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Abstract— This paper describes a novel method for motion
generation and reactive collision avoidance. The algorithm per-
forms arbitrary desired velocity profiles in absence of external
disturbances and reacts if virtual or physical contact is made in
a unified fashion with a clear physically interpretable behavior.
The method uses physical analogies for defining attractor
dynamics in order to generate smooth paths even in presence
of virtual and physical objects. The proposed algorithm can,
due to its low complexity, run in the inner most control loop
of the robot, which is absolutely crucial for safe Human Robot
Interaction. The method is thought as the locally reactive real-
time motion generator connecting control, collision detection
and reaction, and global path planning.

I. INTRODUCTION

Future robots will work closely with humans in indus-
trial environments, which necessitate safe robot design [1],
sophisticated control methods for realizing soft robotics
features [2], and collision detection algorithms with appro-
priate reaction strategies [6], [7]. Furthermore, it is of major
importance to provide flexible motion generation methods,
which take into account the possibly complex environment
structure and at the same time can react very quickly to
changing conditions.

Motion generation methods can be divided into path plan-
ning algorithms and reactive motion generation. On the one
hand (probabilistic) complete, highly sophisticated offline
path planning methods are used, which provide complete
collision free paths for potentially complex scenarios [4]
with multi degree-of-freedom (DoF) open or closed chain
kinematics. On the other hand, reactive motion generators,
which usually provide a more responsive behavior, are of
simpler character and have very short execution cycles. Both
classes mostly treat the entire motion generation problem
from a purely geometric/kinematic point of view. Unfortu-
nately, both methods have significant drawbacks.

With the recent advances in physical Human-Robot Inter-
action (pHRI) it becomes even more important to be able
to plan complex motions for task achievement and cope
with the proximity of dynamic obstacles under the absolute
premise of safety to the human at the same time. Complex
motion planners cannot match the real-time requirements
of the low level control cycle due to their computational
complexity. Reactive methods on the other hand do usually

S. Haddadin, H. Urbanek, S. Parusel, A. Albu-Schäffer,
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not provide completeness and are prone to get stuck in
local minima. This necessitates to treat motion planning,
collision avoidance, and collision detection/reaction not sep-
arated anymore. Of course, global planning methods have to
generate some valid path for the coarse motion of the robot,
but we believe absolute optimality and absolute collision
avoidance have not the highest priority in highly dynamic
environments, since the overall execution time, robustness,
and flexible reaction are of higher interest. In order to satisfy
the requirements posed by very quick and safe reaction
cycles, real-time methods have to be used for local motions
that can fully exploit the capabilities of the robot.

However, it is not satisfactory anymore to only circumvent
objects while preventing contact. Contact has to be an
integral part of the reactive motion scheme since it could
be the vital part of the task. In any case, we believe the
role of collisions should be redefined, since absolute avoid-
ance is artificially restricting robots with high performance
sensing capabilities that are designed for handling contact.
With such devices collisions with the environment do not
have to be avoided by all means as long as they do not
create harmful situations to humans or the environment or
conflict with the task. Therefore, contact force information
should be integrated into the collision avoidance schemes
so that in case unexpected contact occurs, e.g. due to
incomplete/inconsistent knowledge of the environment or
unpredicted behavior of the human, the robot can retract
and circumvent the sources of external forces in a similar
fashion to virtual forces that are e.g. generated via poten-
tial fields. In other words a much more flexible trajectory
deformation during contact is desirable, which does not
shift the entire load of coping with the collision to the
control schemes, but actively responds to unexpected events.
Furthermore, a common problem with reactive strategies is
their non predictable behavior in case of virtual/physical
external forces. Especially in human environments, it cannot
be an option to avoid an upcoming object very quickly by
increasing unpredictably velocity into another direction and
then possibly collide with another object or human.

