
Co-Evolving Recurrent Neurons Learn Deep Memory
POMDPs

Faustino J. Gomez1

tino@idsia.ch
Jürgen Schmidhuber1,2

juergen@idsia.ch

1 IDSIA, Galleria 2, 6928 Lugano, Switzerland
2 TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

ABSTRACT
Recurrent neural networks are theoretically capable of learn-
ing complex temporal sequences, but training them through
gradient-descent is too slow and unstable for practical use in
reinforcement learning environments. Neuroevolution, the
evolution of artificial neural networks using genetic algo-
rithms, can potentially solve real-world reinforcement learn-
ing tasks that require deep use of memory, i.e. memory span-
ning hundreds or thousands of inputs, by searching the space
of recurrent neural networks directly. In this paper, we in-
troduce a new neuroevolution algorithm called Hierarchical
Enforced SubPopulations that simultaneously evolves net-
works at two levels of granularity: full networks and net-
work components or neurons. We demonstrate the method
in two POMDP tasks that involve temporal dependencies
of up to thousands of time-steps, and show that it is faster
and simpler than the current best conventional reinforce-
ment learning system on these tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Experimentation, Performance, Algorithms

Keywords
Coevolution, Recurrent Neural Networks, POMDP

1. INTRODUCTION
Neural networks with feedback connections or recurrent

neural networks (RNNs) can potentially solve challenging
sequential decision tasks where the correct choice of ac-
tion at each time step can depend on the entire history of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

previous network inputs. This ability to act based upon
the recollection of past events is essential for truly com-
plex behavior. Unfortunately, training RNNs with stan-
dard gradient-descent methods such as Real-Time Recurrent
Learning (RTRL; [11, 14]) or Back Propagation Through
Time (BPTT; [12]) is not possible when actions depend on
inputs from more than as few as 10 time-steps in the past.
The error signal used to adjust synaptic weights either van-
ishes or explodes as it is propagated back through time, mak-
ing learning prohibitively slow or preventing it altogether [5,
3]. For this reason, using conventional RNN architectures
to approximate a value-function or policy for reinforcement
learning (i.e. Q-learning, SARSA) is not practical when the
environment exhibits long temporal dependencies.

Long Short-Term Memory (LSTM; [6]) overcomes this
problem of unreliable gradient by using gated memory cells
that guarantee constant error flow, and enable it to effi-
ciently learn temporal dependencies spanning thousands of
time-steps. Difficult POMDPs can be solved using LSTM as
a value-function approximator for, e.g. Advantage Learning
(RL-LSTM;[1]), but this approach is still slow due to the
large data requirements of temporal difference learning.

Neuroevolution (NE; [15, 2, 9]), the evolution of neural
networks using a genetic algorithm, circumvents both the
problem of training recurrent networks and value-function
approximation by searching the space of policies directly.
Because NE uses only one learning component, a neural net-
work policy, it is conceptually simpler than value-function
based methods, and is naturally suited to high-dimensional,
continuous state and action spaces. However, up to now
NE has only been applied to reinforcement learning tasks
that require a very limited use of memory. For example, in
partially observable environments where information from a
small number of previous inputs is sufficient to determine
the underlying process state.

In this paper, we demonstrate how neuroevolution can
be used effectively for reinforcement learning problems that
require deep use of memory. We introduce a new neuroevo-
lution method, Hierarchical Enforced SubPopulations (H-
ESP) that searches the space of recurrent networks by evolv-
ing at two levels in tandem: the level network components
or neurons, and the level of full networks.

The next section describes the H-ESP algorithm. In sec-
tion 3, we present the results of two experiments that show
how neuroevolution can outperform even the current best
single agent method on tasks with long term dependencies.

In section 4 we analyze the behavior of the algorithm, and
in sections 5 and 6, we discuss the results, and summarize
our conclusions.

2. HIERARCHICAL ENFORCED SUBPOP-
ULATIONS (H-ESP)

H-ESP is a new neuroevolution algorithm based on En-
forced SubPopulations (ESP; [4]). Like ESP it evolves neu-
ral networks by coevolving network functional units or neu-
rons. However, in addition to ESP’s neuron level, H-ESP
also evolves at the level of complete networks. The neuron
level (L1) and network level (L2) are evolved simultaneously
and interact by passing genetic material to each other in re-
sponse to their relative performance (figure 1). H-ESP works
as follows:

1. Initialization

(a) Neuron Level. The number of hidden units u

in the networks that will be evolved is specified
and a subpopulation of n neuron chromosomes is
created for each hidden unit. Each chromosome
encodes the input, output, and recurrent connec-
tion weights of neuron with a string of random
real numbers (figure 2).

