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NTICIPATORY GRIP FORCE CONTROL USING A CEREBELLAR MODEL
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bstract—Grip force modulation has a rich history of re-
earch, but the results remain to be integrated as a neuro-
omputational model and applied in a robotic system. Adap-
ive grip force control as exhibited by humans would enable
obots to handle objects with sufficient yet minimal force,
hus minimizing the risk of crushing objects or inadvertently
ropping them. We investigated the feasibility of grip force
ontrol by means of a biological neural approach to ascertain
he possibilities for future application in robotics. As the
erebellum appears crucial for adequate grip force control,
e tested a computational model of the olivo-cerebellar sys-

em. This model takes into account that the processing of
ensory signals introduces a 100 ms delay, and because of
his delay, the system needs to learn anticipatory rather than
eedback control. For training, we considered three scenarios
or feedback information: (1) grip force error estimation, (2)
ensory input on deformation of the fingertips, and (3) as a
ontrol, noise. The system was trained on a data set consist-

ng of force and acceleration recordings from human test
ubjects. Our results show that the cerebellar model is capa-
le of learning and performing anticipatory grip force control
losely resembling that of human test subjects despite the
elay. The system performs best if the delayed feedback
ignal carries an error estimation, but it can also perform well
hen sensory data are used instead. Thus, these tests indi-
ate that a cerebellar neural network can indeed serve well in
nticipatory grip force control not only in a biological but also

n an artificial system. © 2009 Published by Elsevier Ltd on
ehalf of IBRO.

ey words: cerebellum, grip force, motor learning, computa-
ional model.

n our daily lives, we frequently handle objects without
uch thought. However, applying an adequate amount of
rip force to an object being handled requires tight coor-
ination with the dynamics of other applied forces. Let us
onsider the case of a robot handling an object. Its task is
o simply hold it in its hand while the arm or body is being

Corresponding author. Tel: �31-0-205668404.
-mail address: j.de.gruijl@nin.knaw.nl (J. R. de Gruijl).
bbreviations: BC, basket cell; CF, climbing fiber; DCN, deep cere-
ellar nuclei; GC, granule cell; GO, Golgi cell; IO, inferior olivary
ucleus; LTD, long-term depression; LTP, long-term potentiation; MF,
a
ossy fiber; MSE, mean squared error; PC, Purkinje cell; PF, parallel

ber; SC, stellate cell.

306-4522/09 © 2009 Published by Elsevier Ltd on behalf of IBRO.
oi:10.1016/j.neuroscience.2009.02.041
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oved. The robot would ideally perform this task with
inimal grip force, thus preserving energy and—more im-
ortantly—minimizing the risk of crushing the object, which

s a realistic risk when, e.g. holding a Styrofoam cup.
nfortunately, using the same low amount of force con-
tantly will not suffice, because any movement of the robot
and or arm will automatically apply a force to any object
hat is being handled. Because of this, inertial loads can
uctuate, possibly causing the object to slip from the ro-
ot’s grasp and fall. Thus, grip force needs to be modified
n occasion. Relying solely on sensory feedback to solve
his problem may not be a feasible approach, since the
rocessing of sensory data may well take too long, espe-
ially if the movements are fast. In short, the system has to
nticipate changes in load force based on its movements
nd adjust its grip accordingly, so as to prevent to crush or
rop the object it is holding.

Grip force modulation has been studied extensively in
umans. Healthy human test subjects tend to hold objects
ith near-minimal grip force (Johansson and Westling,
984) and adjust this force in synchrony with or even prior
o the object’s load force changes during movement, indi-
ating anticipation (Flanagan and Wing, 1993; Flanagan et
l., 2003). Indeed, anticipation is needed since sensory
eedback arrives with a delay. This delay is also reflected
y the fact that changes in motor behavior due to an
nexpected event usually occur at a latency of about 100
s (Johansson and Westling, 1987; Cole and Abbs, 1988).

Positron emission tomography (PET) scans reveal that
he cerebellum plays a major role during grip force–load
orce coupled tasks (Boecker et al., 2005). Patients with a
amaged cerebellum lack the tight coordination of grip and

oad force, often exerting more grip force than needed and
aving difficulties in timing motor actions e.g. to compen-
ate for predictable perturbations (Babin-Ratté et al., 1999;
owak et al., 2002; Serrien and Wiesendanger, 1999).
esions in other areas involved in motor control such as
he cerebral cortex or striatum result in paralysis or invol-
ntary movement rather than a loss of coordination.