In this paper we present a new real-time method for
reactive collision avoidance that can also cope with external
forces and furthermore is able to serve as a general purpose
interpolator with arbitrary desire velocity profile. Even in
case of external contacts, we provide a clear behavior of
the robot and use the information of contact for deforming
the trajectory safely in real time. The accompanying video
showcases the performance of the method.

This paper is organized as follows. Section II gives a short
summary on the state of the art of reactive motion generation,
followed by the design concept of the proposed algorithm
in Sec. III with some simple simulation to illustrate the
idea. Sec. IV presents the experimental performance of the



proposed method for static and dynamic obstacles. Finally
we conclude in Sec. V.

II. STATE-OF-THE-ART

Path planning with reactive collision avoidance was mostly
investigated in the field of mobile manipulators [19], [11].
A typical task to be fulfilled is to avoid obstacles with or
without (partial) task consistency, which are either known
beforehand or suddenly appear, thus necessitating quick
response times.

For real-time collision avoidance the potential field based
methods are powerful schemes [15], [8], [19], [11]. A virtual
repulsive potential is assigned to each known obstacle and
an attractive potential to the desired goal configuration. This
leads to a directed motion towards the goal while avoiding
the obstacles in a reactive fashion. In [11], e.g., the method
is applied for the translative motion of a mobile base and
in [19] for a manipulator mounted on a mobile base alone.
Furthermore, the potential fields can be extended from a
virtual point-shaped particle model to various shapes for the
robot. These are able to change their orientation accordingly
to avoid obstacles [10]. Despite one of its major deficits,
namely its possibility to get easily stuck in local minima,
its very fast calculation time within the low-level controller
cycle of the robot is a very well known benefit.

One possibility to overcome this drawback is presented
with the circulatory fields, introduced in [16]. Each obstacle
is attached with a circulatory field, similar to that of an
electrical charge in a magnetic field. While this field will
then drive the path around the obstacle, this method will not
be able to find optimal solutions. However, in principle this
method is free of local minima.

A concept proposed in [13], [14], which is closely related
to potential fields is CARE. Based on proximity and relative
velocity it generates evasive joint accelerations for avoiding
external objects. The method is straight forward to be used
for multi-robot systems as well.

Other promising principles of combining a global path
planner with a local collision avoidance strategy are the
Elastic Strips [3] or the preceeding Elastic Bands [12]. A
global path planner searches for a path around the known
obstacles. Unforseen appearing hindrance can then deform
the planned path as if it was a rubber band, while avoidance
of known obstacles is still possible. The elastic strips and
elastic bands, however, are computationally more complex,
so that they can hardly run in the inner most control loop,
especially for full multi-DoF robots. Therefore, they increase
the time lag until a reaction to an obstacle initiates.

Instead of applying potential field methods in the Cartesian
space, one could also apply them in the configuration space
(C-space) of the robot [18]. Still, since calculations in the
C-space (especially for a large number of DoFs) are compu-
tationally complex, this method is practically only applicable
for offline planning, and therefore offers no reactive behavior.
This method, however, is able to find valid paths, where
Cartesian space based potential field methods fail.

A somewhat different approach, which focus was to in-
crease safety is given in [5]. Given a collision free path, a
so called proxy acts as an attractor, which slides along the
path, yet having its own dynamics, therefore smoothing out
discontinuities of the given path. The robot is then connected
to the proxy by a PID like controller. This combination
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Fig. 1. Design steps for the proposed algorithm.

allows for a safer, gently path-following robot, avoiding
sudden jerky motions.

A very good general overview of classical motion planning
techniques for reactive planning is given in [9], where also
work on discrete potential fields is reviewed.

After this brief overview on reactive collision avoidance
methods we illustrate our concept of a collision avoidance
system, which provides solutions to some of the aforemen-
tioned limitations of existing methods.

III. ALGORTHM DESIGN

A. Main idea of the method

The collision avoidance technique presented in this paper
is based on the attractor idea of the potential field method.
We provide significant extensions, which help to overcome
some of its major drawbacks. Figure 1 shows the consecutive
desired behaviors ( 1©- 5©), visualizing the design process of
the algorithm. In addition, the proposed schemes we chose to
fulfill our requirements are given and the according sections
referred to.

