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Abstract—We present the MuDiS project. The main goal of
MuDiS is to develop a Multimodal Dialogue System that can
be adapted quickly to a wide range of various scenarios. In this
interdisciplinary project, we unite researchers from diverse areas,
including computational linguistics, computer science, electrical
engineering, and psychology. The different research lines of
MuDiS reflect the interdisciplinary character of the project.
In this publication, we show how MuDiS collects data from
human-human experiments to get new insights in multimodal
human interaction. Furthermore, we present the first version of
the MuDiS system architecture, which contains new components
for classification of head movements, multimodal fusion, and
dialogue management. Finally, we describe the application of the
MuDiS system in a human-robot interaction scenario to prove
that MuDiS can be implemented in different domains.

I. INTRODUCTION

Human communication is multimodal. Humans use their
whole body, their hands, their head, gazes or their face to ex-
press complex information, including their current emotional
status, their intentions about their next actions, or simply their
agreement or disagreement. But humans are not only able
to express themselves in a multimodal way, in addition they
are experts in interpreting the multimodal utterances of other
humans, to understand their emotions and intentions.

In this publication, we present the project MuDiS, which
develops a new kind of Multimodal Dialogue System that
enables an artificial agent—e.g. a computer or a robot—to
interact with a human in a natural and multimodal way. The
main feature of this dialogue system is its generality. It can be
adapted to a wide range of applications and domains in a short
time. To accomplish this ambitious goal, the project unites
researchers from such diverse research areas as computational
linguistics, computer science, electrical engineering, and psy-
chology, which explore the aspects of a multimodal dialogue

system from different directions. The new feature of MuDiS
besides its generality, in comparison to other multimodal
dialogue systems, will be that it will interpret input of new
input channels that have never been integrated in a multimodal
dialogue system before. Namely, we are planning to integrate
components for emotion recognition, multi person tracking,
and focus of attention detection.

The remainder of this publication is organised as follows:
in Section II we review shortly some important multimodal
systems that influenced the design of the MuDiS system
architecture. The psychologist partners of MuDiS are execut-
ing human-human experiments, to find out more about how
humans use multimodality. The setup for these experiments
is described in Section III. The results of the experiments
will directly feed into new models for multimodal fusion and
dialogue management. After that, Section IV gives a general
overview of the MuDiS system architecture and highlights
some of the specific system parts, including components for
head movement recognition, multimodal fusion and a dialogue
manager. Finally, Section V shows how the MuDiS approach
can be applied to a human-robot interaction scenario, before
Section VI concludes this publication.

II. RELATED WORK

Many approaches for multimodal dialogue systems have
been described in literature, since Bolt introduced the “put-
that-there” system [1]. These systems can be roughly separated
into those systems that fuse the input from several input
channels already on feature level ([2], [3]), and those systems
that integrate the input after an initial unimodal interpretation
in a later stage ([4], [5], [6]).

Nearly all of these systems have in common that they
claim to be multimodal, but most of them combine only two



modalities, for example speech and gestures or speech and pen
input. A second disadvantage of many multimodal systems is
that they are developed for a certain domain and can only
be ported to applications with changing substantial parts of
the system. There are some exceptions, including Johnston et
al. [3], who present a framework for rapid prototyping of infor-
mation systems with speech and pen input, or the talk project
[7], who describe a grammatical framework for development
of multimodal grammars. The work from Landragin et al. [8]
is also very interesting, as they are showing how they port
MMIL, the MultiModal Interface Language that is used for
multimodal meaning representation, to a new domain.

The goal of MuDiS is to overcome these obstacles by pro-
viding a software architecture that is extensible and applicable
to a wide range of applications. Additionally, we plan to inte-
grate information from new input channels, including emotion
recognition and person tracking, which, to our knowledge, has
not been done before.

The next section describes the human-human interaction
experiments we are conducting to get more insights about
human behaviour during a collaboration task. The results of
these studies will be directly implemented in the MuDiS
system architecture, by applying the findings in new models
for multimodal fusion and dialogue management.

III. HUMAN-HUMAN EXPERIMENTS

A. Experimental Setup

In order to improve human-robot interaction, a near to
naturalistic interaction between two humans was observed.
One of the humans represented the robot, the other one the
human co-worker in an industrial setting. The “robot” was an
instructed experimenter whereas the human co-worker was a
test person. “Robot” and participant sat face to face at a table
and were asked to solve a joint construction task with the
LEGO Mindstorms system (see Figure 1).