The cerebellum has a well-known neural structure and
lays an important role in motor control in general (De
eeuw and Yeo, 2005). Thus, it is not surprising that its
etwork served as the basis for numerous computational
odels (Albus, 1975; Medina et al., 2000; Spoelstra et al.,
000; Porrill et al., 2004; Yamazaki and Tanaka, 2007).
ere, we investigated the feasibility of using a cerebellar
odel to control grip force.

utline

n the following sections, a brief overview of the cerebellum

nd interpretation of its functionality will be given first. After

mailto:j.de.gruijl@nin.knaw.nl
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hat, the dataset and model used for the current work will
e described. Finally, the results are presented and the
urrent work will be discussed.

he olivo-cerebellar system

he cerebellum has two main input channels: the mossy
bers (MF) and the climbing fibers (CF). Both inputs are
xcitatory. The first carry signals originating from many
ifferent regions such as the pons, lower brainstem re-
ions, and spinal cord, while the second solely carries
ignals from the inferior olivary nucleus (IO) in the ventral
edulla oblongata. Interestingly, the inferior olive receives

ts inputs directly or indirectly from many of the regions that
lso give rise to one of the MF projections (De Zeeuw et
l., 1998). Unlike the IO signals, which relay all or none
ignals at the Purkinje cell (PC) level, the MF signals
ndergo some form of recoding before arriving in the PC

ayer: they terminate in the granule cell (GC) layer where
ombinations of various MF signals are integrated with a
eedback from the Golgi cells (GO) into parallel fiber (PF)
ignals, which in turn are carried to the PCs. Because the
umber of PFs is much higher than that of the MFs, it has
een suggested that expansion recoding occurs (Albus,
975; Spoelstra et al., 2000). The PFs and CFs co-termi-
ate in the PC layer of the cerebellum, where synaptic
eights are modified. It is generally believed that for this
ingle layer of cells, the PF signals provide a current motor
ommand and delayed sensory context, whereas the CFs
ay carry an error signal. This take on the cerebellum is

nown as the Marr-Albus-Ito hypothesis (Marr, 1969; Al-
us, 1971; Ito, 1984). The output of the PCs is sent to the
eep cerebellar nuclei (DCN), where they merge with the

nput from both MF and CF collaterals and where the final
utput of the cerebellum is generated. Thus, the cerebel-

um is reminiscent of a simple perceptron and as such it
ay learn to apply an inverse or forward model based on

ts input. Inverse models enable a system to generate the
esired output by producing the command that achieves a
iven desired state based on the current state of the sys-
em. Forward models can overcome feedback delays by
redicting the result of a current command, given the cur-
ent state of the system. Both models would have to be
nder continuous revision based on sensory input. There
re indications that both types of model are used by the
otor apparatus, and it has been suggested that the cer-
bellum may function as an inverse model that overcomes
ime delays using forward models (Wolpert et al., 1998).

The complexity of its cellular configurations and con-
ections, among other things, sets the cerebellum apart

rom a standard perceptron. For instance, the GCs are all
xcitatory, while all PCs generate inhibitory output. In ad-
ition, both the granular layer and molecular layer of the
erebellar cortex have inhibitory interneurons; these in-
lude the GOs, which inhibit the GCs, and the stellate cells
SC) and basket cells (BC), which inhibit the PCs.

The interaction of the cerebellum with the IO also sets
t apart from a simple perceptron. PCs inhibit both excita-
ory and inhibitory neurons in the DCN, the latter ones of

hich inhibit the IO neurons that provide the CFs to the

f
d

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
Cs. Thus, the result is a topographically organized loop
hat is specific down to the cellular level. Interestingly, the
livary neurons are electrotonically coupled to each other
nd have a tendency to oscillate (Van Der Giessen et al.,
008). Moreover, due to their conductances, olivary neu-
ons have a very low firing frequency with a maximum rate
f 10 Hz (Llinás and Volkind, 1973) and a spontaneous
ctivity of 2 Hz or less (Yeo and Hesslow, 1998). This
rrangement implies that the cerebellum receives rela-
ively few corrective signals, even when learning a new
ask.

he computational model

Input data. To provide the system with input and test
he system’s output, we constructed our own dataset of
uman grip force behavior with recordings acquired from
ine healthy adult test subjects (A, B, C, D, E, F, G, H and
). During right-handed point-to-point vertical arm move-
ents with an amplitude of approximately 30 cm, pausing
fter every upward and downward motion (as described in
owak et al., 2002), participants held a manipulandum

see Fig. 1) that registered accelerations in 3D, grip force
nd torque on the grip force axis. The manipulandum could
e outfitted with surfaces of varying roughness to establish
ifferent baseline grip force levels. These materials in-
luded, in order of increasing roughness, paper, Plexiglas
nd sandpaper. A total of 35 traces, each consisting of five
ownward and five upward movements with pauses in
etween, spanning approximately 20 s on average, was
athered and used. Appendix A contains an overview of
he number of traces per subject and surface texture, as

ig. 1. The manipulandum with Plexiglas surfaces being held. The
lack sensor registers force and torque exerted on the gripped sur-
aces. The top-mounted white sensor registers accelerations in three
imensional space.

force control using a cerebellar model, Neuroscience (2009),
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ell as statistics describing grip force differences between
urface textures.

