
C. Stephanidis (Ed.): Universal Access in HCI, Part II, HCII 2007, LNCS 4555, pp. 858–867, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrating Multimodal Cues Using Grammar Based
Models

Manuel Giuliani and Alois Knoll

Robotics and Embedded Systems Group
Department of Informatics, Technische Universität München

Boltzmannstraße 3, D-85748 Garching bei München, Germany
giuliani@in.tum.de, knoll@in.tum.de

Abstract. Multimodal systems must process several input streams efficiently
and represent the input in a way that allows the establishment of connections
between modalities. This paper describes a multimodal system that uses
Combinatory Categorial Grammars to parse several input streams and translate
them into logical formulas. These logical formulas are expressed in Hybrid
Logic, which is very suitable for multimodal integration because it can
represent temporal relationships between modes in an abstract way. This level
of abstraction makes it possible to define rules for multimodal processing in a
straightforward way.

1 Introduction

Multimodal systems are programs that are able to process several input streams and
produce multimodal output. They record the utterances of a human user, combine
them to build a conjoined interpretation, and derive their output from that
interpretation. Therefore multimodal systems are more flexible and error-tolerant than
systems that have only one input modality. In the best case, multimodal systems can
be very natural to interact with, because the users do not have to learn how to operate
the system: They can simply interact with it as they would with another human. To
realise their full potential, multimodal systems must not only be able to recognise
multiple modes, they also have to process the input information fast and in a way that
allows a computer to reason over the input and determine the action it should execute.

This paper describes an approach for a multimodal system that involves an input
processing based on a grammar formalism that is mainly used for language
processing: Combinatory Categorial Grammar (CCG). By using OpenCCG, a Java-
based implementation of the CCG, the input of speech recognition and other modes
can be translated into Hybrid Logic formulas. These formulas can then be used to
compute reactions by the system on a user input.

The structure of this paper is as follows. In Section 2 we review related work to our
approach. Sections 3 and 4 introduce CCG and OpenCCG. Hybrid Logic is explained
in Section 5 before our approach for a multimodal system is depicted in Section 6.
Section 7 shows an example input processing, while Section 8 concludes this paper.

 Integrating Multimodal Cues Using Grammar Based Models 859

2 Related Work

Using grammars for the processing of multimodal cues has been proposed in different
variations. The first who reported a grammatical framework for a multimodal
interface were Shimazu, Arita, and Takashima [1]. They developed a Multimodal
Definite Clause Grammar (MM-DCG) that was able to handle an arbitrary number of
modes and stored temporal information inside the grammar. The DCG formalism that
they used is suitable for a straightforward transformation of the grammar rules into
Prolog code. However, MM-DCG assumes that the several modes are known from the
beginning and ties them strictly together in the grammar. This leads to very domain-
specific grammars that are hard to extend.

Johnston and Bangalore [2] use a multimodal context-free grammar to represent
the input streams of speech recognition and pen input. The word entries of their
grammar are composed of n + 1 components for the n input modes and one
component for their joint meaning. Therefore, the grammar is also a semantic module
which adds meaning to the input stream while parsing it. This approach is very useful
for small domains. Johnston and Bangalore describe a grammar that was created for
an application that manages contact details with speech and pen input in a PDA. The
possible speech-gesture combinations for this example are limited and known in
advance. That makes it possible to store them together in a single grammar. Also, the
application does not change very much, hence they do not need a grammar that is
easy to extend.

Nevatia, Zhao and Hongeng [3] introduce an event ontology that aims to display
complex spatio-temporal events in a simple way. For that, they propose an Event
Recognition Language (ERL) to specify possible events for a system that recognises
certain events like human movements in a video stream. The events are divided into
three classes: primitive events build the basis of the hierarchy, single-thread events
are composed of primitive events, and multi-thread events are a number of single-
thread events with a temporal/spatial/logical relationship. An approach like the ERL
makes it possible for every user to specify complex events without worrying about the
low-level processing of the underlying system.

