
Fast Color-Based Object Recognition
Independent of Position and Orientation

Martijn van de Giessen and Jürgen Schmidhuber

IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland &
TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

Abstract. Small mobile robots typically have little on-board processing
power for time-consuming vision algorithms. Here we show how they
can quickly extract very dense yet highly useful information from color
images. A single pass through all pixels of an image serves to segment
it into color-dependent regions and to compactly represent it by a short
list of the average hues, saturations and color intensities of its regions; all
other information is discarded. Experiments with two image databases
show that in 90 % of all cases the remaining information is sufficient for
a simple weighted voting algorithm to recognize objects shown in query
images, independently of position and orientation and partial occlusions.

1 Introduction

Small, fast, vision-based mobile robots must process many images per second
to react in time. It does not matter so much if some object sometimes is not
properly recognized the first instant it is seen, provided the robot’s sequential
vision system (SVS) can use subsequent camera shots to incrementally increase
its confidence about whether or not the object is present in its visual field. In
principle such an SVS for dealing with uncertainty and noise can be implemented
by Bayesian sequential decision makers or learned by recurrent neural networks
[1,2,3].

The image pre-processor should be able to quickly produce a compact yet
informative description of the current image, to be fed into the SVS. So we are
interested in fast algorithms that often (but not necessarily always) produce
image descriptions containing all the information necessary for decent object
recognition. Of course, the more reliable the pre-processor, the less burden on
the SVS.

Many previous approaches to object recognition are computationally too de-
manding for the limited on-board computers of mobile robots, or permit only
small changes in object position and orientation, and few if any occlusions. Here
we propose a simple, fast, and rather reliable method based solely on the number
of image regions with similar color.

In what follows we will describe two methods, a fast one for image processing
and coding (Section 2), and another one for demonstrating that the image codes
convey sufficient information for object recognition, given a database of images

W. Duch et al. (Eds.): ICANN 2005, LNCS 3696, pp. 469–474, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

470 M. van de Giessen and J. Schmidhuber

(Section 3). The latter searches for a match in the database by judging simi-
larity between the query image and database images based on weighted votes.
Performance in terms of recognition rate and speed is evaluated in Section 4.

2 Processing Images

2.1 HSV Images

We represent images in HSV color space, which provides a good distinction
between three properties of a color: hue, saturation and illumination (value).
These properties are related to each other in Figure 1. HSV codes provide simple
ways of filtering out non-reliable color information conveyed by areas with low
illumination or low saturation (e.g., almost grey areas). The shaded parts in
figure 1 contain such non-reliable colors.

2.2 Region Extraction

Since every step in the recognition process should be fast, we use a very simple
region extraction algorithm loosely inspired by the intensity-based method pro-
posed by Tuytelaars and Van Gool [4]. From the top left to the bottom right of
an image, every pixel j is compared to the regions of its upper and left neighbor,
if these neighboring pixels exist (at borders the pixel j is only compared to the
regions of its upper or left neighbor, depending on which pixel exists). We ask
whether the differences between the hue (hj), saturation (sj) and value (vj) of
pixel j and the average hue (hi), saturation (si) and value (vi) of region i are
smaller than the thresholds th, ts and tv, respectively:

|hj − hi| < th, |sj − si| < ts, |vj − vi| < tv (1)

Note that the hue describes a circle as in figure 1. The pixel j is added
to the most similar region or, if inequality 1 does not hold for both regions, a
new region is formed. When the pixel j is added to a region, the other region
adjacent to j is merged with the region containing j if |Pj − Pk| < tp holds for
hue, saturation and value. Pj and Pk again stand for the average hue, saturation
and value of the region containing pixel j and the region adjacent to pixel j
respectively. Comparing to the average characteristics of the neighboring region
instead of to the neighboring pixel has the advantage that more coherent regions
are generated. This is due to the fact that the average values change more slowly
when a region grows, so pixels in fast changing gradients are not added to a
region.

After all the regions have been extracted, regions with a very small area
(e.g. less than 50 pixels) and regions with their average saturation and value in
the shaded regions of figure 1 are discarded. One reason why small regions are
abandoned is that there is a high chance that they will not appear on a picture
of the same object on a different scale or viewed from a different angle. Another
reason is that smaller regions are more sensitive to the distortions caused by

Fast Color-Based Object Recognition 471

pixels on the edge of that region. We save the average hue, saturation and value
of every region in a database, since this information is completely position and
orientation independent.