Olivo-cerebellar model. Even though the cerebellum
eems similar in structure to a perceptron, we did not use
ne for the current model. Besides the fact that selecting a
iologically plausible learning rule is highly problematic,
ur preliminary results showed that the task of grip force
ontrol cannot be learned by a conventional perceptron,
ven when it is supplied with a delayed feedback signal.
his is caused in part by the fact that its computational
lements generate their output based solely on their cur-
ent input and synaptic weights. Since the input can be
ather noisy, the output can be noisy. Because the motor
utput is fed back into the system with a 100 ms delay, the
ystem’s output remains noisy. Some representation of
ast activations could ameliorate this problem.

It has been suggested that the cerebellum functions
ike a liquid state machine (Yamazaki and Tanaka, 2007).

liquid state machine consists of a feedforward learning
ayer incapable of memory representation that reads its
nput patterns from the activations in a recurrent network
apable of retaining information of past events (Maass et
l., 2002). In this case, the GCs and GOs would form the
ecurrent network and the PC layer the feedforward read-
ut network. However, the notion of the GC layer retaining

nformation by means of recurrent connections seems un-
ikely, due to the inhibitory nature of the GC/GO recurrent
onnection.

We used a modified version of a cerebellar model by
poelstra et al. (2000), which was originally used for cor-

ecting the motor output of a simulated robot arm during
oint-to-point movements by learning an inverse model.
ells are modeled as leaky integrators, causing an intrinsic

etention of information (or smoothing of activity) in the
orm of a decaying membrane potential

�
dm
dt

��m�x (1)

F(m)�Fmax

1
1�e�s(m�o) (2)

here m denotes the membrane potential, x the synaptic
nput, F the firing rate and s and o the slope and the offset
f the specific neuron type’s firing properties. Values for
hese parameters are given in Table 1. In Fig. 2 a graphical
verview of the system’s global architecture is supplied.

Only the olivary neurons are not simulated as leaky
ntegrators; these are represented as leaky integrate-and-

able 1. Overview of the parameter values used to model different cell
ypes as leaky integrators

GC GO PC DCN s.c./BC

ime constant � 0.02 0.05 0.02 0.02 0.05
lope s 8 0.5 0.005 0.08 0.5
ffset o 0.5 15 750 –50 15
c
aximum firing rate F 100 50 200 100 50

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
re units that are hard to excite, so as to be able to take the
ow number and binary nature of error signals into account.

if mio � � (3)

then mio�mio�Vrebound

IO�1

else IO�0

n the function above, the firing threshold � has the value
�]0.0001 and Vrebound is set at 1. IO is the binary output
f the cell. The resulting cell behavior is a baseline firing of
pproximately 2 Hz, with a maximum firing rate of 10 Hz, in
oncordance with physiological studies.

The model was modified to fit the current task of grip
orce control. For the current work, the distribution of the

ig. 2. Overview of the model. For clarity, the interneurons (GO/SC/
C) are omitted as these cells only serve to normalize the firing rates
f the GCs and PCs, respectively. The GC layer acts as an expansion
lter, combining MF signals carrying acceleration and position data of
he arm (accarm and posarm, respectively), constant signals (surface
exture and minimum grip force required to prevent slipping when not
oving the arm), delayed sensory data on the system’s output (grip

orce Fgrip and error E) and noise. The pre-processed signal is then
ent to the PCs. The PC output is processed in the DCN, which
enerate a change in grip force as output and inhibit the IO. The
ensory apparatus then sends a new perceived state of the system to
he GC layer and an error indication to the IO. If the IO neurons fire, the
C’s synaptic weights are decreased depending on the local second
essenger concentration.
ell population is altered (see Table 2 for the exact num-

force control using a cerebellar model, Neuroscience (2009),
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ers) and the system is not explicitly supplied with a de-
ired goal state as it was by Spoelstra et al. (2000). Rather
han specifying the desired grip force, the goal is implicit:
se optimal force (derived from arm movement and sen-
ory data) to prevent slipping or crushing of the manipu-
andum.

Espinoza and Smith (1990) found both cells that in-
reased and cells that decreased their firing rates during
ifting of an object. Our model behaves in the same manner
y ordering PC groups in an antagonistic fashion. The
odel is based on the hypothesis that for certain tasks,
ntagonistic organization of PC groups is vital, with each
roup receiving a different (opposing) learning signal. This

nterpretation is also compatible with recent studies which
how different cell categories with opposite modulation
uring trial by trial learning in the vestibulocerebellum (Me-
ina and Lisberger, 2008).

For our experiments we defined ‘optimal force’ as ‘hu-
an performance,’ since this is robust and reproducible
nd generally believed to be (almost) optimal (Flanagan
nd Wing, 1993). The error E(t) can then be computed by
ubtracting the corresponding grip force value in the data-
et Gdataset from the system’s grip force output Goutput at
ime step t.