(b) Network Level. N random networks with u

hidden units are formed.

2. Evaluation

(a) Neuron Level. A neuron is selected at random
from each of the u subpopulations, and combined
to form a recurrent network. The network is eval-
uated on the task and awarded a fitness score
which is assigned to each neuron in the network.
If the fitness of the network is better than that
of the worst network in L2 then it is inserted in
L2. This process is repeated until each neuron
has been used in a network.

(b) Network Level. Evaluate the fitness of each
network that has not already been evaluated. If a
network has a higher fitness than the best network
evaluated so far in L1, insert each of its neurons
into the corresponding L1 subpopulation.

3. Recombination

(a) Neuron Level. For each subpopulation the neu-
rons are ranked by fitness, and the top quartile is
recombined using 1-point crossover and mutation
to create new neurons that replace the lowest-
ranking half of the subpopulation.

(b) Network Level. Each network is mated to a net-
work with higher fitness using u-point crossover
(i.e. one crossover point per neuron) and muta-
tion to produce two new networks.

4. Repeat the Evaluation-Recombination cycle until a suf-
ficiently fit network is found.

The neuron level (i.e. plain ESP) searches the space of net-
works indirectly by sampling the possible networks that can
be constructed from the subpopulations of neurons. Net-
work evaluations provide a fitness statistic with which to

 I+O+1

1

2

I

I

in network
 I+O+R

 I+1

 I+2

 I+O

 I+O+2

 I+O

...
...

...

...
1 2 I I+1 I+2

...

Genotype

input connections output connections recurrent connections

Phenotype

other units

outputs
network

inputs
network

c

cc cc c c c

c c

c
c

 I+O+1 I+O+2 I+O+R

c

c

c c

c

c

...

Figure 2: Neuron genotype encoding. The neuron-level

genotypes encode the synaptic connection weights ci of a

single neuron as real numbers. The figure illustrates the

mapping from genotype (top) to phenotype (bottom).

Each chromosome has I input connections, O output con-

nections, and R connections from the other neurons in

the network, where R is equal to the number of subpop-

ulations (network size), u. The network-level genotypes

consist of a concatenation of u neuron genotypes.

search for better neurons that can be eventually combined
into a successful network. This cooperative coevolutionary
approach [10] is an extension to Symbiotic, Adaptive Neu-
roevolution (SANE; [8]) which also evolves neurons, but in
a single population. By using separate subpopulations, ESP
accelerates the specialization of neurons into different sub-
functions needed to form good networks because members
of different evolving sub-function types are prevented from
mating. Subpopulations also reduce noise in the neuron fit-
ness measure because each evolving neuron type is guaran-
teed to be represented in every network that is formed. This
allows ESP to evolve recurrent networks, where SANE could
not.

Adding the network level is motivated by the observation
that ESP discards each network as soon as it is evaluated,
regardless of its fitness. This means that information about
potentially fruitful neuron combinations is lost, especially in
the early stages of evolution when diversity is high and re-
sampling similar neuron combinations is unlikely. By main-
taining a repository or “hall of fame” of the best networks,
ESP can search within the space of highly fit neuron com-
binations in a way that is not possible at the neuron level
because it constructs networks at random. The hope is that
the L2 will make ESP less susceptible to premature con-
vergence by preserving useful networks, and help fine-tune
solutions.