Ryoo and Aggarwal [4] propose a general methodology for automated recognition
of complex human activities. They use a representation scheme based on a context-
free grammar (CFG). Similar to the ERL, this scheme can represent basic actions and
complex actions. In this case the CFG allows the human actions that should be
recognised by their system to be defined. In the program, they involve the CFG-based
representation to recognise human activities in video streams automatically. The
achieved recognition results are very high, but only for movements that correspond to
the actions specified in the grammar. The probabilistic nature of human activity is not
yet captured in their system.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) was introduced by Ades [5] and Steedman
[6]. It is an extension to the Categorial Grammar (CG) of Ajdukiewicz [7] and

860 M. Giuliani and A. Knoll

Bar-Hillel [8]. Traditional context-free grammar formalisms use a top-down approach
for parsing sentences. The structure of a language that should be parsed is stored in a
set of rules, while the lexicon contains words with their assigned word categories.
Categorial Grammars (CG) have a bottom-up approach in which the structure of a
language is reflected in the lexicon of the grammar. Each word in the lexicon of a CG
is assigned to a category that can be either atomic or complex. Example (1) shows the
lexicon for a small grammar1:

(1) a. loves := (s\np)/np : λx. λy.love(x,y)
 b. Peter := np : Peter
 c. Mary := np : Mary

This publication follows Mark Steedman by using the “result leftmost” notation.
This notation utilises the slash operators / and \. The rightward-combining functor
over domain β into range α is written α / β, while the leftward-combining functor is
written α \ β. For example, ditransitive verbs like loves use the category (s \ np) / np
presented in (1a). They can be combined with a nominal phrase (np) that stands to the
right of the verb. After that, they are combined with a np to the left of the verb to
yield a sentence (s).

The combination of words to sentence constituents is done by a small set of rules.
The simplest rules used in a CG are the rules of Functional Application, as displayed
in (2):

(2) Functional Application Rules
 a. X / Y : f Y : a ⇒ X : fa (>)
 b. Y : a X \ Y : f ⇒ X : fa (<)

With the rules of Functional Application and the categories from the small grammar
example in (1), the sentence “Peter loves Mary” can be parsed as shown in (3):

(3)

In addition to the rules of Functional Application, CCG adds a couple of extra rules
to the basic set of rules. The first of these extra rules are the rules of Harmonic
Functional Composition that are introduced in (4). They allow the combination of
contiguous words that do not build a sentence constituent together. The rules of
forward and backward composition are depicted by “>B” and “<B” respectively.

(4) Harmonic Functional Composition Rules
 a. X / Y : f Y / Z :g ⇒ X / Z : λx.f(gx) (>B)
 b. Y \ Z : g X \ Y : f ⇒ X \ Z : λx.f(gx) (<B)

1 The CCG rules and the grammar example in (1) use the λ-calculus for the display of

semantics. The λ-calculus will not be explained in this paper, because OpenCCG - that will
be illustrated in Section 4 - uses Hybrid Logic.

 Integrating Multimodal Cues Using Grammar Based Models 861

The second type of rules that are introduced by CCG are the Type-Raising rules.
These rules turn atomic categories into functions over functions over this category.
The Type-Raising rules are displayed in (5); the variable T is a variable that stands for
all categories.

(5) Type-Raising Rules
 a. X : a ⇒ T / (T \ X) : λf.fa (>T)
 b. X : a ⇒ T \ (T / X) : λf.fa (<T)

4 OpenCCG

OpenCCG [9] is a Java-based implementation of the CCG formalism. It is capable of
parsing and realising sentences. That means it can translate utterances into a logical
form as well as take a given logical form and convert it back to a sentence. OpenCCG
emerged from the Grok system and was extended by Michael White. In OpenCCG
rules, categories, and lexicon entries are stored in a set of mandatory and optional
XML files. Traditionally CCG uses the λ-calculus to represent parsed sentences, but
OpenCCG uses the more flexible Hybrid Logic as proposed by Baldridge and Kruijff
[10] to implement a dependency-based perspective on meaning. Hybrid Logic will be
explained in the next section.