E�Goutput�Gdataset (4)

unctional organization of PC ensembles is achieved by
ending the error E to one of two IO cells depending on its
ign. Thus, one such neuron codes for slipping and the
ther for exerting too much force. If the firing threshold is
eached, the IO cell sends a corrective signal to its corre-
ponding group of PCs. As a result one group of PCs
odes for an increase in force, whereas the other codes for
decrease.

The model uses GC expansion recoded data as main
nput to the PC layer. GCs receive four randomly deter-

ined MF inputs each. The MFs are the sole source of
uantitative input to the model. Delayed feedback signals
re also supplied through the MFs. In Appendix B, the MF
ignals and distribution are explained in more detail.

The interneurons serve to ensure sparse encoding by
eeping activity levels within a certain range. For the GCs
his is done by a GO that receives input from the entire GC
opulation and inhibits the very same population in return,
nsuring sparse encoding by keeping the summed activity

evel in the entire population within a certain range. Fur-

able 2. Overview of the number of cells used for the model

ell type Cell count

ossy fibers (input cells) 84
ranule cells 2100
olgi cells 1
urkinje cells 40
tellate or Basket cells 2
CN cells 2

nferior olivary cells 2
hermore, increases in PF activity are compensated for l

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
uickly, but not immediately. This way changes can be
ignaled to PCs in a way reminiscent of the time window
ypothesis (D’Angelo and De Zeeuw, 2009). According to
his hypothesis, MF signals are translated to well-timed
ursts of activity in GCs, the duration of which is regulated
y GOs.

Individual PCs receive input from a band of 700 differ-
nt PFs. Since the PCs have a maximum firing rate and an

ncrease in PF activity could easily cause them to saturate,
he SC/BC inhibit the PCs based on the PF activity. This
eedforward inhibition causes the PCs to remain in the
teeper zones of their sigmoidal activation function even
nder increased PF activity, thus enhancing their discrim-

natory capabilities. Furthermore, due to the slightly de-
ayed activation of the SC/BC compared with that of the
Cs, the model’s feedforward inhibition stresses changes

n PF activity and increases temporal precision. This is
ompatible with results found by Häusser and colleagues
Mittmann et al., 2005).

Feedback signals. In machine learning it is not un-
ommon that a system receives a quantified value repre-
enting its error during learning or even performance. Be-
ause of this, we used the value calculated with Equation
4) as a delayed feedback signal. The actual exerted grip
orce is always supplied to the system as a delayed signal,
nabling the system to evaluate its output using the actual
alue and its deviation from the desired value in this setup,
uch like a Smith predictor (Miall et al., 1993). (A Smith
redictor is a controller for processes involving a time
elay. Such a controller uses a forward model to predict
he outcome of an action, later comparing this prediction to
he actual outcome and making revisions if needed.) Still,
hese data may not be directly accessible to the cerebel-
um or a computational model controlling a robot. There-
ore, we also investigated two other delayed feedback
ptions: noise (to assess the importance of a delayed
eedback signal in general) and values representing fin-
ertip skin deformation (since having error estimation may
ot be feasible and earlier research indicates that cutane-
us feedback is invaluable for correct grip force control
Augurelle et al., 2003; Nowak et al., 2004)). These skin
eformations are simulated based on values in the dataset
nd the output of the system. A description of the model
sed for this cutaneous input is given in Appendix C.

Learning with a delay. Learning in the system is a
esult of interplay between long-term potentiation (LTP)
nd long-term depression (LTD). LTP is the result of PF
ctivity without IO activity:

�W��
GC · W

Fmax
(5)

C represents the GC activity of a population of GCs
rojecting to a PC, W the corresponding synaptic weights
nd Fmax is the GC maximum firing rate. The learning
peed � is set to 75e[�]9.

LTD is the result of combined PF and IO activity, the

atter of which is caused by sensory feedback with a delay

force control using a cerebellar model, Neuroscience (2009),
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f 100 ms as dictated by biology. The problem of synaptic
ligibility that arises as a consequence is tackled with a
econd messenger e, which tags active synapses locally,
eaching peak concentration at 100 ms after synaptic ac-
ivation. (The problem is accurately tagging the synapses
ligible for change. In this case the delay of 100 ms makes
his problematic, since without some form of memory there
s no way of detecting which synapses caused undesirable
utput and need to be corrected.)

�e1

de1

dt
��e1�GC · W (6)

�e

de
dt

��e�e1 (7)

he time constants �e1 and �e are both set to 0.1. Such a
ystem with higher-order dynamics has been suggested
efore by Schweighofer et al. (1996). This way, no biolog-

cally implausible and memory-intensive buffer is needed
o represent past activations.