If the performance of H-ESP does not improve for a pre-
determined number of generations, a technique called burst
mutation is used. The idea of burst mutation is to search
the space of modifications to the best solution found so far.
When burst mutation is activated, the best neuron in each
subpopulation is saved, the other neurons are deleted, and

neuron level (L1)

Neural Network
Recurrent

H−ESP

input

output

POMDP

network level (L2) fitness

Figure 1: H-ESP. Evolution occurs at two levels, the neuron level (L1) and the network level (L2). L1 consists of

multiple subpopulations of neurons, shown here in different colors. L2 consists of complete network representations

that have either migrated up from L1 or have been created by recombining networks within L2. During evolution,

networks are evaluated in two possible ways: from L2 directly, and from L1 by randomly selecting a neuron from each

subpopulation and combining them into a complete network. The dashed lines from the neuron level to the network

being evaluated indicate a network formed in this manner. A network from L2 that has higher fitness than any network

formed so far in L1, has its neurons copied into their corresponding subpopulations in L1 (shown with the dashed

arrows from L2 to L1). A network from in L1 that has higher fitness than the worst L2 network is copied into L2 (the

solid arrows from L1 to L2). In this way, the two levels supply each other with new genetic material with which to

search in their respective weight spaces.

X
S

G

Figure 3: Long term dependency T-maze. Starting in S,

the agent must traverse the corridor while remembering

the signal X indicating the location of the goal G at the

T-junction.

new neurons are created for each subpopulation by adding
Cauchy distributed noise to its saved neuron. Evolution
then resumes, but now searching in a neighborhood around
the previous best solution. Burst mutation injects new di-
versity into the subpopulations and allows ESP to continue
evolving after the initial subpopulations have converged.

3. EXPERIMENTS
In this section, we evaluate H-ESP in two POMDP re-

inforcement learning tasks that require learning temporal
dependencies of up to thousands of time steps: the T-maze,
and the two-mode pole balancer. Because RL-LSTM is, to
our knowledge, currently the most efficient method for solv-
ing this class of problems, our experiments use the same se-
tups and compare our results with H-ESP to those published
in [1]. To quantify the advantage of evolving hierarchically
we also compare with normal ESP.

3.1 Long term dependency T-maze
The T-maze task is a discrete non-Markov problem de-

signed to test a recurrent network’s ability to learn long
term dependencies. The maze consists of a corridor of n

rooms with a start state S at one end and a T-junction at
the opposite end (figure 3). Starting in S, the objective is to
travel down to the end of the corridor and go either north
or south at the T-junction depending on a signal X received
in S that indicates the location of the goal G. In order to
chose the correct direction the network must remember X
for at least n time-steps.

3.1.1 Setup
The control agent can make 4 possible observations in the

T-maze: if it is in S, it sees either 011 or 110 depending
on whether G is to the north or south, respectively. If it
is in the corridor it sees 101, and in the T-junction it sees
010. The agent has four possible actions: north, south, east,
and west. The network receives a score of 4.0 for getting to
the goal and -0.1 if it turns in the wrong direction at the
T-junction or tries to go north or south in the corridor.

We ran 7 sets of simulations with different corridor lengths
for both ESP and H-ESP, starting with length 10 and in-
creasing to 70, in 10 room increments. Each set consisted
of 10 runs evolving Elman networks with 3 input units (one
for each input bit), 10 hidden units, and one output unit
for each of the 4 possible actions. For both neuroevolution
methods the subpopulation size was 200. For H-ESP the
network level size was 100. Actions were selected proba-
bilistically, weighted by the relative activation strength of
each output unit. Each network was evaluated in 20 trials,
10 with the goal in the north room and 10 with the goal in

E
v

al
u

at
io

n
s

x
 1

07
N

o
.

su
cc

es
sf

u
l

ru
n

s

Length of corridor

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � �	 	 	 	

� � � �

 20 30 40 50 60 70 1000

Memory bits

Elman−BPTT
LSTM

 0

 2

 4

 6

 8

 10

RL−LSTM

Elman−BP

Elman−BPTT

Memory Bits

ESP

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

H−ESP
ESP

 1000 30 40 20 10

H−ESP

 10

 50 60 70

Elman−BP

Figure 4: T-maze results. The upper plot shows the

number of successful simulations out of 10 for each

method compared. The lower plot shows the number

of T-maze attempts required on average by each meth-

ods, for each corridor length. Datapoints for methods

other than ESP and H-ESP taken from [1].

the south room. The fitness was the lesser of the average
scores from the two sets of 10 trials. After each generation
the best network was re-tested using greedy actions, and the
task was considered accomplished if this network achieved
a perfect score of 4.0. The mutation rate was set to 0.8
for both methods, which means that each offspring has an
80% chance of having one of the weights in its chromosome
replaced by a random value from the initial weight range,
[−10.0, 10.0]. Burst mutation was activated if the best fit-
ness found did not improve after 10 generations.