3 Querying Images

3.1 Initial Selection

The following object recognition procedure is not mandatory for mobile robots
that just need to compactly encode images and feed them into an SVS-based
controller, without having to match them against a database. But it serves to
demonstrate that the image codes retain essential information about the depicted
objects. It may be possible to further speed up the straight-forward procedure
below, e.g., by rearranging the database in hierarchical form.

To search for images of objects similar to the one in a query image, we first
extract the latter’s regions as above. Every region in the query image is compared
to all regions of all images in the database. To avoid wasting time on computing
complex distance measures between very different regions, we first discard those
that are clearly dissimilar to the queried region. This is done in a way similar to
the one of Nene and Nayar [5]: All regions are considered as points in a 3D space
with hue, saturation and intensity (value) on the axes. A box is computed with
the query region in the center and the sides perpendicular to the three axes.
Database regions outside this box are discarded. Thus groups of similar regions
are formed for every region in the query image.

3.2 Weighted Voting

All database regions i within each group get a weighted vote wij . This vote is
determined by the distance

dij = 5−
1
2 ((vi − vj)2 + (si coshi − sj coshj)2 + (si sin hi − sj sinhj)2)

1
2 (2)

in color between a region i in the database and a region j in the query image.
We compensate for the distinctiveness of a query region and the complexity of a
database image. The distance between the average hue, saturation and value of
two regions is computed as in [6]. The distinctiveness of a region is determined on
the basis of how many regions in the database survive after the initial selection in
section 3.1. The larger the number of regions in the box, the less distinctive the
region. To give more weight to more distinctive regions, we divide by the number
of remaining regions, nsimilar . It is also useful to compensate for ‘complex’ images
with many regions, which have a greater chance of featuring a region close to
a query region. That is why we divide by the number of regions in the image
containing this region, nrpi. The total vote per region becomes

wij =
1 − dij

nsimilar · nrpi
(3)

The total vote for an object is given by the sum of the weighted votes for all
regions of that object.

472 M. van de Giessen and J. Schmidhuber

h
s

v

Fig. 1. The HSV color space in cylin-
drical form. Gray areas contain non-
reliable color information.

Fig. 2. The color information (hue) in low
quality JPEGs is unreliable (left), com-
pared to this information in a high quality
image of the same object (right).

4 Experimental Results

4.1 ZuBuD Buildings Database

We tested both recognition rate and speed on a databases containing real-world
images, resampled to 320× 240 pixels, that were not made under special simpli-
fying conditions. Our first choice was the ZuBuD database [7] containing 1005
pictures of 201 buildings in Zürich, taken outside and under varying weather
conditions. The database comes with 115 query images (low-quality jpegs, res-
olution 320 × 240 pixels). For every queried image, we list the top five matches
produced by our algorithm. Despite the low quality of color information in the
queries, 82 images are recognized correctly, 29 images are within the top five, and
4 outside the top five. The color information in the query images is of a very low
quality, as can be seen clearly in Figure 2, where the hue from a query image and
a database image from the same building are shown next to each other. This lack
of reliable color information prevented a correct recognition. The query image in
the top row of Figure 3 exemplifies our algorithm’s insensitivity to obstructions,
such as trees.

To test performance on high-quality images (easily producible on small mo-
bile robots), we built a new database containing 4 images of each of the 201
objects, using the 5th image of every object as a query image. The improved im-
age quality led to substantially improved recognition rate: 183 objects correctly
recognized, 13 in the top 5 matches, and only 5 out of 201 outside the top 5.
The second row of figure 3 shows our algorithm’s insensitivity to orientation and
position.

The reasons for the five failures and some of the non-perfect results in the
top five seem to be twofold. One reason is that these database and/or query
images mainly have regions with very low saturation. The second is that some
of these query images contain only a rather small part of the object. The last
row of figure 3 shows one of the misses due to low saturation. For a learning
robot with an SVS based on adaptive recurrent neural networks [3] these misses
will not pose a big problem, since they will be identified as noise by the learning
algorithm.