Fig. 1. Experimental setup for the MuDiS human-human experiments: the
experimenter on the right enacts a “robot” that is able to hand over LEGO
pieces to the experiment participant, who assembles the pieces according to
a given assembly plan.

The “robot” had been instructed to act like an ideal robot
in terms of being supportive, not getting impatient, handing

over LEGO parts just in time, explaining difficult construction
steps, or trying to cheer up the co-worker. “It” was able to
point, to speak, to hear and to react like a human, apart from
two constraints: like a real robot, it could not put together
LEGO parts, and it’s sight was artificially impaired by placing
a semi-transparent foil between the two actors. The foil was
about 30 cm high so that LEGO parts could be exchanged,
and the faces of the interaction partners were still visible for
both of them. Thus, mimic information could still be used, for
example to identify the co-worker’s emotional state.

B. Procedure

To make sure that every participant had a comparable level
of experience with the LEGO Mindstorms parts, there was a
practice phase before the experimental phase. In this practice
task the participants had to construct the word “TEST” from
available LEGO bricks under supervision of the “robot”. Thus,
the experiment participants could make themselves acquainted
with the instructions, the different LEGO parts, and the overall
setting.

Before the test phase, participants were asked to complete a
questionnaire surveying their former experience with LEGO,
their affinity to technology in general, and their current
emotional state. After the experiment, a second questionnaire
had to be completed concerning the affective state again, the
experienced quality of the interaction, and ratings of the task
and the support by the robot.

C. Data Collection

During the experiment, recorded data included speech of
participant and robot, physiological data (heart rate, skin
conductance, pulse) and camera views from four different
angles. For the analysis of facial expressions, one camera was
pointed directly on the face of the participant. Another camera
perspective showed the table from the top for gesture recogni-
tion purposes and for coding the task progress. Additionally,
there was also a camera aiming at the “robot” to analyse the
(appropriate) reactions of it. The fourth camera recorded the
whole interaction scene from a more distant point of view.
This allows for an identification of important dynamic events
occurring between the interacting partners.

D. Data Analysis

With regard to the video data, a qualitative data analysis is
planned, comparable to those suggested by Kahn et al. [9],
Zara et al. [10], or Dautenhahn and Werry [11]. As evaluation
categories are highly context-dependent, we will develop a
system of our own with diverse dimensions. Coding the
different modalities independently will be the most basic
step. This comprises not only facial expressions and speech,
but also gestures, certain movements, as well as changes in
physiological parameters. Beyond those micro events, we are
also interested in their psychologically relevant interplay or
certain timely orders (e.g. “event a always shortly happens
before event b”). With regard to speech, the complete dialogue



structure of the interaction will be analysed. On this meta level,
the dynamics of initiative are another interesting aspect.

Such a categorisation will help on the one hand to find
principles and structures in human-human interaction that have
to be implemented for an improvement of human-robot inter-
action. On the other hand, it helps to give tags to the different
behaviours, actions, and events that have to be recognised in
the interaction process. With them it shall be possible to train
automatic recognition algorithms with suitable parameters.

We plan to implement the findings from the human-human
experiments in some components of the MuDiS system archi-
tecture, which will be described in the following section.

IV. MUDIS SYSTEM ARCHITECTURE

In this section, we provide an overview for the MuDiS
system architecture and describe parts of the system in more
detail in the following subsections. Figure 2 shows a schematic
overview of the MuDiS system architecture. The figure shows
that the MuDiS approach for a multimodal system is based
on the concepts of modularity and generality. The interfaces
between the single system parts are strictly defined. This way,
parts of the system can be exchanged without the need for
adjusting the rest of the system.
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Fig. 2. The MuDiS system architecture. The figure shows the minimal system
configuration. The system parts highlighted in grey are developed by MuDiS
researchers. For the remaining parts MuDiS defines general interfaces so that
the components can be exchanged according to a given scenario.

