
Query Evaluation and Information Fusion in a Retrieval
System for Multimedia Documents

I. Glöckner and A. Knoll
Faculty of Technology, University of Bielefeld

P.O. 10 01 31, 33501 Bielefeld, Germany

Abstract Despite their predominant application in
robotics, the utility of methods for information fusion
is not limited to sensor-based fusion tasks. The paper
presents an information retrieval (IR) system for multi-
media weather documents which makes use of linguistic
fusion methods and a semantically rich retrieval model
based on methods from fuzzy set theory. The computa-
tional problem of how to efficiently organize the query
evaluation process is solved by object-based mediation
and asynchronous parallel invocations both of the doc-
ument evaluation and fusion methods.

Keywords: Information fusion, information retrieval,
mediators, multimedia systems

1 Introduction

Today’s information search services do not fully
exploit the wealth of information offered. One of
the reasons is that the mutual contribution of a doc-
ument’s parts to its content are not considered, nor
are relationships of documents (e.g. hyperlinks).

A number of attempts to utilize the rich docu-
ment structure of hypertext documents for query-
ing have been proposed, for example W3QL [1]
and FLORID [2]. However, the structure (parti-
tioning in sections etc.) of a document is only indi-
rectly related to its content. In particular, users typ-
ically know the precise structure of the individual
documents satisfying their information need only
after having found these documents. Web query
languages like WebSQL [3] support the search for
hypertext links. But again, users querying the IR
system know the precise (hyperlink) structure of
desired documents only after they have found the
relevant documents. Therefore a gradual measure
of a pair of documents being related could prove

useful, supported by methods for processing im-
precise information.

Federated IR systems aim at providing uniform
access to a number of networked and possibly het-
erogeneous information sources. A typical archi-
tecture for information integration is depicted in
Fig. 1. It mediates access to a complex system
of multiple and possibly very heterogeneous infor-
mation sources through “wrappers” in such a way
that the illusion of a local database with rich infor-
mational content emerges. The results of the indi-
vidual wrappers are merged by the mediator com-
ponent [4] into a global logical view. Examples
of such systems are HERMES [5], SIMS [6], and
TSIMMIS [7].

Source 1

Wrapper 1

Source 2

Wrapper 2

Source n

Wrapper n

Mediator

query interface

- create integrated logical view
- global schema

- query transformation
- result conversion
types of heterogenity:
- communication protocols
- query syntax
- database schema
- platform
- programming interfaces
- ...

[appears like a local database
with rich information contents]

Figure 1: Information integration architecture

In the evolving field of content-based image re-
trieval [8, 9, 10], images are analysed for features
like structure, color distribution (histograms or cor-
relograms), texture etc., which all correspond to
the signal level of the image (as opposed to the
semantic level). Like string matching in text re-
trieval, these methods are not restricted to specific

domains. However, the results obtained are not yet
comparable to that of text retrieval.

The low filter quality of today’s generic tech-
niques for multimedia retrieval suggests another
strategy for building high-quality search services
for multimedia documents, namely that of combin-
ing a substrate of generic methods for document
description and information fusion with domain-
specific methods which are taylored to a chosen
field of application. The current concept of broad-
coverage search engines is thus contrasted with
that of a search service specialized to a topic area
of general interest, such as weather, geography,
sports, or vacation, which in this area provides
search facilities on a new level of quality. These
considerations lead to the following profile of a
high performance query server (HPQS):

� natural language (NL) interface, to help oc-
casional users formulate their search interest;

� on-line search of the document base under the
user query: the complex modes of NL query-
ing may frequently not be anticipated through
pre-computed descriptors and necessitate the
application of direct-search methods;

� scalability: acceptable response times must
be ensured even for large data sets;

� evaluation and combination of pieces of in-
formation extracted from different sources, by
applying methods for information fusion.

In the following section, we shall briefly intro-
duce the HPQS system, and then concentrate on
aspects of information fusion and query mediation.

2 The HPQS system

Fig. 2 depicts the architecture of the HPQS sys-
tem [11]. The user interacts with the system via a
graphical user interface (Java applet); natural lan-
guage queries are typed into a query mask using
the keyboard.1 The morphological and syntactical
analyses are carried out by the natural language
interface, which generates a semantical represen-
tation of the query content. This representation is
purely declarative, i.e. not directly executable. The

1i.e. speech input is not yet supported.

subsequent retrieval module hence applies domain
specific transformation rules which translate the
declarative representation into a sequence of exe-
cutable database queries. These trigger the generic
evaluation and information fusion functionality as
well as additional application methods. Execution
of the generated database queries is controlled by
the multimedia mediator which optimizes response
times by maintaining a cache for storage and reuse
of intermediate search results. The use of a parallel
media server coupled with dedicated high-speed
VLSI processors for image and text search ensures
acceptable response times even when a computa-
tionally expensive online analysis of the mass data
has to be performed.