Originally, the second messenger system followed
econd-order dynamics that resulted in a time span of
pproximately 250 ms during which the second messenger
oncentration e was above 50% of its maximum caused by
single synaptic activation. In preliminary experiments,

his period of time proved to be too long to adequately
earn the task of grip force control. Spoelstra et al. (2000)
sed this form of synaptic eligibility for uni-directional robot
rm movements that took 0.6 s to complete. This task is
ore constant in nature than grip force control, causing

ess disruptive spillover of errors. Furthermore, resetting
he system between movements can ameliorate most of
he problems such a large window of eligibility may cause.
he largest time window with which the current task could
till be learned to a high degree of precision proved to be
pproximately 100 ms. Because of this, e is used as the
ctual second messenger concentration at a certain time t,
esulting in a period of 100 ms during which the concen-
ration is above 50% (in every case, the system appears to
ag behind the test subject’s trace, due to the fact that
hanges in neural activity are not instantaneous, but occur
radually as a result of the membrane potential and firing
ate dynamics defined by Equations (1) and (2); further-
ore, test subjects often show changes in grip force more

han 10 ms before the actual change in load force takes
lace, causing a change in grip force when the model does
ot yet have sufficient information to do so):

efinal�e4 (8)

he final second messenger value can then be used for
he LTD learning rule:

�W��
cefinal

Fmax
(9)

n Equation (9), the learning speed � is set to [�]4e[�]3 and
is a compensatory constant to bring e back to the
final

riginal range of e by approximation. m

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
Changing the firing rate of the IO (without changing
TP or LTD factors) would cause an imbalance in LTP and
TD, causing one or the other to be more prevalent and
aking learning impossible in the process. Changing LTP
nd LTD values along with the inferior olive firing rate,
hile keeping them balanced, would result in changes in

earning speed. Faster learning speeds cause faster, but
ore inaccurate convergence. Slower learning speeds are
ore accurate, but converge over a larger time span.

RESULTS

raining and testing

wo training sets and two test sets were used. In all three
ases (error estimation, fingertip deformation data and
oise) the network was trained on 26 of the 35 traces in the
ataset. These were presented in random order over 10

terations, resulting in 260 training sessions in total. After
raining, the network’s state was saved. This was then
sed as the initial state for testing on each data file of a
maller set of nine trials not present in the training data. To
et a reliable estimate of the system’s robustness and
peed of adaptation, it was tested on trials recorded from
ubjects that the network had not encountered during train-

ng. For test set I these files were all recorded from partic-
pant D (3� paper; 3� Plexiglas; 3� sandpaper) and for
est set II these files were from A (3� paper), B (3�
andpaper) and G (3� Plexiglas).

Test set I consisted of trials that were all more or less
verage in grip force profiles and grip force levels and may
e considered to be the easier test set. Test set II consists
f data from three different test subjects, of which one
xhibits a highly aberrant grip force level (G) and another
as a somewhat unusual grip force profile (A). This test set
ay also be more difficult due to the fact that the number
f such outliers in training set II is smaller than it is in
raining set I.

In the following section, an overview of the statistics
egarding the performance of each network type is pre-
ented. For measure of error the mean squared error (MSE)
as used; with the squared error calculated per time step
f the simulation and averaged per file, after which it was
veraged across all files per iteration. After this overview
nd its implications, the specifics are illustrated using
races of actual system output plotted against the target
human) output.

erformance specifics

erformance proved to be mostly dependent on the type of
elayed feedback signal. Factors such as surface texture
ccounted for changes in average grip force levels, but did
ot cause the system to experience any difficulties in de-
ermining necessary changes in grip force. In line with
xpectations, performance on the second test set is nota-
ly worse due to the aberrant data present in this set.

As can be seen in Table 3, only the network using error
stimation can learn the training sets to a high degree of
recision in 10 iterations. The sensory data and noise

odels consistently come out of the training cycle with an

force control using a cerebellar model, Neuroscience (2009),
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pparent failure to learn the task well, as indicated by the
imilarly high MSE scores when compared with the MSE
cores of the system with error estimation. However, the
ifference between noise and sensory data as a delayed

eedback signal becomes apparent when the networks’
erformance on the test sets is compared. As can be seen

n Figs. 3, 4 and 5 of typical behavior of the cerebellar
odel under the three conditions that were investigated,

he networks’ behavioral properties differ. (In every case,
he system appears to lag behind the test subject’s trace.
his is due to the fact that changes in neural activity are not

nstantaneous, but occur gradually as a result of the mem-
rane potential and firing rate dynamics defined by Equa-
ions (1) and (2). Furthermore, test subjects often show
hanges in grip force more than 10 ms before the actual
hange in load force takes place, causing a change in grip
orce when the model does not yet have sufficient infor-
ation to do so.)