First of all, we seek for a real-time collision avoidance
method that can run in the inner most control loop of the
robot (in our case at 1 kHz). Furthermore, we want virtual
and physical forces to be the input for avoiding collisions
or retract from them 1©. Therefore, we chose an impedance
equation and selected a decoupled second order differential
equation for sake of smoothness of the generated motion
2©. In order to be able to follow arbitrary desired velocity

profiles, we traverse the predicted path of the resulting
attractor dynamics every time step. Then, we choose the
configuration along this trajectory that matches the associated
desired velocity value 3©. This enables us to use only the
geometric properties of the calculated path, having the nice
characteristics of the attractor, while forcing the motion
generator to produce the commanded desired velocities along
this path.

Especially during physical contact it is often desirable to
slow down motion, which we ensure by velocity scaling
4©. Finally, we alter the coupling to the goal (the attractor

stiffness) depending on the current state 5©. This can be



interpreted as a temporal detachment from the goal con-
figuration during (virtual) contact. After this process the
coupling is restored again, leading to the continuation of goal
convergence. This prevents the unnecessary fighting between
attractive and repulsive forces.

B. Attractor design

Potential Field methods as introduced in [8] are well
known for their computational efficiency and general ap-
plicability. Thus, they have become a standard method in
robotics [15]. In the original work a potential field was
introduced that consists of a driving attractor for reaching the
target configuration, while the robot is being deviated form
its desired motion by virtual objects that generate repelling
virtual forces. Formally, it can be described by

f(xd,x∗
d,xo) = fa(xd,x∗

d) + fr(xd,xo)

= fa(xd) +
∑

k

frk
(xd,xok

), (1)

with xd,x∗
d,xok

∈ R
n being the position of the virtual

particle, the desired goal configuration and the closest point
of the Surface Sk of the kth repulsive object. f : Rn×Rn×
R

n → R
n, fa, fr : R

n×R
n → R

n are the resulting driving,
attractive, and repulsive forces associated with the potential
field V : Rn× Rn×Rn→ Rn via

f(xd,x∗
d,xo) = −∂V (xd,x∗

d,xo)
∂xd

. (2)

The resulting repulsive force usually consists of the sum
of the k repulsive components frk

: Rn×Rn → Rn. The
attractive force is expressed by the first order differential
equation

fa(xd) = Kv (xd − x∗
d) + Dvẋd, (3)

with Kv = diag{Kv,i} ∈ Rn×n, i = 1 . . . n being a diago-
nal stiffness matrix and Dv = diag{Dv,i} ∈ Rn×n, i =
1 . . . n the diagonal damping matrix. In order to bound the
resulting velocity, which could in principle become very
high, [8] proposed to set bounds on the desired velocity
based on the norm of the desired velocity vector. This makes
it possible to travel at constant maximum velocity after
acceleration and before deceleration phase.

In most cases the repulsive forces are expressed as a
function of the distances from the virtual particle to the
repulsive elements. These objects are often chosen to be of
simple geometric shape as e.g. spheres, cylinders, or planes.
In order to limit their influence and provide smooth force
responses, we chose a cosine-shaped blending function.

frk
(xd,xok

)=

⎧⎨
⎩

(xok
−xd)

dk

cos
“

dk
dmaxk

π
”
+1

2 fmaxk
if dk∈ [0 . . . dmaxk

],

0 otherwise,
(4)

with dk = ‖xd−xok
‖ and dmaxk

being the maximum distance
of influence of a repulsive element. fmaxk

is the maximum
repelling force of the kth repulsive element.

For the ease of use, we omit xd,x∗
d,xo from now on in

the force functions (using e.g. f instead of f(xd,x∗
d,xo)).