Computer

lexicon

Graphical

User

Interface

Natural Language Interface

- Morphological Analysis

- Parsing

- Construction of Semantics

Retrieval Module

- Transformation

(ISR -> FRR -> OQL)

- Iterative Request Processing

Transfor-

mation

rules

Domain-

specific

methods

Query mediator

- Query optimisation

- Metadata management

- Result caching

- System security

Server Gateway

Parallel media server

...

Document postprocessing

VLSI Search

Processors

Edit distance
computation

Computer
Vision

Algorithms

Text processor

Image processor

Te
xt

Im
a

g
e

R
e

g
E
xp

Pa
ra

m
s.

Th
e

sr
s.

O
p

e
ra

t.

Request

Handler
Request

Handler

Request

Handler

Generic

methods

ISR

OQL

Figure 2: Architecture of the HPQS system

As the prototypical application of HPQS, we
have chosen meteorological (weather information)
documents. The range of meteorological doc-
uments used in our system comprises textual
weather reports (ASCII and HTML), as well as
satellite images and various weather maps (colour
images). Query types in this application scenario
include the following:

� What is the weather like in Bielefeld?
� Is it more often rainy on Crete than in south-

ern Italy?
� Show me pictures of cloud formation over

Bavaria!
� In which federal states of Germany has it

been humid but warm last week?
� There were how many sunny days in Berlin

last month?

The system accepts questions in exactly this form
as text strings.

3 Formal retrieval representation

The retrieval component of the HPQS system uti-
lizes a formal retrieval representation (FRR) which
combines generic FRR methods (search techniques
for documents of all relevant media and methods
for information fusion) and domain-specific meth-
ods (which implement domain concepts). The FRR
is syntactically identical to ODMG-OQL (Object
Query Language); the FRR functionality is pro-
vided by generic and application-specific classes
in the object-oriented database schema of the me-
diator. The generic part of FRR comprises:

� an elaborate text-search component (based on
the dedicated VLSI processors for approxi-
mate full-text search);

� image analysis primitives (partly imple-
mented in VLSI hardware);

� discrete and parametrized fuzzy sets and cor-
responding connectives from fuzzy set theory;

� fuzzy quantifiers which provide a numerical
interpretation of quantifying expressions in
NL queries.

Fuzzy quantifiers also prove useful in weighted in-
formation fusion tasks, i.e. for combining pieces of
information according to numerical degrees of rel-
evance (see below).

The generic FRR can be extended by domain-
specific methods, which provide an interpretation
for NL domain concepts based on the raw doc-
ument data. The HPQS prototype has been tay-
lored to the meteorology domain by implementing
cartographic projections of the considered image
classes; objective (“more than �� degrees”) and
subjective (“warm”) classification of temperature
readings; estimation of cloud-top height and cloud
density in satellite images; determination of de-
grees of cloudiness (“sunny”); and other domain
concepts. In the same way that text-matching pro-
vides only a very coarse, but often still useful, ap-
proximation of text-understanding, we attempt to
model only that portion of the domain concepts
which must be captured to restrict the search to
useful query results.

Table 1 displays the FRR sequence generated
for an example query. The results of the query are

shown in Fig. 3.2
Generated FRR

q 311: element(select x.shape from x in FederalStates
where x.name = "Bavaria")
q 312: select i from i in MeteoFranceImages where
i.date.ge(1997,8,1,0,0,0) and i.date.lower(1997,8,8,0,0,0)
q 313: select i.pred from i in q 312 where i.pred <> i
q 314: select ImageAndRelevance(image:i,
relevance:q 311.rateGreaterEqual(0.7, i.cloudiness().
sunny().negation().germanyProjection())) from i in q 312
q 315: select ImageAndRelevance(image:i,
relevance:q 311.rateGreaterEqual(0.7,
i.cloudiness().sunny().germanyProjection()))
from i in q 313
q 316: select ImageAndRelevance(image:i.image,
relevance:i.relevance.min(j.relevance))
from i in q 314, j in q 315
where j.image = ((HpqsMeteoFranceImage)i.image).pred
q 317: select f.relevance from f in q 316
q 318: select f from f in in q 317 order by 1
q 319: HpqsGreyValSeq(greyval sequence:
o2 list GreyVal(q 318)).determineThreshold()
q 320: select ImagesAndRelevance(image:f.image,
pred:((HpqsMeteoFranceImage)f.image).pred,
succ:((HpqsMeteoFranceImage)f.image).succ,
relevance:f.relevance)
from f in q 316 where f.relevance.ge(q 319) = 1

