XML
configuration file and [OPTIONS] an optional set of options, which are documented in
the table below.

Options for the program Motion-Capture
-i Interactive mode: writes capturing output only into

stdout when key is hit
-s Silent mode: residuals are no more written into

stderr

-n No graphics: camera images are no more shown
-l No labeling (default: data labels are output in the first

line)
-r No rigid body poses are output
-a No joint angles are output

The motion capture data is written as tabulator separated values into the standard out-
put. At the same time, residual measures and error messages are written into the er-
ror output. This allows the user to send machine-readable capturing results to a file
or another program while observing the precision of the system. As an example, run-
ning motion-capture -ilr settings.xml >> capture.dat will append manu-
ally captured joint angles to the file capture.dat.
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Figure 7.1: Experiment Setup. Foreground: Stereo camera setup with IR illumination.
Background: Eccerobot test rig with IR reflective markers attached.
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