Fast Color-Based Object Recognition 473

Query 1 2 3 4 5

Fig. 3. Three examples of query images (left) and the top five similar objects according
to our recognition algorithm. The top row shows the robustness against occlusions, the
middle row shows the independence of position and orientation and the third row shows
a miss, because of the low saturation of the object in the query image.

4.2 Coil-100 Object Database

Our method is not specialized on the ZuBuD database. It is designed to be
widely applicable. We hardly tuned any parameters; one just has to select the
tresholds of Section 3.1 as small as possible to speed up the recognition process.
To illustrate the method’s generality, we also applied it to the Coil-100 database
[8], which contains 100 objects photographed from various angles. We placed
images of objects taken under angles 0, 100, 215, 270 and 325 degrees in the
database and used the 25 degree views as query images. Results: 84 recognized
objects, 12 in the top 5, 4 outside the top 5. Again the non-recognized images
mainly contain areas in various shades of gray, discarded for their poor color
information.

4.3 Performance in Terms of Speed

We report results for a standard Pentium 4 2.8 GHz machine. The two time
consuming parts of the recognition process are region extraction and the search
for similar regions in the database. The latter is not mandatory for robots that
just need to compress the relevant information for an SVS. The speed of the
former depends on image complexity, but even complex images like those in the
ZuBuD database were processed within 0.19s.

Database search speed linearly depends on the number of regions in the
database and on the number of regions found in the query image. The database
for the second experiment contains 93682 regions. On average 177 regions are ex-
tracted from an image in the ZuBuD database. An average search takes roughly
0.7s, including region extraction in the query image. Simple objects speed up
the process: Recognizing one of the 100 objects in the Coil-100 database takes
roughly 0.18s, including query image processing.

474 M. van de Giessen and J. Schmidhuber

5 Conclusions

We propose a simple, fast, rather reliable algorithm for image coding and recogni-
tion. It uses a simple color-based region extractor and an object matcher based
on weighted voting. The former works in HSV color space, discarding regions
with unreliable color information, keeping only reliable, position and orientation
independent color data to encode objects. Image similarity is measured by votes
whose weights depend on the similarity between the regions of a query image
and database images; we compensate for the number of similar regions and re-
gions per database image. On the ZuBuD and Coil-100 databases we obtain
satisfactory recognition rates and speeds.

It should be noted, however, that this work is quite preliminary; more in
depth studies are necessary to compare our algorithm to previous proposals in
the literature. This is the subject of ongoing work.

Acknowledgements

We would like to thank Hao Shao for supplying code used by his alternative
color-based image recognition algorithm [9]. It gave us a fine starting point for
the development of the present algorithm.

References

1. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent net-
works and their computational complexity. In: Back-propagation: Theory, Architec-
tures and Applications. Hillsdale, NJ: Erlbaum (1994)

2. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: A
survey. IEEE Transactions on Neural Networks 6 (1995) 1212–1228

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9
(1997) 1735–1780

4. Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely
invariant regions. In: British Machine Vision Conference. (2000)

5. Nene, S.A., Nayar, S.K.: A simple algorithm for nearest neighbor search in high
dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19
(1997)

6. Smith, J.R., Chang, S.F.: Visualseek: A fully automated content-based image query
system. In: ACM Multimedia. (1996) 87–98

7. Shao, H., Svoboda, T., Van Gool, L.: ZuBuD — Zürich buildings database
for image based recognition. Technical Report 260, Computer Vision Labora-
tory, Swiss Federal Institute of Technology (2003) Database downloadable from
http://www.vision.ee.ethz.ch/showroom/.

8. Nene, S., Nayar, S., Murase, H.: Columbia object image library: Coil-100. Techni-
cal Report CUCS-006-96, Department of Computer Science, Columbia University
(1996)

9. Shao, H., Svoboda, T., Tuytelaars, T., Van Gool, L.: Hpat indexing for fast ob-
ject/scene recognition based on local appearance. In Lew, M., Huang, T., Sebe, N.,
Zhou, X.S., eds.: Computer lecture notes on image and video retrieval. LNCS 2728,
Springers (2003) 71–80

	Introduction
	Processing Images
	HSV Images
	Region Extraction

	Querying Images
	Initial Selection
	Weighted Voting

	Experimental Results
	ZuBuD Buildings Database
	Coil-100 Object Database
	Performance in Terms of Speed

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