5 Hybrid Logic

Hybrid logic goes back to the hybrid tense logic by Prior [11], which is a hybridised
version of ordinary tense logic. Although classical logic and modal logic are quite
powerful in expressing relations between entities and their properties, they lack the
ability to directly reference specific states at which a proposition holds. In standard
modal logic, truth is relative to a set of points. These points are usually taken to
represent worlds, times, space or states in a computer. Therefore only expressions that
are for example relative to a set of times, like the sentence

(6) The sun is shining.

can be formalised in modal logic. This statement has different truth values at different
times. The problem is that some statements in natural language are true exactly at one
time only. For example the statement

(7) It is 7 o'clock 11 October 2006.

is only true at exactly 7 o'clock on the 11th of October 2006 and false at all other
times. Example (6) can be formalised in modal logic, but this is not possible with
example (7).

Therefore, a logic is needed with the ability to name states (or points, worlds,
times) and reference them later. Hybrid logic extends modal logic to reach that goal.
By introducing a new class of formulas, called nominals. Nominals are used to name
states; they are true at exactly one state and are used instead of ordinary propositional
symbols. Formulas can be formed by using standard boolean operators and a new
satisfaction operator, which is depicted by @. The satisfaction operator makes it

862 M. Giuliani and A. Knoll

possible to formalise that a statement is true at a particular state. The formula @ip is
defined as follows:

Definition 1. @ip is true if and only if the proposition p is true in the unique state
named by the nominal i

Nominals and the satisfaction operator make it possible to formalise many relations
that cannot be represented with standard modal temporal logic. The following
sentence2

(8) Ed finished the book.

cannot be expressed by the modalities 〈F〉 and 〈P〉 (staying for future and past) alone,
because these modalities do not state the exact point in time at which Ed finished the
book. Through the addition of a nominal i it is possible to refer to that point in time:

(9)

Hybrid logic is also suitable to represent linguistic meaning of sentences. This is
done by a conjunction of modalised terms, which are tied by a nominal that names the
head proposition of that conjunction. In Example (10), the hybrid logic representation
of the sentence Ed wrote a long book in London is shown:

(10)

The whole expression is dominated by the head proposition write, which is
denoted by the nominal h1. The modalities 〈ACT〉, 〈PAT〉, 〈GR〉 and 〈LOC〉 stand for
the dependency relations Actor, Patient, Locative and General Relationship
respectively. These relations are dependent on the head proposition. The hybrid logic
term in Example (11) shows the general definition for the dependency relations:

(11)

The dependency relation 〈δi〉 is associated with a nominal di. Each nominal di
names a state where a dependent expressed as a proposition depi, should be evaluated.
δi is a successor of h, the nominal identifying the head of the hybrid logic term.

6 Multimodal System

This section describes the multimodal system we propose for the grammar-based
integration of several modes. As discussed in the previous sections, the system has to
meet the following design criteria:

− The system must be independent from specific input modes. This ensures that the
system can always be extended by additional modes.

2 Examples (8), (9), and (10) are taken from [10].

 Integrating Multimodal Cues Using Grammar Based Models 863

− The data of the input modes must be accessible at a high level. For this the input
processing and the complexity of the modes has to be transparent and the input
streams must be represented on an abstract level.

− The time at which events like speech or gesture input occur must be captured and
represented in the system. This happens both on a low level where timestamps of
events are stored and also on a high level where the points in time are represented
in an abstract representation.

Section 6.1 gives an overview, while several aspects of the proposed system are
highlighted in Sections 6.2 to 6.4.