Apart from the slight redefinition of virtual external forces,
we assign a realistic mass and inertia to the virtual particle,
producing a trajectory that could in principle take into
account the robot inertial properties into the commanded

motion. The resulting particle dynamics are therefore defined
by a second order mass-spring-damper-system.

Mvẍd + Kv (xd − x∗
d) + Dvẋd = fr, (5)

with Mv ∈ Rn×n being the virtual mass matrix.
As mentioned earlier it is important to incorporate real

physical forces into the avoidance scheme to provide a more
general disturbance response. Therefore, we use the real
external forces fext ∈ Rn that act along the robot structure as
well (in combination with Kext = diag{Ki

ext}, Ki
ext > 0).

Equation (5) becomes

frtotal = fr +Kextfext = Mvẍd +Kv (xd − x∗
d)+Dvẋd. (6)

These forces are e.g. provided by a force sensor in the robot
wrist or by an accurate estimation by an observer. In case of
the DLR Lightweight Robot III (LWR-III), this is realized
by a nonlinear disturbance observer unit for estimating the
external joint torques τext ∈ Rn. Its output is the first order
filtered version of τ̂ext ∈ Rn, see [6], [7]. These torques
can then be transformed into estimations of external forces
by

f̂ext = (JT )#τ̂ext, (7)

where J ∈ Rn×m is the appropriate contact Jacobian. This
force estimation is now available for integration into the task
space avoidance1.

Second order differential equations as (6) are usually
unsolvable for dynamic environments, producing highly non-
linear and rapidly changing virtual forces, together with
basically unpredictable physical forces.

frtotal = fr + Kextfext = f(SR, ṠR, Si, Ṡi, t, . . . ) + Kextfext (8)

SR, ṠR are the relevant surface representation of the robot
and its velocity. Si, Ṡi are the positions and velocities of
static and dynamic environment objects.

Due to the mentioned induction of highly nonlinear system
behavior, forward simulation of (6) needs to be used. t ε ∈ R+

is the time horizon used for calculating the desired motion.
Object motion can e.g. be given in terms of observation

and prediction, so that fr is representing the predicted virtual
dynamics during numerical integration of (6). External forces
act during one sample as a constant bias force.

Twice integration of (6) for every sample time tn leads
to the predicted path mε,n(t), t ∈ [tn . . . tε] of the virtual
particle:

mε,n := xd =

xd(tn) +
tε�

tn

M−1
v [frtotal − Kv(xd −x∗

d) − Dvẋd] dt + ẋd(tn) dt. (9)

The straight forwards choice is to set tε = tn + Δt with Δt
being the discrete interpolation sample time. In other words
one integration step is calculated and the outcome directly
used as the desired trajectory. However, such a simple solu-
tion leads for most cases to very undesired high velocities
and accelerations of the generated path and therefore, does
not solve the problem of most existing methods.

In order to tackle this problem, we apply the integration
of (9) with a forward Euler integrator for a limited amount
of s ∈ N

+ steps within a certain time interval tε = tn +

1Of course, this estimation degrades when approaching kinematic singu-
larities.
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ẋd(tn)

mε,n−1(t ≤ tε)

mε,n(t ≤ tε)

mε,n(t > tε)

mε,n−1(t ≤ tε)

mε,n(t ≤ tε)

xd(tn)

x∗
d

xd(t1n+1)

xd(t2n+1)
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Fig. 2. Schematic views of the collision avoidance for two consecutive
iteration steps. The left figure denotes free motion, whereas the right one
takes into account a motion model of an external virtual object.

sΔt. The constant s has been chosen such that the real-time
condition of the inner most control loop is not violated by the
computation time. This way we traverse the predicted path of
the system mε,n(t′ ≤ tε) every time step, incorporating the
dynamic behavior of the environment and the external forces,
which are assumed to be a vector field in this prediction step.
However, we dismiss the time information associated with it
and instead use a new input variable, the desired track speed
ẋ′

d ∈ R
+
0 . In order to match this desired velocity ẋ ′

d, we
search for the configuration xd(tn+1) along the path mε,n

that ensures it.
This yields s + 1 sampling points xd(t0n+1) . . .xd(tsn+1)

with the starting configuration xd(t0n+1) = xd(tn),
ẋd(t0n+1) = ẋd(tn) being also the starting configuration of
the robot. The following algorithm interpolates between the
bracketing sampling points for the desired track speed ẋ ′

d and
produces the according ordered configuration x d,ord ∈ Rn.