Table 1: FRR sequence generated for query:
“Show me pictures of cloud formation over
Bavaria in the first week of August 1997!”

Figure 3: Result of example query

2see [11] for a description of the search process.

4 Linguistic information fusion

In [12], we have pointed out that providing natu-
ral language access to a multimedia retrieval sys-
tem cannot be accomplished merely by adding an
NL frontend to an existing retrieval “core”. This
is because the modes of information combination
expressible in natural language are not restricted to
the Boolean connectives supported by traditional
retrieval systems. In particular, vague quantifying
expressions (fuzzy quantifiers) like most, almost
everywhere, are often used in NL queries to express
accumulative criteria such as “almost all of South-
ern Germany is cloudy”. In this example, we have
a set � of pixel coordinates. Each pixel � � �

has an associated relevance ���
��� � � � ��� ��

with respect to the fusion task, which in this case
expresses the degree to which pixel � � � be-
longs to Southern Germany, and each pixel has
an associated evaluation ���

��� � � which ex-
presses the degree to which the pixel is classi-
fied as cloudy (see Figs. 4 and 5). The map-

Figure 4: A possible definition of �� �

southern germany (Pixels with ���
��� � � are de-

picted white)

pings ���
� ���

	 � �� � can be viewed as
membership functions representing fuzzy subsets
����� �

����� of �, where ����� is the fuzzy
powerset of �. Our goal is to provide a mapping
�� 	 ����� � ����� �� � which, for each con-
sidered satellite image, combines these data to a
numerical result ��������� � � as requested by
the NL expression “almost all”.
Apparently, an operator which implements “al-

Figure 5: Fuzzy image region �� � cloudy (Pixels
classified as cloudy are depicted white. The contours of
Germany, split in southern, intermediate and northern
part, have been added to facilitate interpretation)

most all” yields adequate results only if it captures
the meaning of “almost all”. We have therefore
decided to base our solution to the fusion prob-
lem on (a) the Theory of Generalized Quantifiers
(TGQ [13]), which has developed important lin-
guistic concepts for describing the meaning of NL
quantifiers; and (b), methods from fuzzy set the-
ory, known as fuzzy linguistic quantifiers [14, 15],
which are concerned with aspects of fuzziness in-
volved, i.e. the use of concepts without sharply de-
fined boundaries (“Southern Germany”, “cloudy”,
“almost all”). Our investigation of existing ap-
proaches to fuzzy quantification [14, 16, 17] based
on criteria of TGQ has led us to reject these ap-
proaches because of their inconsistency with lin-
guistic facts. Building on TGQ, we have formu-
lated a set of axioms which characterizes mathe-
matically sound models of fuzzy quantification; in
addition, we have presented a model of the axioms
[18]. In [19], we have shown that this approach is
computational by presenting a histogram-based al-
gorithm for the efficient evaluation of the resulting
operators.

In our system, we are currently using these
operators for the fusion of fuzzy sets of pixels
(local quantification) or fuzzy sets of time points
(temporal quantification), see Table 2. We are
hence utilizing spatio-temporal relationships be-
tween extracted pieces of information in order to
compute a combined evaluation of the documents

Quantification over local regions
few clouds over Italy
many clouds over southern Germany
more clouds over Spain than over Greece
cloudy in Northrine-Westphalia (implicit)

Quantification over regions in time
almost always cold in the last weeks
more often sunny in Portugal than in Greece
hot in Berlin in the previous week (implicit)

Table 2: Examples of fuzzy quantification in the
meteorology domain

of interest. This type of relationship might look
different from those established by hypertext links,
and from intra-document relationships (between
parts of a composite document). However, all of
these relationships can be deployed for retrieval
purposes only if suitable methods for informa-
tion fusion are available. Fuzzy quantifiers are
promising in this respect because they are both
human-understandable and sufficiently powerful
to handle the required two-dimensional fusion
problem (data to be combined plus weights of
relevance). The basic aptitude of fuzzy quantifiers
for combining search ratings of a document’s
parts to a global evaluation has recently been
demonstrated by Bordogna&Pasi [20].