The noise model shows high MSE scores with large
tandard deviations on the test sets, indicating erratic be-
avior. These networks have been trained on a data set on
hich they have maximized their performance (albeit with
omewhat poor results), but in general fail to extend the
earned principles adequately to new data. In addition,
he correct baseline grip force is often not found initially.
he performance of these systems in general indicates

hat a delayed signal other than exerted grip force is
eeded for good grip force control (see Fig. 3).

ig. 3. Trace of a network receiving noise instead of error estimation
r fingertip sensory data, being tested on data not present in the
raining set. The trace shows erratic behavior with missing peaks and
orce changes where none should occur. Some aspects can still be

able 3. Overview of the results. MSE scores of all three systems on
he training and test sets

elayed feedback
ignal

Training
set I

Training
set Ii

Test
set I

Test
set Ii

rror estimation 2.5�0.3 3.1�0.3 4.5�1.0 6.3�1.4
kin deformation 7.4�0.9 7.3�0.7 5.6�1.1 7.1�1.7
oise 7.1�1.7 7.1�1.0 15.2�8.6 15.1�5.9
earned by this model due to the periodic nature of the data, but much
f the correct behavior is in response to IO firing.

e
j

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
The system using fingertip deformation data has notably
ower MSE scores (and much lower variance) than the model
upplied with noise on the test sets and shows robust (peri-
dic) grip force control characteristics (see Fig. 4). The sig-
ature periodic grip force behavior of these models is an
verage that would work well in general, because of the
stute representation of force changes needed during vertical
rm movements as described in the literature (Flanagan and
ing, 1993; Nowak et al., 2002). However, the learned be-

avior often does not fit traces of individual test subjects well,
ausing a relatively high MSE score in the training set. In
ddition, the initial force levels are frequently incorrect, caus-

ng the first part of a trial to further increase the average MSE,
espite the rapid adaptation of the network to correct the
ituation. This problem is most severe in test set II, due to the

ig. 5. Trace of a network using error estimation being tested on data
ot present in the training set. The performance is near perfect, with
ardly any sign of learning being necessary to adapt to new data.
ome adaptation can be seen to occur in the first 3 seconds. Closer

ig. 4. Trace of a network supplied with delayed information rendered
y the fingertip deformation model being tested on data not present in

he training set. The grip force characteristics are robust and periodic
nd adaptation to the new data is fast. However, the system shows

ower grip force change amplitudes than networks with other delayed
ata and the initial grip force level is often not ascertained correctly.
xamination reveals that minor grip force changes to fit the test sub-
ect’s profile often occur in response to IO firing.

force control using a cerebellar model, Neuroscience (2009),
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xceptionally low grip force levels for the Plexiglas surface
races and lack of similar data in the data set. On these data
he system consistently uses too much force and fails to
dapt quickly enough, resulting in a high MSE score. Since

est set I contains new, but no highly aberrant data (contrary
o training set I), the averaged behavior that the system
xhibits actually causes it to score better on the test set than

t does on the training set, with adaptation to the new data
ccurring quickly.

Networks that use error approximation show increased
SE scores on the test sets when compared with their

cores on the training sets, but still perform very well and
utperform networks receiving other feedback signals. The
umerical representation of the grip force error enables these
ystems to quickly adapt to specific individual grip force pro-
les (see Fig. 5). Still, the data for the Plexiglas surface in test
et II do cause problems due to the lack of similar traces in
raining set II. On these data, networks supplied with an
stimated error will adapt to the correct baseline grip force

evel, but tend to increase force too much during movements,
esulting in an increased MSE. However, the overall perfor-
ance of these networks is good. Traces of these systems

how extremely fast adaptation to new data and the specific
eaks in force associated with the start of an upward move-
ent or the stop of a downward movement that are most

ritical are almost never missed by this model.

DISCUSSION

nterpretation of the results

e tested a model using principles as found in the cere-
ellum on the task of anticipatory grip force modulation,
hich is novel for this kind of system. The results of the
urrent work show that this task can be learned to a high
egree of precision with a cerebellar model, despite the
elayed feedback signal. Even seemingly unnecessary
hanges in grip force can be anticipated or quickly cor-
ected to. Learning also happens at a fast pace, with a
rained system capable of reaching near-optimal perfor-
ance on new data within seconds.

