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Abstract—1In this work, we present a general approach to
task planning based on contingent planning and run-time
sensing, which forms part of a robot task planning framework
called KVP. Using the general-purpose PKS planner, we model
information-gathering actions at plan time that have multiple
possible outcomes at run time. As a result, perception and
sensing arise as necessary preconditions for manipulation,
rather than being hard-coded as a task itself. We demonstrate
the effectiveness of our approach on two simple scenarios
covering visual and force sensing, and discuss its applicability
to more general tasks in automation and mobile manipulation,
involving arbitrary numbers of sensors and manipulators.

I. INTRODUCTION

In order to model realistic environments for robot task
planning, symbolic task planners need to reason about in-
complete knowledge and perceptual information as provided
by sensors. In order to facilitate this task and apply general
purpose planning to the robotics domain, we developed the
Knowledge of Volumes framework for robot task Planning
(KVP), which was initially presented in [1].

KVP is guided by three principles, which make it useful
for a broad range of robot task planning applications that
require incomplete knowledge, real-world geometry, and
multiple robots and sensors: (1) KVP uses PKS (Planning
with Knowledge and Sensing) [2], [3], a general-purpose
symbolic planner that operates at the knowledge level. PKS
can represent known and unknown information, and model
sensing actions using clear and concise domain descriptions,
making it well suited for reasoning in structured, partially
known environments of the kind that arise in many robot
scenarios. (2) KVP is one of the first approaches to treat
3D geometric volumes as an intermediary representation be-
tween continuously-valued robot motions and discrete sym-
bolic actions, tackling the general problem in robot task plan-
ning of bridging the gap between geometric and symbolic
representations. (3) By using the intermediate representation
of volumes, KVP can model continuous geometry, in contrast
to arbitrary discretization, as discussed in [1].

The central contribution of this work is to apply general-
purpose, contingent planning techniques to the robotics do-
main and demonstrate the effectiveness of this approach in
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Fig. 1. In the FORCE SENSING scenario, a compliant robot manipulator
can sense if beverage containers are filled by weighing them, and holding
them upright while moving to prevent spilling, unless they are known to be
completely empty or not opened.

two scenarios, namely a FORCE SENSING (Fig. [I) and a
VISUAL SENSING (Fig. [3) scenario.

In the following, we first compare our approach with
existing solutions. We then discuss our framework in Sec.
and demonstrate its effectivess in two scenarios in Sec. [l
Finally, we discuss future work and conclude in Sec.

A. Related Work

Early work on robot task planning dates back to systems
like Shakey [4] and Handey [5]. Since that time, the field has
made significant developments, and the general problem of
robot task planning has been approached from diverse areas
of research, including probabilistic techniques from artificial
intelligence [6], closed-world symbolic planning [7], [8], [9],
formal synthesis [10], [11], and manipulation planning [12].

A recent and notable contribution is the belief space
planner by Kaelbling and Lozano-Pérez [6], which models a
belief space of probability distributions over states, making
it robust against uncertainty and change. In contrast to belief
states, our work instead relies on discrete knowledge and
is designed for structured environments with incomplete
information and sensing. Furthermore, while Kaelbling and
Lozano-Pérez use octrees to represent swept volumes of
robot motion, we use sets of convex shapes, allowing efficient
collision detection in the deterministic case [1]. In both cases,
sensing actions are formulated as preconditions for manipu-
lation, rather than being hard-coded as tasks themselves.
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Fig. 2. Overview of the implemented KVP software architecture [1].

A number of approaches also address the problem of inte-
grating symbolic planning and motion planning. For instance,
our work is in part inspired by Kaelbling and Lozano-Pérez’s
earlier work on hierarchical task and motion planning in [13],
borrowing the continuous geometry of swept volumes. How-
ever, while the geometric preconditions may be similar, their
underlying aggressively hierarchical planning strategy differs
from the knowledge-based planner we use here, which has
also been used in prior work to connect robot vision and
grasping with symbolic action [14]. Further approaches that
integrate symbolic and geometric reasoning are presented by
Cambon, Alami and Gravot [7], handling geometric precon-
ditions and effects; Dornhege et al. [9]; and, more recently,
Plaku and Hager [8], which additionally allow differential
motion constraints in a sampling-based motion and action
planner. We note that the latter three approaches assume a
closed world, where all symbols must be either true or false.
On the contrary, our approach represents knowledge in an
open-world manner, which allow us to model incomplete
knowledge and information-gathering actions. We elaborate
on the advantages of this representation in Sec.

II. APPROACH

In our work, sensing in robot task planning is seen as
a necessary precondition for manipulation and, as such,
requires an integrated approach with solutions from dis-
tinct fields ranging from motion planning to formal meth-
ods. In particular, our KVP framework combines several
of these techniques. Symbolic task planning, which in-
cludes information-gathering actions and contingencies, is
performed by the PKS planner [2], [3], details of which are
given below. Motion planning and collision detection rely
heavily on the Robotics Library (RL)' [15], with several
crucial additions to swept volume computation with sets of
convex bodies [1]. In order to efficiently generate these sets
of convex bodies, Mamou and Ghorbel’s approximate convex
decomposition algorithm [16] is applied. An overview of
KVP’s component architecture is shown in Fig. 2] and its
implementation is discussed in depth in [1].