6.1 System Overview

Figure 1 shows an overview for our multimodal integration system. The input streams
of the different modes are parsed by CCGs and represented on an abstract level by
Hybrid Logic formulas. As mentioned in section 5, in Hybrid Logic formulas time
points can be represented by nominals. These nominals are stored in the nominal-
timestamp mapping module together with two timestamps that refer to the start and
end time of an input stream. The Hybrid Logic formulas can be processed in two
ways; on the one hand they are used to generate rules for the rule set of the system,
while on the other hand the formulas can be processed directly in the online mode.
For this, the set of rules must be already filled. The rules can be entered manually or
learnt automatically from stored input data.

6.2 Input Modules

The several input modules have to register with the system before their input can be
processed. The system has to make sure that an appropriate grammar is present for all
registered input modules or that a new module can send well-formed Hybrid Logic
formulas in any form. It is also imaginable that data sources from other multimodal
systems may serve as input to our system. Since Hybrid Logic formulas can be
represented in XML, any data that is in XML and involves information about input
streams and timestamps can be transformed to Hybrid Logic formulas via XSLT
stylesheets. The output of multimodal annotation tools like ELAN [12] or
EXMARaLDA [13] can also be a source of data to the system.

The input modes that are used in our system are speech recognition, object
recognition, face tracking, and gesture recognition. The use of grammars for parsing
speech input is straightforward and common. For the other input modes we are
planning to use a similar approach like in [3] and [4] that involves a hierarchy of
actions/gestures. In this way, complex actions can be composed by primitive actions.

6.3 Nominal-Timestamp Mapping

The nominal-timestamp mapping module has two purposes. First, it stores every
nominal with two timestamps for the start time and end time of the event that is
denominated by the nominal. The method of determining timestamps for each event

864 M. Giuliani and A. Knoll

Fig. 1. Overview for the multimodal system

must be designed carefully. Especially as they differ for every input mode. For
example, timestamps for speech recognition can be saved at the level of sentences or
individual words, while the input from the face tracking component cannot be saved
on a video frame level because the amount of data would be too large.

The second purpose of the nominal-timestamp mapping module is to allow other
modules to compare the temporal relation between nominals. The four temporal
relations that should be available are defined in the following list, these are similar to
the interval relations reported by Allen in [14]:

precedes(x,y) Returns true if the end time of nominal x is earlier than the start

time of nominal y.
succeeds(x,y) Returns true if the start time of nominal x is later than the end time

of nominal y.
includes(x,y) Returns true if the start time of nominal x is earlier than the start

time of nominal y and the end time of nominal x is later than the
end time of nominal y.

includedBy(x,y) Returns true if the start time of nominal x is later than the start
time of nominal y and the end time of nominal x is earlier than the
end time of nominal y.

6.4 Grammars, Hybrid Logic Formulas

A grammar for speech processing has already been developed for German and
English. It is written with OpenCCG and is designed for a specific task where a user

 Integrating Multimodal Cues Using Grammar Based Models 865

instructs a robot to pick up and lay down objects like cubes, bolts and slats. See [15]
for a complete description of the task and the robot assembly. The grammar can parse
the following sentence types:

Statements “The bolt is yellow.”
Imperative Sentences “Take a slat!”
Questions “Where is the red cube?”
Confirmations “Yes.” “No.” “OK.”

The Hybrid Logic formulas representing the parsed sentences display their
syntactic structure, as shown in Section 7.

The grammars for the other input modules like face tracking and gesture
recognition are based on a hierarchy of actions. Thus, primitive actions build the basis
of the hierarchy, while complex actions can be composed by combining those primary
actions. For example, for the face tracking it is not suitable to generate logic formulas
for every video frame that is captured by the video camera that is filming the user. It
is rather desirable to join several frames to one action.

7 Processing Example

This section shows a full example how the processing of three input modes looks like.
The three input modes are speech recognition, gesture recognition, and object
recognition. The scenario of the example involves a robot, a user, and parts of a toy
construction set. The user instructs the robot to pick up a certain object by pointing at
a cube and saying “Take this cube.”'. The sentence is passed by the speech
recognition to the grammar, which yields the logical form presented in (12):

(12)

(13) displays the logical form that is generated by the gesture recognition:

(13)

The input by the object recognition is also parsed by a grammar. The corresponding
logical form can be seen in (14):

(14)

The processing of the Hybrid Logic formulas involves the following steps: First,
the collected Hybrid Logic formulas are displayed for the user in an abstract way.
Figure 2 shows one possible way to present the input modes.