The neuroevolution methods were compared to four other
methods, all using Advantage Learning but with a different
choice of value-function representation: Long Short-Term
Memory (RL-LSTM), Elman network with standard back-
propagation (Elman-BP), Elman network with backprop-
agation through time (Elman-BPTT), and a table-based
method (Memory Bits; [7]). As with H-ESP, the LSTM and
the Elman networks used 3 input units and 4 output units,
but the outputs produce action values and each output unit
has a dedicated hidden layer. RL-LSTM used 12 standard
hidden units and 3 memory cells. The Elman networks used
16 hidden units. The Memory Bits method uses a tabular
representation with as many entries as there are observa-
tions times the number of memory bits. The control agent
has additional actions that can set or unset bits in order to
disambiguate observations. For this task the agent has 1 bit
since it only needs to remember one event.

3.1.2 Results
Figure 4 shows, for each corridor length and method, the

number of maze navigation attempts required on average to
solve the T-maze task, and the number of runs out of 7 that

output

(b)(a)
cart

position
modepole

angle

Figure 5: Two-mode pole balancing. (a) The basic pole

balancing system consists of a pole hinged to a cart that

rolls in a finite stretch of track. (b) The controller rep-

resentation for H-ESP is an Elman or Simple Recurrent

Network (SRN) that receives the cart position, pole an-

gle, and mode input at each time-step. The input is

propagated through the hidden neurons which also re-

ceive the previous activation of the hidden layer via feed-

back (recurrent) connections, and then to the output

unit which specifies the direction in which to apply the

force to the cart.

were successful. Above length 40 the only methods capable
of solving the task are RL-LSTM, ESP, and H-ESP, with the
two neuroevolution methods outperforming RL-LSTM by a
factor of 10 on the hardest task of length 70. Importantly,
the number of evaluations for H-ESP does not grow notice-
ably in relation to corridor length. In fact, even for length
1000 (far right in the figure), ESP and H-ESP were able to
solve the task with a number of evaluations comparable to
that required by LSTM a for corridor of length 20. The
reason for this is that neuroevolution does not have to prop-
agate the reinforcement signal back through time (i.e. down
the corridor) to learn the task, and therefore the difficulty
is less correlated to corridor length.

Up to length 40 the differences between ESP and H-ESP
are not significant. The reason for this, we believe, is that
in this task, these two algorithms either solve the task rel-
atively quickly (in under 50 generations) or get stuck early
on if there are no individuals in the initial population that
can find either of the two goals, or are not heavily biased
towards one of them. In these less common cases, some of
which we have considered failure (upper plot in figure 4),
the fine-tuning provided by the network level is not much
help because a successful solution is too far away. For the
majority of cases, where the problem is solved quickly, the
network level provides improved search efficiency that be-
comes more appreciable as the corridor gets longer and the
weights may need more precise values.

Further testing showed that all of the networks evolved in
corridors longer than length 20 where able to generalize to
corridors of length 1 million.

3.2 Two mode pole balancing
The pole balancing problem has long been a standard

benchmark for artificial learning systems. The basic sys-
tem consists of a pole hinged to a wheeled cart on a finite
stretch of track where the objective is to apply a force to
the cart, at regular intervals, such that the pole is balanced
indefinitely, and the cart stays within the track boundaries
(figure 5a). In principle, pole balancing is a good test-bed
because it has a continuous state space and requires learn-
ing from a delayed reward. However, in its classic setup, the

task is simply too easy for this purpose as solutions can be
found quickly through random search.

To make it more challenging, the basic task has been ex-
tended in various ways such as providing the controller with
only the position of the cart, x, and the angle of the pole,
θ, and not their respective velocities (ẋ, θ̇), as is normally
the case [13]. To solve this non-Markov version, the control
agent must utilize short-term memory to compute the ve-
locities and determine the underlying state of the system.
However, because only the current and most previous ob-
servations are necessary to compute the velocities (i.e. a
one-step temporal dependency), this task requires minimal
memory depth.