i = 0;
v0 = 0;
while (vi < ẋ′

d) ∧ (i ≤ s) do
i = i + 1;

vi = vi−1 +
‖xd(ti−1

n+1)−xd(ti
n+1)‖

ti
n+1−ti−1

n+1
;

end
if i ≤ s then

xd,ord = xd(ti−1
n+1) + (xd(ti

n+1) − xd(t
i−1
n+1))

ẋ′
d−vi−1

vi−vi−1
;

end
if i > s then

xd,ord = xd(ts
n+1);

end

If ẋ′
d cannot be reached, because the number of integrator

steps was not sufficient, the last sample point is chosen
xord = xd(tsn+1). This usually happens, if the virtual particle
gets stuck in a local minimum or near the goal position x∗

d as
the goal is asymptotically approached or ẋ ′

d was accidently
commanded to jump or to be inappropriately high. A visual
description of the principle is depicted in Figure 2.

To sum up, we keep the smooth properties and the inherent
collision avoidance capabilities of the generated local path,
but the track velocity of the robot can be commanded
independently, even arbitrarily.

In the next subsections we outline the design of the
different inputs and parameters of the algorithm.

C. Velocity profiles

Since the proposed method allows to use arbitrary time
based input velocity profiles ẋ′

d(t), we can realize classi-
cal trapezoidal or sinusoidal motion with inherent collision
avoidance. However, time based profiles are during virtual
or physical collisions only of limited use, since they are
intrinsically violated when deviation from the nominal path
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takes place. Therefore, a distance based velocity profile is
a better choice. In this paper we use the following desired
velocity profile.

ẋ′
d(ed) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(vd − δ)1
2

(
1 − cos

(
π

(
ed

c1

)))
+ δ if ed < c1

vd if ed ≥ c1 ∧ ed ≤ c2

(vd − δ)1
2

(
1 + cos

(
π

(
ed−c2
1−c2

)))
+ δ if ed > c2 ∧ ed < (1 − δ)

0 else,

(10)
where vd denotes the nominal constant track speed and
c1, c2 ∈ R

+ the acceleration and deceleration boundaries.
δ ∈ R+ 	 c1 is a tolerance value and ed ∈ [0 . . . 1] is
defined as

ed :=
xd,ord − x∗

d,i

‖x0 − xd,ord‖ + ‖xd,ord − x∗
d,i‖

. (11)

This scalar can be interpreted as a normalized “distance to
travel”. This definition is chosen since it enables us to change
the goal online without having to readapt the boundary
values. When changing the goal from x∗

d,1 to x∗
d,2 during

motion it is not sufficient to only use ed :=
‖xd,ord−x∗

d,i‖
‖x0−xd,ord‖ .

This is due to the fact that d2 < d1 + d2 counts while the
first target is chosen but d3 > d4 when switching to the
second one, potentially leading to ed > 1.

D. Velocity Scaling

During (virtual) contact, the commanded velocity is, sim-
ilar to the method described in [7] for physical contact,
additionally shaped. Thus, due to the collision avoidance,
the robot could continuously reduce speed, or even retract,
and at the same time actively avoid the upcoming collision.
In the most basic case the presence of external objects shall
lead to an intrinsically lower velocity. For this purpose, the
method of velocity scaling in case of ‖fr‖ > 0 is used to
slow down the motion around objects generating these virtual
forces. One extension over this pure scaling of velocities in
presence of a repelling force ‖fr‖ > 0 is to scale the velocity-
profile, as a function of the direction of the total repelling
force fr and the current motion vector ẋd,ord, see Fig. 3.