5 Mediation and query evaluation

In the HPQS system, we have only one (but a very
complex) information source, viz. the parallel me-
dia server. The tasks of the HPQS mediator in-
clude:

� abstraction from details of the parallel media
server, e.g. socket-based communication
protocol and query syntax;

� making optimal use of the parallelism avail-
able in the external source;

� establishing a well-structured view of the
multimedia system, which to the retrieval
module (the mediator’s client) should appear
like an object-oriented ODMG database;

� maintenance of a proxy state of the external
document base: method invocations can only

be delegated to the parallel media server if
the documents to which these methods should
be applied are known to the mediator;

� materialization of results of method invoca-
tions, in order to avoid redundant compu-
tations by reusing query results of a result
cache.

The efficient organisation of method invocations
on the external source is of particular importance to
the HPQS system because a large number of doc-
uments (and hence of instances of document eval-
uation and information fusion tasks) must be pro-
cessed with acceptable response times. The prob-
lem is that the database executes OQL queries se-
quentially, and cannot directly benefit from the par-
allel processing abilities of the media server.

The first HPQS mediator, described in [21],
makes use of blockwise request execution in
order to benefit from the parallelism in the media
server source. The transformation of ODMG-OQL
queries to the mediator into simpler queries which
can be executed in parallel will be illustrated by
an example. The mediator might e.g. receive the
query

select ImageAndRelevance(image : I,
relevance :

BAY.rateGreaterEqual(0.7,
I.cloudiness().sunny()
.negation()
.germanyProjection()))

from I in q_18

By means of query transformations, it decomposes
the query in a sequence of elementary queries:

R1: select I.cloudiness()
from I in q_18

R2: select I.sunny() from I in R1
...

These simple queries are transformed into blocks
of requests and transmitted to the media server,
which executes them in parallel and returns the
set of results to the mediator. Using such block-
wise parallel calls, the example query is executed
as depicted in Figs. 6 and 7. The nodes (circles)
represent elementary requests (individual method
invocation given on particular choice of parame-
ters). The dependency structure of the requests is

represented by arcs (a complex expression depends
on its subexpressions in the sense that it can only
be evaluated once each of its subexpressions have
been evaluated).3

In the figures, we have assumed that nine images
are to be processed and that eight processing nodes
are available on the parallel server. With block-
wise evaluation, execution starts which the block
request to compute ����������		�� for the nine
images (requests 	� � � � 	�), which is sent to the
parallel server; the mediator then suspends pro-
cessing until the parallel server returns the results
for the whole block of requests. Having obtained
the results of the first block, the mediator then ini-
tiates processing of the second block
� � � � �
�,
to compute ��	���
�� on all results � of the first
block, etc. As witnessed by Figs. 6 and 7, this

cloudiness()

sunny()

negation()

germanyProjection()

rateGreaterEqual()

processing
completed

waiting for
execution

currently
executed

Block 1

(Block 2)

(Block 3)

(Block 4)

(Block 5)

Figure 6: Blockwise Parallel Execution A

blockwise parallel evaluation does not make opti-
mal use of the computing resources. Assuming that
each request in the first block needs about 10s pro-
cessing time, the parallel server will execute the re-
quests 	� � � � 	� in 10s. However, it needs another
10s to process request 	� (Fig. 7). Only after 20s,
the result of the block can be sent to the mediator,
and processing of the second block can be initi-
ated. This behaviour is suboptimal because when
executing 	�, only one work node is active, and
the other seven work nodes are idle, although the
results of 	� � � � 	� are available so that execution
of
� � � �
� could be started.

3In our example, the dependency structure is a chain, but
with multiplace functions, it becomes a forest (set of trees).
If intermediate results are re-used by a caching mechanism
(as is done by the mediator), the structure becomes a directed
acyclic graph.

The blockwise evaluation approach requires the
mediator to parse OQL queries and reformulate
these into blocks of requests to the media server.