A. Planning with Knowledge and Sensing

Symbolic planning in KVP relies on the general-purpose
PKS planner, which constructs plans in the presence of
incomplete information and sensing actions. PKS works at
the knowledge-level by reasoning about how the planner’s
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knowledge state, rather than the world state, changes due
to action. PKS works with a restricted subset of a first-
order language, allowing it to support a rich representation
with features such as functions and run-time variables. This
approach differs from planners that work with possible
worlds models or sets of worlds forming belief states.

PKS is based on a generalization of STRIPS [17]. Unlike
STRIPS, which uses a single database to model the world
state, PKS’s knowledge state is represented by five databases,
each of which models a particular type of knowledge. Ac-
tions can modify any of these databases, which has the effect
of updating the planner’s knowledge state. To ensure efficient
inference, PKS restricts the type of knowledge (especially
disjunctions) that it can represent in each database:

Kj: This database is like a standard STRIPS database except
that both positive and negative facts are permitted and the
closed-world assumption is not applied. K} is used to model
action effects that change the world. K can include any
ground literal £, where ¢ € Ky means “the planner knows £.”
Ky can also contain known function (in)equality mappings.

K,,: This database models the plan-time effects of sensing
actions that return binary values. A formula ¢ € K,, means
that at plan time, the planner knows whether ¢ or —¢ holds,
and that at run time this disjunction will be resolved. The
use of K, for robot sensing is described in detail below.

K,: This database stores information about function values
that will become known at execution-time. In particular, K,
can model the plan-time effects of sensing actions that return
constants. K, can contain any unnested function term f,
where f € K, means the planner “knows the value of f.”

PKS also includes databases for modelling a restricted type
of disjunctive information (K,) and “local closed-world”
information (LCW), and a mechanism for denoting interval-
bounded values which is useful for reasoning about noisy
sensors. These features are not used in this paper.

PKS knowledge states can be queried in three different
ways. First, simple knowledge assertions can be tested with
a query K (¢) which asks: “is a formula ¢ true?” Second, a
query K, (¢) asks whether ¢ is known to be true or known
to be false (i.e., does the planner “know whether ¢”). Finally,
K, (t) asks “is the value of function ¢ known?” The negation
of the above queries can also be used.

Using this representation, symbolic actions are defined in
PKS by describing their (typed) parameters, preconditions,
and effects. Preconditions contain a list of queries that must
evaluate as true before an action can be applied. Effects are
described by a list of add and del operations, similar to
STRIPS. Example PKS actions are shown below in Table

B. Contingency Planning for Robot Sensing

One aspect of PKS that is particularly important for robot
task planning is its ability to model sensing actions that
return information about the state of the world. In particular,
PKS offers two databases, K,, and K, that represent un-
known information (binary or function values, respectively)
that will become known at run time after the sensing actions
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TABLE I
FORCE SENSING SCENARIO: EXAMPLE ACTIONS AND GOAL DEFINTION

action senseWeight(?o0:object)
preconds:
- K, (isSpillable(?0)) &
K(isGrasped(?0))
effects:
add (K, isSpillable(?0))

action transferUpright(?o:object)
preconds:
K(isSpillable(?0)) &
K(isGrasped(?0)) &
K(!isRemoved(?0))
effects:
add(Kf, isRemoved(?0))

goal: forallK(?o:object)

(K(isRemoved(?0)) | K(—isGrasped(?0)))

TABLE I
FORCE SENSING SCENARIO: EXAMPLE SOLUTION

grasp(canl)
senselleight (canl)
branch isSpillable(canl)
transferUpright(canl)
ungrasp(canl)
grasp(can2)
senseleight (can2)
branch isSpillable(can2)
transferUpright (can2)
ungrasp(can2)
branch —isSpillable(can2)
transfer(can2)
ungrasp(can2)
branch —isSpillable(canl)
transfer(canl)

are actually executed in the world. Using these databases,
PKS can reason about the possible outcomes of sensing
actions during plan construction, by generating plans with
contingencies (conditional branches).

For instance, in general, PKS builds plans by reasoning
about actions in a forward-chaining manner: if the precon-
ditions of an action are satisfied by the planner’s knowledge
state, then the effects of that action can be applied to produce
a new knowledge state. If a formula ¢ is in the K,, database,
denoting the fact that ¢ or —¢ will become known at run
time, then a pair of conditional branches can be added to
a plan, with one branch assuming ¢ is true and the other
branch assuming —¢ is true. (The construction of contingent
plans using K, is similar.) Planning then continues along
each branch until the goal conditions (a set of queries) are
satisfied. A sample plan with branches is shown in Table
and described in greater detail below.