1) Virtual force based: The angle between the total re-
pelling force −fr and the commanded velocity vector ẋord is
given by:

φ = arccos
( 〈−fr, ẋd,ord〉
‖fr‖‖ẋd,ord‖

)
, (12)
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with φ ∈ [0 . . . π]. (12) is used to calculate a velocity scaling
factor, given the parameter for the speed-ditch width kw ∈
[0 . . . π] and amplitude ka ∈ [0 . . . 1].

kvvirt(φ) =

⎧⎨
⎩

1 − ka
cos( φπ

kw
)+1

2 if φ ∈ [−kw . . . kw]

1 else,
(13)

where kvvirt ∈ [0 . . . 1]. For ensuring a smooth velocity
change, ka ∈ [0 . . . 1] is defined as a function of ‖fr‖,

ka =

⎧⎪⎨
⎪⎩

A

(
1 − cos( ‖fr‖

fmax
π)+1

2

)
if ‖fr‖ ≤ fmax,

A else,
(14)

fmax ∈ R+ being some force saturation constant and
A ∈ [0 . . . 1]. Note, that kvvirt(φ) is symmetric: kvvirt(−φ) =
kvvirt(φ). Therefore, the restriction of (12) to [0 . . . π] does
not generate any conflict.

2) Physical force based: Scaling down the velocity can
be very useful during physical contact. This is simply done
by applying a monotonically decreasing scaling function g

kvext = g(fext), (15)

with kvext ∈ R+. In order to incorporate physical forces, there
are various behaviors that are desirable. An intuitive choice
is to slow down if motion and force vector point in different
directions and to accelerate if their direction is similar.

RUN
during : stiffness = high;

AVOID
during: stiffness = low;

APPROACH

[distance 2travel>e_d &&(F_v>=e_v || F_phys>=e_phys)]1

[distance 2travel>e_d &&(F_v<e_v || F_phys<e_phys)]

2

[distance 2travel<=e_d]

2

[distance 2travel>e_d && (F_v<e_v || F_phys<e_phys)]

2

[distance 2travel<=e_d]

1

[distance 2travel>e_d && (F_v>=e_v) || F_phys>=e_phys]

1

Fig. 5. State depending scaling of the attractor stiffness.

3) Fusion: In order to fuse both scaling factors consis-
tently, we use the more conservative one.

kv = min(kvvirt(φ), kvext(fext)), (16)

with kv ∈ [0 . . . 1]. Therefore, the direction dependent
desired track speed ẋ′′

d ∈ R becomes

ẋ′′
d = kvẋ′

d, (17)

leading to a slowdown of the motion as long as the robot
drives towards critical obstacles, but leaves the desired ve-
locity untouched if bypassing or departing.

E. Stiffness adaptation

The attractor stiffness enables us to change the overall
attractor behavior online according to the current situation.
High stiffness relates of course to higher convergence rate,
whereas decreasing values represent an increasing decou-
pling from the goal configuration, therefore allowing much
better avoidance behavior.

We exploit the full state information ed, fr, and fext to
achieve higher performance. Figure 5 shows the overall state
depending stiffness behavior of the attractor. We define the
discrete states the attractor can occupy as RUN, AVOID, and
APPROACH. If no avoidance is needed, which is the case if
the goal is not approached yet, we set the diagonal stiffness
values to very high values that are in the order of magnitude
of the physical reflected robot stiffness and furthermore a
function of ed.

Khigh
v = max{Kmax

v (1 − ed), Kmin
v } (18)

This way we provide best possible convergence when ap-
proaching. In case avoiding behavior (due to virtual or
physical forces) is desired, a relaxing behavior is activated,
which enables almost decoupling of virtual particle and goal
configuration. In the APPROACH state, a more complex
behavior is necessary in case any disturbance is present.
Figure 6 depicts the overall block diagram of the method.