Block 1

(Block 2)

(Block 3)

(Block 4)

(Block 5)

cloudiness()

sunny()

negation()

germanyProjection()

rateGreaterEqual()

Figure 7: Blockwise Parallel Execution B

In order to avoid the intricacies of OQL analysis
and translation, and to make better (i.e. more fine-
grained) use of the parallel computing resources,
we have decided to build an alternative media-
tor for the HPQS system based on parallel asyn-
chronous method invocations. This approach rests
on the following considerations. We can leave the
database application unchanged (i.e. still executing
sequentially) and still profit from parallel execu-
tion on the media server only if the act of initiat-
ing or triggering a request is decoupled from the
processing of the request. In the alternative medi-

Request-
queue

RequestWorkers

R1 R3R2 R4

Query and Manip.
Interface

Schema
Implementation

HPQS Mediator

cache lookup
cache maintenance
cache statistics
cache cleanup

Parallel Media Server

Retrieval
Module

CORBA/
IIOP

CORBA/
IIOP

Socket
Comm.

Figure 8: Asynchronous Execution Architecture

ator (see Fig. 8), we have the database trigger the
requests sequentially: triggering is a non-blocking
call which immediately returns with a result key. If
the request cannot be found by the materializer in
its result cache, it is inserted into a request queue.
The parallelizer makes use of a number of Re-

questWorkers (one for each processor node of
the parallel server) which fetch requests from the
queue and cater for their execution on the parallel
server.

It is sufficient for the database to know the re-
sult key to initiate further requests. Only when
direct access to the computed result is necessary
(e.g. in order to display a result image), it performs
a “fetch” call on the result key to obtain the com-
puted data. These fetch calls are blocking and wait
until the result is available.

Snapshots of the parallel asynchronous execu-
tion of the example query are presented in Figs. 9,
and 10. The database executes the query (i.e. trig-
gers requests) using its “normal” execution order,
which respects the dependencies of the requests.
The requests are hence triggered, and inserted into
the request queue, as indicated by the small num-
bers beneath the nodes in Fig. 9. The policy for ob-

processing
completed

waiting for
execution

currently
executed

cloudiness()

sunny()

negation()

germanyProjection()

rateGreaterEqual()

1

2

3

4

5

21

22

23

24

25

11

12

13

14

15

31

32

33

34

35

6

7

8

9

10

26

27

28

29

30

16

17

18

19

20

36

37

38

39

40

41

42

43

44

45

Figure 9: Asynchronous Parallel Execution A

taining the request to be executed from the queue
is to select the “oldest” request all dependencies
of which are satisfied (in the sense that the results
for all arguments are available). The precise exe-
cution order with the parallel asynchronous evalu-
ation strategy is hence dependent both on the in-
sertion order into the queue and on the termina-
tion order of requests as processed by the parallel
server. The initial configuration of processed re-
quests as depicted in Fig. 9 is typical because the
database triggers much faster than the requests can
be executed. A later processing state is depicted in
Fig. 10.

When the processing of a request is completed,
the corresponding RequestWorker immedi-
ately selects the next request to be processed from
the queue. We achieve a better utilisation of the
parallel computing resources because it it avoided
that processor nodes be idle.

cloudiness()

sunny()

negation()

germanyProjection()

rateGreaterEqual()

1

2

3

4

5

21

22

23

24

25

11

12

13

14

15

31

32

33

34

35

6

7

8

9

10

26

27

28

29

30

16

17

18

19

20

36

37

38

39

40

41

42

43

44

45

Figure 10: Asynchronous Parallel Execution B

6 Discussion

We have presented a system architecture suitable
for building high-quality multimedia search ser-
vices for restricted (but in principle arbitrary) topic
areas. By providing an NL interface, technical bar-
riers in accessing the system are removed. The
imprecision and vagueness of NL queries must be
handled because an adequate system behaviour can
only be achieved if these factors do not result in
system failure or implausible results. We have
therefore developed a semantically rich retrieval
model based on methods methods from fuzzy set
theory. Emphasis has been put on linguistic meth-
ods for information fusion (viz. fuzzy quantifiers).
Apart from our use of these methods to utilize
spatio-temporal relationships, such methods are a
prerequisite of combining the contents spread over
the parts of a multimedia document, and of utiliz-
ing relationships established by hypertext links in
a broad range of other applications.

HPQS supports online search and thus offers
versatile ways of querying: there is no restriction to
pre-computed descriptors and their Boolean com-
binations. We have combined several techniques in
order to ensure acceptable response times, in par-
ticular parallelisation of method invocations, by
utilizing a parallel asynchronous evaluation strat-

egy, and the use of materialization, which yields a
speed-up for frequent queries (or subqueries) com-
parible to that of traditional indexing.