From this presentation, and with the help of the time relation functions of the
nominal-timestamp mapping module, the developer can generate rules in a pseudo
code that are then translated back into Hybrid Logic formulas. These rule formulas
are stored in the set of rules afterwards and can be applied for input processing in the
online mode afterwards. Example (15) shows a rule in pseudo code for the example
given here:

866 M. Giuliani and A. Knoll

Fig. 2. Display of three input modes: Speech recognition x1, gesture recognition x2, and object
recognition x3

(15)

8 Conclusion

We described an approach for a multimodal system that uses Combinatory Categorial
Grammars to parse input modes. The parsing process yields a representation of the
modalities in Hybrid Logic, which is very useful for this task because it models
temporal relationships. The proposed system displays the temporal connections
between input modes on an abstract level, which allows the developer of the system to
manually generate processing rules that enable the system to respond to user input
appropriately.

Acknowledgements. This work was supported by the EU FP6 IST Cognitive Systems
Integrated Project “JAST” (FP6-003747-IP), http://www.euprojects-jast.net/.

References

1. Shimazu, H., Arita, S., Takashima, Y.: Multi-modal definite clause grammar. In:
Proceedings of the 15th Conference on Computational linguistics, pp. 832–836.
Association for Computational Linguistics, Morristown, NJ, USA (1994)

2. Johnston, M., Bangalore, S.: Finite-state multimodal parsing and understanding. In:
Proceedings of COLING-2000, Saarbruecken, Germany (2000)

 Integrating Multimodal Cues Using Grammar Based Models 867

3. Nevatia, R., Zhao, T., Hongeng, S.: Hierarchical language-based representation of events
in video streams. In: IEEE Workshop on Event Mining (2003)

4. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through context-
free grammar based representation. In: CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Washington,
DC, pp. 1709–1718. IEEE Computer Society Press, Los Alamitos (2006)

5. Ades, A.E., Steedman, M.J.: On the order of words. Linguistics and philosophy 4, 517–
558 (1982)

6. Steedman, M.: The syntactic process. MIT Press, Cambridge, MA (2000)
7. Ajdukiewicz, K.: Die syntaktische konnexität. Studia Philosophica 1, 1–27 (1935)
8. Bar-Hillel, Y.: A quasi-arithmetic notation for syntactic description. Language 29, 47–58

(1953)
9. White, M.: Efficient realization of coordinate structures in combinatory categorial

grammar. Research on Language & Computation 4(1), 39–75 (2006)
10. Baldridge, J., Kruijff, G.J.: Coupling ccg and hybrid logic dependency semantics. In:

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL 02), University of Pennsylania, Philadelphia, PA (2002)

11. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)
12. Brugman, H., Russel, A.: Annotating multi-media/multi-modal resources with elan. In: 4th

International Conference on Language Resources and Evaluation (LREC2004), Lisbon
(26.05.2004-28.05.2004 2004), pp. 2065–2068 (2004)

13. Schmidt, T., Wörner, K.: Erstellen und analysieren von gesprächskorpora mit exmaralda.
Gesprächsforschung - Online-Zeitschrift zur verbalen Interaktion Ausgabe 6, 171–195
(2005)

14. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11),
832–843 (1983)

15. Foster, M.E., By, T., Rickert, M., Knoll, A.: Human-robot dialogue for joint construction
tasks. In: Proceedings, Eighth International Conference on Multimodal Interfaces (ICMI
2006), Banff (November 2006)

	Introduction
	Related Work
	Combinatory Categorial Grammar
	OpenCCG
	Hybrid Logic
	Multimodal System
	System Overview
	Input Modules
	Nominal-Timestamp Mapping
	Grammars, Hybrid Logic Formulas

	Processing Example
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