In [1], a version of the single pole task is introduced that
involves temporal dependencies of thousands of time-steps.
The controller agent must learn to operate in two modes:
in Mode A, a positive control signal applies a 10 Newton
force to the cart in the “right” direction, and a negative
signal applies the force in the “left” direction; in Mode B
the meaning of the control signals is reversed. In addition
to only receiving x and θ, for the first 50 time-steps (or 1
second of simulated time) of each balancing attempt, the
controller receives a “mode” signal through a special input
unit that indicates which mode should be used. After the
first second, the mode input is set to zero and the network
must remember what mode to use to balance the pole for
100,000 time-steps.

The difficulty of this task is threefold: (1) the network
must be able to balance the pole using partial state infor-
mation, (2) remember which mode it is in for thousands of
time-steps, and (3) essentially implement a hybrid controller
within a single architecture. That is, a controller that can
operate discretely at a high level to switch between modes,
and continuously at a lower level to balance the poles in each
mode.

3.2.1 Setup
Networks were evaluated in one trial for each of the two

modes. Each trial begins with the cart at the center of the
track with the pole leaning 1 degree from vertical. At time
t = 0 the controller starts to balance the pole applying a
force to the cart every 0.02 second time-step until either
the pole angle exceeds ±12 degrees or the cart goes off the
4.8 meter track. The fitness was the number of time-steps
in the shorter of the two trials. As with the T-maze task,
this maximin fitness function prevents networks from being
awarded high fitness for performing well in only one mode.
In Mode A the mode input unit was set to 1.0, in Mode B
it was set to -1.0.

For this task, Elman-BP, Elman-BPTT, Memory Bits,
were not able to solve the task, so we compared H-ESP
and ESP to RL-LSTM as it is the only method we know
that has successfully solved this task. All three methods
used networks with the following three inputs: the cart po-
sition, the pole angle, and the mode signal. RL-LSTM used
LSTM networks with 14 standard hidden units, 6 memory
cells, and two outputs, one for each action value. ESP and
H-ESP evolved Elman networks with 5 units (figure 5b), a
subpopulation size of 200, and, for H-ESP, a network level
size of 100. The mutation rate, initial random weight range,
and burst mutation criteria were the same as for the T-maze
task.

Mode A

p
o
le

 a
n
g
le

:
ra

d
ia

n
s

time−steps (0.02 sec)

Mode B

time−steps (0.02 sec)

 0

neuron 5

neuron 4

neuron 3

neuron 2

neuron 4

neuron 5

neuron 3

neuron 2

 0.1

−0.05

−0.1

−0.15
 100 200 300 400 500 0 500 400 300 200 100

 0

 0

neuron 1 neuron 1

 0.4

 0.6

 0.8

 0

 1

 0 100

 300

 200 300 400 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

 0

 500

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 200 1000

 0.15

 0.2

0 100 200 300 400 500

 0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

 400

 0.05

 0.2

Figure 6: Two-mode pole balancer behavior. The plots

show the behavior one of the evolved pole balancing con-

trollers and its internal activation for the two modes of

operation. The plots in the left column are for Mode A,

on the right for mode B. The uppermost row shows the

angle of the pole in radians. The rows below show the

activation level of each of the 5 hidden units. It is clear

that the network employs a different strategy in each

mode. Likewise, the activation patterns in each mode

are quite different.

fi
tn

es
s:

 t
im

e−
st

ep
s

x
 1

0
0

generations

 60

 40

 20

 0

 100

 60

 40

 60 40 20 0

 100

 0

 20

 40

 60

 80

 100

 0

 20

 0

 20

 80

 1

 10

 100

 1000

 60

overall best

 0.1

burst phase best
generation best

 100

 40

 80

 80

 100 120 140 160

 80

 60

 40

 20

 0

 100

 80

Figure 7: H-ESP evolving a two-mode pole balancer.

Each of the curves in the uppermost graph (log-scale)

represents a different fitness measure for a single run

of H-ESP on the two-mode pole balancing task. The

dark wavy curve is the fitness of best network from each

generation. The gray curve is the best fitness so far

for each burst mutation phase where the onset of each

burst mutation is indicated by a downward spike in the

curve. The dashed curve is the best overall fitness so

far. Whenever L2 discovers a new overall best network,

the dashed curve jumps above the gray curve at points

indicated by the small diagonal arrows. The five graphs

below show, for each L1 subpopulation, the percentage

of neurons that have weight values originating in L2.