Although HPQS makes use of only one data
source (the parallel media server), the information
provided by the various document types is par-
tially overlapping. For example, satellite images of
different weather satellites (Meteosat, NOAA) or
weather maps of different meteorological services
can all be used to compute estimates of the degree
of cloudiness at a given geographical location, and
the results obtained can either support each others
or contradict. Existing mediators like HERMES
[5] have chosen to handle such cases by conflict
resolution rules which specify a priority ordering
on the sources, in order to select one of the
conflicting pieces of information. We are currently
working on the problem of combining (rather than
selecting) such overlapping and possibly contra-
dictory data, based on our linguistic methods of
information fusion.

References

[1] http://www.cs.technion.ac.il/˜konop/w3qs.html.

[2] B. Ludäscher, R. Himmeröder, G. Lausen,
W. May, and C. Schlepphorst. Managing
semistructured data with FLORID. Information
Systems, 23(8):589–612, 1998.

[3] http://www.cs.toronto.edu/˜websql/.

[4] G. Wiederhold. Mediators in the architecture
of future information systems. IEEE Computer,
25(3):38–49, 1992.

[5] http://www.cs.umd.edu/projects/hermes/.

[6] http://www.isi.edu/sims/.

[7] http://www-db.stanford.edu/tsimmis/tsimmis.html.

[8] A. Del Bimbo and P. Pala. Visual image retrieval
by elastic matching of user sketches. IEEE Trans.
on Patt. Anal. and Mach. Intell., 19(2):121–132,
1997.

[9] V. Castelli, L. Bergman, C. Li, and J. Smith.
Search and progressive information retrieval from
distributed image/video databases: the SPIRE
project. In Nikolaou and Stephanidis [22].

[10] M. Flickner, H. Sawhney, W. Niblack, J. Ash-
ley, Q. Huang, B. Dom, M. Gorkhani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker.

Query by image and video content: The QBIC
system. IEEE Computer, 28(9), September 1995.

[11] A. Knoll, C. Altenschmidt, J. Biskup, H.-M.
Blüthgen, I. Glöckner, S. Hartrumpf, H. Helbig,
C. Henning, Y. Karabulut, R. Lüling, B. Monien,
T. Noll, and N. Sensen. An integrated ap-
proach to semantic evaluation and content-based
retrieval of multimedia documents. In Nikolaou
and Stephanidis [22], pages 409–428.

[12] I. Glöckner and A. Knoll. Fuzzy quantifiers for
processing natural-language queries in content-
based multimedia retrieval systems. TR97-05,
Technische Fakultät, Universität Bielefeld, 1997.

[13] J. Barwise and R. Cooper. Generalized quantifiers
and natural language. Ling. and Phil., 4:159–219,
1981.

[14] L.A. Zadeh. A computational approach to fuzzy
quantifiers in natural languages. Computers and
Math. with Appl., 9:149–184, 1983.

[15] Y. Liu and E.E. Kerre. An overview of fuzzy quan-
tifiers. (I). interpretations. Fuzzy Sets and Sys.,
95:1–21, 1998.

[16] A.L. Ralescu. A note on rule representation in ex-
pert systems. Information Sciences, 38:193–203,
1986.

[17] R.R. Yager. Families of OWA operators. Fuzzy
Sets and Systems, 59:125–148, 1993.

[18] I. Glöckner. DFS – an axiomatic approach to
fuzzy quantification. TR97-06, Techn. Fakultät,
Univ. Bielefeld, 1997.

[19] I. Glöckner, A. Knoll, and A. Wolfram. Data fu-
sion based on fuzzy quantifiers. In Proc. of Euro-
Fusion98, pages 39–46, 1998.

[20] G. Bordogna and G. Pasi. A fuzzy information
retrieval system handling users’ preferences on
document sections. In D. Dubois, H. Prade, and
R.R. Yager, editors, Fuzzy Information Engineer-
ing. Wiley, 1997.

[21] J. Biskup, J. Freitag, Y. Karabulut, and B. Sprick.
A mediator for multimedia systems. In Proceed-
ings 3rd International Workshop on Multimedia
Information Systems, Como, Italia, Sept. 1997.

[22] C. Nikolaou and C. Stephanidis, editors. Research
and Advanced Technology for Digital Libraries:
Proceedings of ECDL ‘98, LNCS 1513. Springer,
1998.