1II. EVALUATION

We now demonstrate and evaluate our approach in two
simple scenarios. In the FORCE SENSING scenario (Fig. [I)),
a compliant robot manipulator has the ability to grasp, lift,
and transfer beverage containers which are located on a

table. When a container is lifted, the robot can sense its
weight and, from this, reason whether the drink must be held
upright in order to prevent spilling. The goal is to transfer
all containers to a second table, and the robot may hold its
gripper upright during these motions, if required. In order
to keep this scenario simple, the location of all objects are
known and no sensing except force sensing is available.

The second scenario is a demonstration of VISUAL SENS-
ING (Fig. 3) using a bimanual robot whose hands can reach
different areas of a table. In this case, the robot can sense
if bottles on the table are empty or full using a top-down
camera. The goal is to “clean up” all empty bottles and
remove them to a certain “dishwasher” location. To do this,
the robot must move objects that are only accessible by its
left arm to a location that its right arm can reach, a behavior
which arises purely from symbolic planning.

In the following sections, we discuss the symbolic domain
definitions of both scenarios. We provide an example solution
for the first scenario, using conditional branches, and discuss
aspects of the plan-based solution for the second scenario.

A. Force Sensing Scenario

Table [Il shows two PKS actions in the FORCE SENSING
scenario, which includes an action senseWeight which
senses a beverage container ?70. To perform this action, the
robot must first be grasping the object and must not already
know whether it is spillable (which acts as an efficiency
condition to ensure only new knowledge is gained from
this action). When this action is performed, knowledge of
whether 70 is spillable or not is added to PKS’s K, database.

An example manipulation action, transferUpright, is
also shown in Table [l Using this action, objects that are
grasped and not yet “removed” to the second table can be
transferred. Besides transferUpright, which only handles
objects that can be spilled, the complete domain definition
also contains a similar action transfer, handling all other
objects, as well as the necessary grasp and ungrasp actions
that precede and follow the transfer actions.

Table [II] shown an example contingent plan generated at
plan time. The KVP architecture (Fig. 2)) executes the actions
in this plan and chooses appropriate branches to follow by
assessing the results of sensed information. This scenario was
physically evaluated on a joint-impedance controlled light-
weight 7-DoF robot with a force-controlled parallel gripper.
Force was measured by internal torque sensing.

B. Visual Sensing scenario

In contrast to the previous scenario, visual information in
this domain (defined in Table [[II)) can be gathered indepen-
dently from manipulation actions. In this case, the sensing
action senseIfEmpty has no precondition other than the
requirement that the knowledge it gathers must be new. An
example manipulation action, pickUp, is also shown. Since
this scenario contains two robot manipulators, and not all
locations can be reached by both hands, the preconditions
define an external call isReachable to the motion planning
component to check reachability for a specific manipulator



Fig. 3.
empty bottles, which a bimanual robot is supposed to remove from the table
to a “dishwasher” location on the left side, behind the table [1].

In the VISUAL SENSING scenario, a camera is used to recognize

TABLE III
VISUAL SENSING SCENARIO: EXAMPLE ACTIONS AND GOAL

action senselfEmpty(?o0:object)
preconds:
- K, (isEmptyBottle(?0))
effects:
add(K,,, isEmptyBottle(?0))

action pickUp(?r:robot, ?o:object, ?1l:location)
preconds:
K(?1 = getObjectLocation(?0)) &
K(handEmpty(?r)) &
K(extern(isReachable(?1, ?7r)))
effects:
del (K, ?1 = getObjectLocation(?0)),
del(Ky, handEmpty(?r)),
add(k;, inHand(?o0, ?7r))

goal: forallK(?o:object)
(K(getObjectLocation(?0) = dishwasher) |
K(—isEmptyBottle(?0)))

and location. This interaction of the symbolic and motion
planners is described in detail in [1]. Evaluation was per-
formed on a two 6-DoF industrial manipulator setup with
Meka Robotics H2 humanoid hands, with an RGB camera
facing top-down for simple color-filtering object recognition,
as described in [18].

It is interesting to observe that this simple bimanual robot
scenario already gives rise to interesting behavior: since the
right arm cannot directly reach all objects that need to be
transferred to the goal location, the left arm must pass those
objects to a location reachable by both hands. This behavior
has not been pre-programmed, but rather arises purely from
symbolic and geometric planning.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduce an approach to task planning
with sensing actions, incomplete information, and multiple
manipulators and sensors, using the PKS planner and the
KVP framework. We illustrate the effectiveness of this ap-
proach on two simple scenarios that cover force sensing and
visual sensing, with real execution on physical robot setups.

As future work, we plan to generalize our symbolic
approach to task space constraints for object manipulation,
and explore more efficient heuristic search strategies at the
symbolic planning level, including building plans with loops.
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