3.2.2 Results
RL-LSTM was able to solve the task completely in 2 out

of 10 simulations requiring and average of 6.25 million bal-
ancing attempts to do so. ESP was successful in 6 out of 10
runs with an average of 190,000 attempts, and H-ESP was
successful in 8 of the 10 runs with an average of 121,000
attempts. In this continuous control task, H-ESP has a
marked advantage over ESP. It seems that because this task
is much more difficult than the T-maze task the network
level has more to contribute by finding refinements to exist-
ing neuron combinations that the neuron level has missed.

One advantage that neuroevolution has on this task is that
learning the actual balancing of the pole is trivial for evo-
lutionary search, whereas value-function methods typically
take much longer to learn just the balancing policy. There-
fore, the challenge for H-ESP is to discover a network that
can implement two policies simultaneously and remember
the mode input for thousands of time steps.

Figure 6 shows the behavior of one of the evolved solu-
tions operating in each of the control modes. The two top
plots show the angle of the pole for each mode for the first
500 time-steps (10 seconds of simulated time). After 50
time-steps the mode signal is switched off causing an abrupt
change in the network activation (shown for each unit in the
lower plots). What is interesting about this solution is that
it implements two independent strategies within such a small
network. Some of the neurons go from a saturated steady
state to more dynamic behavior (neuron 2) or vice-versa
(neuron 5) when modes are switched.

4. ANALYSIS OF NETWORK LEVEL CON-
TRIBUTION

Here we try to give some insight into how H-ESP uses the
network level to improve search efficiency. Figure 7 shows
the performance for a typical H-ESP run, and illustrates how
the two evolutionary levels interact. The uppermost graph
shows for each generation the fitness of the best network
found in that generation in L1, the highest fitness found
so far within the current burst phase (i.e. from one burst
mutation to the next) in L1, and the best fitness found so
far in the entire system (L1 and L2). The five graphs below
show the percentage of neurons in each L1 subpopulation
that have at least one weight value that originated in the
L2.

Initially, the two levels communicate in only one direction,
from L1 to L2: networks evaluated in L1 move up to L2
where they evolve independently. Eventually, L2 discovers
a network with higher fitness, and its neurons are percolated
down to L1. The points at which this occurred in this exam-
ple are indicated by the small arrows. These new neurons
are then evaluated as part of some network in L1, and are
either eliminated from their subpopulation, as is the case
with the network inserted at generation 32, or they may be
preserved because they contribute to a highly fit network.
In this latter case, a new neuron may be selected for recom-
bination and have its genetic material transmitted to future
generations as occurs with the insertion at generation 68.
Note that since the subpopulations evolve separately, the
neurons derived from the same L2 network can have very
different fates in L1, as can be is seen in the differences
between the subpopulation plots.

The abrupt drop in the curves of subpopulations 1 and 2

near generation 120 is due to burst mutation which replaces
the neurons in each subpopulation with mutated copies of
the best neuron. The onset of burst mutation is indicated in
the upper plot by the sharp downward spikes in the “burst
phase best” curve.

Around generation 130, the network level jumps far ahead
of the neuron level (the large step in the “overall best”
curve), and material from L2 starts to spread throughout
L1 as a succession of networks percolate down. The neuron
level then starts to catch up, but not before a solution is
found in L2 at generation 158. Note that the incorporation
of L2 material into L1 is initiated by different L2 networks
for different subpopulations. For instance, subpopulation
1 starts to take in L2 neurons at generation 126, whereas
subpopulation 4 rejects this neuron by not selecting it for
recombination, but does accept the neuron at generation
135. However, even if L2 networks do not get incorporated
into L1 they can still be useful by providing a more highly
fit solution with which to burst mutate.

The network level, as demonstrated by this example, seems
to be most beneficial in the later stages of evolution when
fine local search is more profitable.

5. DISCUSSION
The results show that neural networks can be used to

solve deep memory POMDPs without using a specialized
learning architecture like LSTM. This is the first study that
has solved reinforcement learning tasks with such long term
temporal dependencies using evolutionary neural networks.
LSTM is the state of the art RNN for supervised tempo-
ral sequence learning, so it is not surprising that it outper-
formed the other gradient descent methods. However, in an
RL context, even LSTM can be slow because it is essentially
being asked to learn from a non-stationary training set. The
sequence of input patterns and targets change over time as
the network itself is updated, and, therefore, the gradient in-
formation is noisy and only as good as the current training
set.