Currently, the MuDiS team is working on the system parts
that are highlighted in grey in Figure 2. The multimodal fusion
component gets input by speech recognition, a component that
classifies human head movements and physiological data from
a component that measures the skin conductance response,
heart rate, and blood volume pressure. Fusion takes the speech
and head movement data (physiological data can not be
interpreted yet), produces a semantic translation of the data
and sends it to the dialogue manager. The dialogue manager
keeps track of the current state of the conversation, such
that together with the input by the multimodal fusion, it can
infer actions that need to be executed next. These actions are
then sent to an output generation component, which translates
the actions into commands for a connected output device—
Figure 2 shows for example a robot and speakers to play

speech messages—to give multimodal feedback to a human,
who is working with the system.

A. Head Movement Recognition
The head movement recognition component we are describ-

ing here is the first step to a more sophisticated emotion
recognition module, which we plan to implement in a later
stage of the MuDiS project. Recent progress in the field of
computer vision allows a robust and accurate classification of
human faces with a high runtime. This renders our component
for face interpretation inevitable to realize the paradigm of
intuitive human-machine interaction. It is able to robustly
recognise facial features independent of the visible person’s
ethnic group or culture. It allows to determine facial expres-
sions, gaze direction, gender, and age and much more. For the
MuDiS project we currently classify two head movements that
are important for multimodal communication: head nodding
and shaking. These movements indicate or emphasize an
affirmative or a rejecting attitude.

Our approach uses model-based image interpretation, which
allows to accurately infer these highly semantic interpretation
results by exploiting a priori knowledge of human heads
and faces, such as shape and skin colour information. These
techniques reduce the large amount of image data to a small set
of model parameters that describe the current pose of the head,
which facilitates and accelerates subsequent interpretation. Fit-
ting the face model is the computational challenge of finding
the model parameters that best describes the face within a
given image. This section describes the main components of
model-based techniques, compare to [12].

The face model contains a parameter vector p that rep-
resents its configurations. We integrate a deformable 3D
wire frame model of a human face (Candide-3), which is
introduced and explained in detail in [13]. The model con-
sists of 116 anatomical landmarks and its parameter vec-
tor p = (rx , ry , rz , s, tx , ty , σ, α)T describes the affine trans-
formation (rx , ry , rz , s, tx , ty ) and the deformation (σ, α). The
deformation parameters indicate the shape and animation units
such as state of the mouth, roundness of the eyes, raising of
the eye brows, etc., see Figure 3.

Fig. 3. The Candide-3 face model is able to reflect various face shapes and
facial expressions.

The Candide-3 face model is inspired by the biological
constitution of a head, it represents the three-dimensional



structure of the head and the muscular deformation of the
facial components. This makes it highly suited to head and face
interpretation scenarios and outperforms earlier approaches,
such as two-dimensional active shape models [14].

The localization algorithm computes a rough estimate of
the most important model parameters by investigating the
global position and the size of the visible face. These initial
model parameters are further refined by the subsequent fitting
algorithm. Our system integrates the approach of [15], which
detects the model’s affine transformation in case the image
shows a frontal view face.

The objective function f(I,p) computes a comparable value
that specifies how accurately a parametrised model p matches
an image I . It is also known as the likelihood, similarity,
energy, cost, goodness, or quality function. Traditional ap-
proaches attempt to figure out good computation rules of
this function in a manual procedure which is laborious and
erroneous. In contrast, our earlier publication [12] proposes a
method that automatically learns the best computation rules
of this function based on objective information theoretic
measures. This approach considers a large set of training
images and the quality of different model parameterizations
is known for each image. Using this information, it is able
to learn a good objective function and it is also able to
objectively evaluate its performance via previously unseen test
images with annotations. The advantages of this approach
are that it does not rely on expert knowledge in the field
of computer vision and it yields more robust and accurate
objective functions, which facilitate the task of the associated
fitting algorithms. Furthermore, it is not restricted to face
model fitting but applicable independently of the domain.

The fitting algorithm searches for the model parameters that
best describe the visible face. These parameters correspond to
the global minimum of the objective function. Fitting algo-
rithms have been subject of intensive research and evaluation.
We refer to [16] for a recent overview and categorization.
Since we adapt the objective function rather than the fitting
algorithm to the specifics of the face interpretation scenario,
we are able to use any standard fitting technique. Because
facial expression recognition requires real-time capabilities,
we chose a quick hill climbing algorithm. Note, that the rea-
sonable specification of the objective function makes this local
optimisation method nearly as accurate as global optimization
strategies, such as genetic algorithms.