Learning with a constant delay is possible, but the
ature of the delayed signal is important, as can be con-
luded from the differences in results obtained from the
hree network types receiving different delayed data. Op-
imal performance and adaptability are obtained when an
ccurate estimation of the absolute error in grip force is
sed, but this may not be biologically plausible. If simu-

ated sensory data on fingertip deformations are used, the
odel learns a more generalized behavioral pattern and

oses the ability to fit every individual trace well. However,
he grip force changes rendered as output by this system
ay still yield good performance on the actual task of
olding an object during vertical motion of the arm due to

he fact that the temporal pattern that is exhibited is the
veraged behavior for such motions as described in the

iterature (Flanagan and Wing, 1993; Nowak et al., 2002).
se of noise instead of error estimation or simulated sen-
ory data indicates that the delayed input should bear

ome correlation to the task that is performed in order to g

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip
doi: 10.1016/j.neuroscience.2009.02.041
earn and maintain accurate control. Earlier research also
ndicates that without cutaneous feedback grip force con-
rol is impaired, resulting in an increased number of
ropped objects (Augurelle et al., 2003) or much higher
aseline grip force levels (Nowak et al., 2004). Our results
how that indeed cutaneous feedback can be used to learn
dequate grip force control and that without a feedback
ignal, the feedforward control fails.

Even though the grip force control characteristics of the
odel with delayed input representing fingertip deformations

ook promising, it suffers from the problem of often ascertain-
ng the baseline grip force level needed for a particular trial
ncorrectly. The model supplied with noise instead of delayed
eedback exhibits the same difficulties. This is likely to be
aused by the relatively high variance in grip force levels for
very individual surface texture used in the dataset. For ex-
mple: one test subject (G) held the manipulandum with
lexiglas surfaces using grip forces below the average force
sed for the sandpaper surfaces. The networks receiving
rror estimation show fewer difficulties in ascertaining such
rip force levels, as they can easily use the delayed signal to

nfer an estimation of the correct baseline grip force. How-
ver, if similar data are not present in the training set, ascer-

aining the correct range for force modulation will still be
roblematic for these systems.

europhysiological questions

he current model is based on some hypotheses that may be
onsidered controversial. These matters remain to be eluci-
ated by neurophysiological experiments. One is that for

earning a corrective CF activation due to slip is used in our
odel. Dugas and Smith (1992) reported finding no evidence
f slip-related complex spikes in PCs in the paravermal an-

erior lobe that did show simple spike modulation in response
r anticipation to load force perturbations during a grip force-
elated task. Still, responses can vary significantly between
nd even within locations in the cerebellar cortex (Medina
nd Lisberger, 2008), with cellular activity related to a task
ften being spread out over the cerebellum. As such, the
xistence of a slip complex spike signal cannot be excluded.

The link between grip force and the cerebellum has
lso been a matter of debate. Inactivation of cerebellar
uclei using muscimol in monkeys has yielded conflicting
esults. Goodkin and Thach (2003) found that muscimol
njections in the dentate nucleus can give rise to impaired
iming of finger movements, causing delays of up to 50 ms.
onzée et al. (2004) reported no immediate effect (within
0 min) of muscimol injections into the dentate nucleus
nd observed impaired grip force performance on trials
here the animal’s arm showed tremor and dysmetria and
as unrestrained. However, if the forearm was restrained,

he grip force behavior was seemingly normal (Monzée et
l., 2004). Still, these data are compatible with the possi-
ility that one needs the cerebellum to control multiple
otor domains if one controls a particular motor domain

e.g. finger domain) that depends on another domain (e.g.
pper arm domain). A lack of reliable data relating to arm
ovements in areas controlling the fingers could easily

ive rise to slip.

force control using a cerebellar model, Neuroscience (2009),
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uture work

or future work, it may prove fruitful to improve the model
y incorporating results from work on cerebellar interneu-
ons. For instance, recent results show that activity of GOs
s coordinated by means of gap junctions (Dugué et al.
009). These results indicate that input from GC groups
an be gated, increasing efficiency of information transfer.

Furthermore, the feasibility of translating sensory data
nto a motor error indication may be worth investigating.
he implementation of a lower-level system that supplies
n error signal for self-supervised learning as hypothe-
ized by Spoelstra et al. (2000) would enable the model to
unction optimally. Due to the regularity of the data during
ptimal (e.g. human) performance and the clear indication
f grip force error that can be rendered using these data
nd the system’s output, it may not be too difficult to
rain a feedforward function that gives some measure of
he actual error that the cerebellar model can use. Hav-
ng such a signal will also make training a robot easier
han when training relies on ascertaining whether an
bject slips or whether the skin deformation exceeds a
ertain value for a longer period of time (indicating that
oo much grip force is being used).
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APPENDIX A: HUMAN GRIP FORCE BEHAVIOR DATASET

he following data describe the dataset used to train and test the cerebellar model.

: Overview of the trial distribution between surface textures and test subjects.

ubject Sandpaper trials Plexiglas trials Paper trials

0 0 3
3 0 0
0 1 0
3 3 3
3 0 0
1 1 1
0 3 0
3 3 3
0 0 1

otal: 13 11 11

: Averages of grip force per surface texture.