Neuroevolution works in a fundamentally different way.
By doing away with the value-function, it is a simpler ap-
proach: no modification to the networks is made during in-
teraction with the environment so that an error gradient is
not needed. This means that less complex network solutions
can be found that have fewer and more simple processing
units. Simpler solutions are desirable especially in engineer-
ing applications where end-users want controllers they can
understand.

Although H-ESP represents an improvement over ESP, we
hope that this initial effort will inspire more research into
methods that concurrently search solution space at multi-
ple levels of dimensionality. Our future work with H-ESP
will first seek to analyze the inter-level dynamics in further
detail. The current mechanism for communicating between
the levels is very simple and ignores potentially useful infor-
mation about what is happening inside each level. A more
powerful approach might be to use diagnostics such as diver-
sity to regulate the flow between levels in a more adaptive
manner.

One possible extension to H-ESP is to add yet another
level above the network level which contains modular net-
works composed of networks from L2. This third level (L3)
would then communicate with L2, and indirectly with L1,
in a fashion similar to the way the two levels do currently in

H-ESP. This extension could be useful in tasks with high di-
mensional action space, such as anthropomorphic robot con-
trol, where the search space for bipedal walking strategies
may be reduced if crosstalk between various control com-
ponents (e.g. arms and legs) is limited by using separate,
dedicated modules.

6. CONCLUSION
This paper has presented for the first time the success-

ful application of a non gradient-descent neural network
method to solving long term dependency POMDPs. We
have introduced a new neuroevolution algorithm Hierarchi-
cal Enforced SubPopulations that enhances the already pow-
erful Enforced SubPopulations by allowing it to search in
the space of full network solutions as well as at the normal
neuron level. This network level improves search efficiency,
especially in the later stages of evolution by providing better
fine-tuning of candidate solutions.

Acknowledgments
This research was partially funded by CSEM Alpnach and
the EU MindRaces project: FP6 511931.

7. REFERENCES
[1] B. Bakker. Reinforcement learning with long

short-term memory. In T. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, volume 14, pages
1475–1482, Cambridge, MA, 2002. MIT Press.

[2] R. D. Beer and J. C. Gallagher. Evolving dynamical
neural networks for adaptive behavior. Adaptive
Behavior, 1(1):91–122, Summer 1992.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning
long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166, 1994.

[4] F. J. Gomez. Robust Nonlinear Control through
Neuroevolution. PhD thesis, Department of Computer
Sciences, The University of Texas at Austin, August
2003. Technical Report AI-TR-03-303.

[5] S. Hochreiter. Untersuchungen zu dynamischen
neuronalen Netzen. Diploma thesis, Institut für
Informatik, Lehrstuhl Prof. Brauer, Technische
Universität München, 1991.

[6] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[7] M. L. Littman. Memoryless policies: theorectical
limitations and practical results. In From Animals to
Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior,
Cambridge, MA, 1994. MIT Press.

[8] D. E. Moriarty and R. Miikkulainen. Efficient
reinforcement learning through symbiotic evolution.
Machine Learning, 22:11–32, 1996.

[9] S. Nolfi, J. L. Elman, and D. Parisi. Learning and
evolution in neural networks. Adaptive Behavior,
2:5–28, 1994.

[10] M. A. Potter and K. A. D. Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8:1–29,
2000.

[11] A. J. Robinson and F. Fallside. The utility driven
dynamic error propagation network. Technical Report
CUED/F-INFENG/TR.1, Engineering Department,
Cambridge University, Cambridge, UK, 1987.

[12] P. Werbos. Backpropagation through time: what does
it do and how to do it. In Proceedings of IEEE,
volume 78, pages 1550–1560, 1990.

[13] A. Wieland. Evolving neural network controllers for
unstable systems. In Proceedings of the International
Joint Conference on Neural Networks (Seattle, WA),
pages 667–673. Piscataway, NJ: IEEE, 1991.

[14] R. J. Williams and D. Zipser. A learning algorithm for
continually running fully recurrent neural networks.
Neural Computation, 1:270–280, 1989.

[15] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