Inferring the head action, such as nodding or shaking,
relies on the correctly fitted face model. We record several
short image sequences of persons displaying a head ges-
ture (nodding, shaking). Additionally, image sequences were
recorded that show the person’s head in a neutral position. The
model is tracked through these short image sequences and the
model parameters are exploited to calculate the motional and
transitional speed from the affine transformation parameters.
From this data a classifier is trained to infer head gestures. We

rely on Hidden Markov Models [17] because they specifically
consider temporal dependencies within the presented training
data.

Estimating Facial Expressions is tackled by computing a
large number of features that describe the structure and the
muscular activity of the face. Our approach considers both,
structural and temporal features of the face. For each image
within the image sequence of the live video stream, the
model’s deformation parameters represent structural informa-
tion and the motion of model’s landmark points yields tempo-
ral features. This large amount of feature data is assembled into
a feature vector that describes one individual image, whereas a
stream of feature vectors describes the visible activity within
a video stream. From this vast amount of data, a classifier
is generated with machine learning techniques that infers the
facial expression. Our approach implements decision trees [18]
as a quick and robust classifier.

B. Multimodal Fusion
In this section, we describe the multimodal fusion compo-

nent, which is used to integrate the input by speech and head
movement recognition to a combined meaning representation.
MuDiS is a system that applies a late fusion approach. Accord-
ingly, on an abstract level, multimodal content is considered as
sequences of discrete data objects. The general approach for
the multimodal fusion looks as follows: every input modality
connects to the fusion component over a dedicated one-way
channel to send information about characterised events. A
typical example is a speech recogniser sending text strings
of the recognised speech. The multimodal fusion module
generates abstract semantic representations for the single input
streams, for example by using a parser that processes the input
string by the speech recogniser and analyses the structure of
the recognised sentence. The semantic representations for each
input channel are then combined to produce an integrated
representation of multimodal events, which are afterwards
passed on to the dialogue manager.

One of the main goals in MuDiS is to keep the system
architecture general and easy to adapt to various domains.
For this reason, we developed a new algorithm for speech
processing, in which sentences are broken up into tokens that
can be translated to unique semantic primitives (actions or
events). These primitives are stored in a database so that
they can be easily exchanged when MuDiS is applied to a
new domain. This new approach solves some of the typical
problems that are related to speech, for example ambiguity or
the use of different word structures to express similar content.
To illustrate this, consider the following example: a human
working with a robot might order the robot to bring a certain
object, for which she uses one of the sentences in (1) (other
examples are also thinkable).

(1) a. Bring me object X.
b. Get me object X.

The MuDiS multimodal fusion breaks both of these sen-
tences into two tokens “bring me” and “object X” or “get me”



and “object X”, respectively. Then it looks up the semantic
primitives that correspond to the tokens in its internal database.
The database maps both tokens “bring me” and “get me” to
the same semantic primitive “GET”. This way, different verbal
utterances can be linked to a set of defined semantic primitives
just as needed for a given scenario.

C. Dialogue Manager

After processing of the input coming from the different
input modalities, multimodal fusion sends its interpretation to
the dialogue manager, which is the central component of the
MuDiS architecture that keeps track of the current state in the
dialogue and initiates the next actions and utterances.

Currently, the MuDiS dialogue manager is based on a state
machine and a knowledge base implemented in Prolog. Prolog
is a declarative logic programming language and we use it
for checks, building temporarily queries, and as a knowledge
database in the dialogue steps. Therefore, relations are defined
as clauses. For example, if an instantiation of a match is found,
Prolog makes the union of clauses and translates them into a
query, e.g. exists(’Channel105’). If the clause returns false,
Prolog tries to backtrack alternative query rules. Complex
query rules are implemented by means of recursive predicates.

When the dialogue manager gets input by the multimodal
fusion component, it queries the knowledge base to infer the
next dialogue steps. Afterwards, it generates the commands
and speech output to the human. The underlying finite state
machine represents general dialogue nodes, which are indepen-
dent from the application and can be reused. The state machine
is based on the work by Mealy [19]. Finally, the dialogue
manager sends the commands to the robot and the speech
output to a simple text-to-speech component that replaces
a more sophisticated output generation module, which will
be implemented in a later stage of the project. The robot
additionally gives feedback to the dialogue manager, which is
also used to infer the next actions. Figure 4 shows a schematic
overview of the dialogue manager, it represents the general
dialogue modes, which are application-independent and thus
reusable. The dialogue manager runs into dialogue modes by
events generated from the multimodal fusion. The events and
the outputs are analogue to [19] in the transitions of the finite
state machine.