Average grip force (n)

aper 13.6�3.1
lexiglas 9.5�3.5
andpaper 8.0�3.1

APPENDIX B: SIMULATED MF INPUT

total of 84 MFs was used for the model. The MF input supplied to the model consists of a predetermined part (60 inputs, derived from the
ataset) and a dynamic part (24 inputs, based on system output). The values based on system output are considered to be of sensory origin
nd arrive with a 100 ms delay. Most signals were distributed over several (gaussian) receptive fields responding to values in a certain range,
enerating a value in the range of [0 . . . 1] as output.

redetermined MF input

3D accelerations. The 3D acceleration signals were spread over receptive fields, using five fields for the x and z (horizontal plane)
xes and nine fields for the y axis. These receptive fields span the total range of values for accelerations found in the dataset. Every receptive
eld was included twice as a MF input, resulting in 38 acceleration inputs.

rm position

he torque signal was used as an indication of arm position, since the torque forces closely resembled the movement due to rotational friction
aused by movement of the shoulder during vertical motions of the extended arm. The raw data were normalized and spread over three
eceptive fields coding for low, middle and high position. A total of nine arm position inputs were used (three low, three middle, three high).

inimum grip force

his value was obtained by letting the test subject lessen the grip force on the manipulandum while holding it and using the telltale increase
n grip force in the raw trace as a marker for the beginning of slip. This constant is used to indicate when the object would slip based on
urface friction only. The signal is spread over four receptive fields covering the entire range of minimum grip force values in the dataset. A
otal of eight minimum grip force inputs was used (two for every receptive field).

oise

total of three inputs supplying white noise was used.

urface texture

total of two inputs coding for the surface texture was used, with outputs 0 for sandpaper, 0.5 for Plexiglas and 1 for paper.

ynamic MF input

Exerted grip force. The actual exerted grip force is spread over eight receptive fields, spanning a little more than the entire range
f grip force values in the dataset. The output of every receptive field is included twice, for a total of 16 grip force inputs.

C activity intensity

his input codes for the activity in PC groups, with one value per group. The value in the range [0 . . . 1] is determined by the theoretical

aximum and minimum output of these groups, divided by the maximum. Every input is included twice, for a total of four inputs.

Please cite this article in press as: de Gruijl JR, et al., Anticipatory grip force control using a cerebellar model, Neuroscience (2009),
doi: 10.1016/j.neuroscience.2009.02.041
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eedback signal

nformation on error estimation, skin deformation or noise carried by a total of four inputs. Error estimation: two inputs for overgripping and
wo inputs for slipping. Skin deformation: two inputs for fingertip contact area and two inputs for fingertip deformation in the plane of the
ontact area.

APPENDIX C: FINGERTIP SKIN DEFORMATION MODEL

hen a digit is put to a surface and force is applied, the contact area expands until a maximum is reached. Elastic materials such as skin
issue tend to show an instantaneous elastic response followed by relaxation behavior. In the case of a contact area, this means that there
s an instantaneous increase of the area due to force, after which the material will settle and relax, causing a slow increase of the surface
rea dependent on time. To simulate the force dependency of the total contact area and the visco-elastic properties of the finger’s tissue,

he following iterative functions are used:

A	(t)�
1

1�eF(t) ⁄ 8 (10)

A(t)�A(t�1)�
A	(t)�A	(t�1)

i
�

A	(t)�A(t�1)

v
(11)

ith A(t) as the contact area at time t and F(t) the actual force in newtons with which the finger is pressed onto the surface at time t. The
onstants i�1.4286 and v�40 define the amount of instantaneous elastic response and the time-dependent gradual increase or decrease
ate of the surface area due to the viscous-like properties, respectively. The resulting behavior is an immediate elastic response that accounts
or 70% of the change due to force changes, followed by relaxation behavior that settles in 2 s. This approximates the properties of silicone
ubber such as may be used for the construction of the fingertips of a dexterous robot hand (Potdar, 2007). In order to perpendicularly lift
he sensor, the surface friction must overcome the gravitational force. This surface friction is the result of the fingertip’s and the surface area’s
riction coefficients as well as the size of the contact area. If the minimum force to prevent slipping F0 is used in Equation (10), the initial
ontact area A(0) is found. A(t) is also used as a direct measure of how compressed the fingertip is. The more compressed the fingertip is,
he harder it is to deform:


	(t)�Fa(t)�Fa(t)(1�A2(t)) (12)


(t)�
(t�1)�

	(t)�
	(t�1)

i
�


	(t)�
(t�1)

v
(13)

he deformation 
(t) along an axis perpendicular to the axis along which grip force is exerted is determined by the surface area A(t) and the
otal acceleration force Fa(t) in that particular direction. Fa is normalized to values between �1 and 1. The deformations in both possible
irections (x and y) are assumed to be independent. Note that in the vertical direction y, Fa(0)�0 is due to gravity and that the fingertip is

nitially deformed as a consequence. The final information vector that is sent to the GC layer via the MFs is �A(t), 
x(t), 
y(t)�.
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