V. MUDIS IN A HUMAN-ROBOT SCENARIO

To prove the general applicability of the MuDiS system, we
implemented MuDiS in a human-robot interaction scenario. In
this scenario a mobile robot, which is equipped with two 7-
DOF arms, moves around in a kitchen environment, and serves
coffee and other refreshments to a human that communicates
with the robot over two modalities. On the one hand the human
can speak to the robot via a head-mounted microphone, on
the other hand the robot is able to detect the humans head
movements and to recognise if the human nods or shakes the
head to signal agreement or disagreement. Figure 5 shows
a schematic overview of the kitchen environment. The whole
environment is monitored by a infrared tracking system, which
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Fig. 4. The figure shows the MuDiS dialogue manager, which is a
combination of a finite state machine and a Prolog database. The dialogue
manager is triggered by events from the multimodal fusion component, and
the Prolog knowledge database.

tracks infrared emitters that are mounted on certain objects
and locations in the kitchen. The tracked objects include a
cup, a glass, and a plate, while the marked locations of the
kitchen are the fridge, the sink, and the oven. These objects
and locations, as well as the commands a human can give to
the robot, are stored as tokens in a database, as we described
in Section IV-B.

Fig. 5. MuDiS in a human-robot interaction scenario: the figure shows a
schematic overview in which robot and human have separated work areas; the
robot can bring objects from a table and can be ordered to move to certain
locations (table, fridge, oven, sink) in the kitchen.

The two input modalities for this scenario—speech and head
movements—were already presented in Section IV-A. Table I
shows an example dialogue between the human and the robot.
The MuDiS system enables the robot to understand basic
sentences uttered by the human. In this simple scenario, the
human mainly gives the robot commands it has to execute.
However, the robot is already able to learn new labels and
associate them to objects and locations in the kitchen area,
which is also presented in the dialogue in Table I. In addition,
the robot has to reason over the orders it gets by the human.
If it cannot execute a given order it has to react appropriately
by generating an adequate spoken remark, for example when
it has to move to a certain location and does not know the



position yet, the robot has to ask for the according infrared
marker that is associated with the location.

Speaker Dialogue and Actions
HUMAN Hello.
ROBOT Hello, how are you today? What can I do for you?
HUMAN Please, bring me a glass of water.
ROBOT Already on my way.

Robot goes to the table, grasps the glass of water,
returns to the human, and hands over the glass.

ROBOT Here you are. Is this what you wanted?
Human nods. Robot recognises the nodding

and displays it on its display.
HUMAN Thank you. Now, bring me the cookie plate.
ROBOT No problem.

Robot goes to the table, grasps plate with cookies,
returns to the human, and hands over the plate.

ROBOT Here you are.
[ . . . ]

HUMAN Go to the sink.
ROBOT I don’t know where the sink is.
HUMAN It’s at marker X1.

Robot moves to marker X1/the sink.
ROBOT Okay.

[ . . . ]

TABLE I
EXAMPLE DIALOGUE BETWEEN HUMAN AND ROBOT THAT COMPRISES

INPUT FROM SPEECH AND HEAD MOVEMENTS.

VI. CONCLUSION AND FUTURE WORK

We presented MuDiS, an interdisciplinary project that unites
researchers from computational linguistics, computer science,
electrical engineering, and psychology, which develop a multi-
modal dialogue system. The main feature of this new dialogue
system is that it has been designed to be applicable to various
domains already from early developmental phases.

In this publication, we showed the experimental setup for
the human-human interaction experiments we are currently
conducting to get more insights in human behaviour during
a collaboration task. The results from these experiments will
be applied to define aspects of the dialogue systems in a
later stage of the project, e.g. to determine timing relations of
modalities in the multimodal fusion component. Furthermore,
we introduced the general structure of the MuDiS system
architecture and highlighted three system components: head
movement classifier, multimodal fusion, and dialogue man-
ager. Finally, we showed how MuDiS was integrated in a
human-robot interaction scenario.

In the future, we plan to extend the MuDiS system archi-
tecture and apply it to other domains to show the generality of
our approach. Especially, we plan to implement a sophisticated
emotion recognition module and versions of multimodal fusion
and dialogue manager that are based on findings of the human-
human experiments and can handle more complex dialogue
situations.
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