In the next section we analyze the experimental perfor-
mance of the proposed method for the fully torque controlled
LWR-III in various situations with static and dynamic obsta-
cles.

IV. EXPERIMENTS

A. The DLR Lightweight Robot III

The LWR-III is a 7DoF robot with a weight of 14 kg and a
nominal payload of 7 kg 2. It is equipped with a joint torque

2This value is the nominal payload according to industrial long range
testing. However, for research purposes the robot can carry its own weight.
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sensor in each joint. For details on the design and control of
the robot, please refer to [2], [1]. Here, we briefly outline the
the Cartesian impedance control used for the experiments.

Due to the lightweight design of the LWR-III it is not
sufficient to model the robot by a second-order rigid body
model. The non negligible joint elasticity between motor and
link inertia caused by the Harmonic Drive gears and the
joint torque sensor has to be taken into account into the
model equation. Following controller structure 3 is realized,
which enables high performance impedance control at a rate
of 1 kHz.

M(q)q̈ + C(q, q̇)q̇ + g(q) + τext = τ (19)

Bθθ̈ + J(q̄)T (Kxx̃(q̄) + Dxẋ(q̄)) + τ = ḡ(θ) (20)
τ = K(θ − q) (21)

Following quantities are defining the joint space charac-
teristics of the robot. q, θ ∈ Rn are the link and motor
side position. M(q) ∈ Rn×n is the symmetric and positive
definite inertia matrix, C(q, q̇) ∈ R

n the Centripetal and
coriolis vector, and g(q) ∈ Rn the gravity vector. B =
diag{Bi} ∈ Rn×n is the diagonal positive definite motor
inertia matrix, which is scaled down with an inner torque
control loop to Bθ. τ ∈ Rn is the joint torque and τext ∈ Rn

the external torque.
The impedance control is designed with following quan-

tities. Kx, Dx ∈ Rm×m are the diagonal positive definite
desired stiffness and damping matrix. xd ∈ Rm is the desired
tip position in Cartesian coordinates, and x(q̄) = T (q̄) the
forward kinematics from joint space to Cartesian coordinates,
while J(q̄) = ∂f(q̄)

∂q̄ is the Jacobian of the manipulator.
q̄ = h−1(θ) is the static equivalent of q. The gravity
compensation term ḡ(θ) is a function of the motor position
and is designed in such way, that it provides exact gravity
compensation in static case.

B. Static obstacles

The first experiment shows the performance for static
obstacles. Billiard balls are arbitrarily arranged on the table
and then identified with an object recognition system. Their
position is used to define the artificial repulsive potential
fields. In Figure 7 (left) the scene view from above is shown,
where the robot reached its target configuration. Figure 7
(right) depicts the commanded motion (solid) and the real
path of the robot (dashed). vd was chosen to be 0.2 m/s.

3Please not this is a simplified view on the structure, which was chosen
for better understanding.
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Fig. 7. Configuration of Billiard balls (left). 2D plot of the collision
avoidance experiment with the Billiard balls (right).
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d

Fig. 8. 3D plot of the collision avoidance experiment with the Billiard
balls.

The slight deviation is generated by the use of Cartesian
impedance control since no feed forward torque input was
used. Figure 8 denotes the 3D visualization and Figure 9 the
timely behavior of the robot.

C. Dynamic obstacles

We evaluated the performance of the method for three
distinct dynamic situations. In the first one we mounted the
DLR 3D Modeler [17] on the robot in order to use the
integrated laser scanner for acquiring proximity data. In the
second one we used an ART4 tracking system for passively
tracking the human wrist pose. In the third one the estimated
external force provided by (7) are chosen as the repulsive
input and show how the proposed method can cope with
robot-human collisions and unexpected very rigid impacts

4Advanced Realtime Tracking

0 1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
travel distance in x-direction

t [s]

x
[m

]

xd
x

0 1 2 3 4 5 6 7
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2
travel distance in y-direction

t [s]

y
[m

]

yd
y

Fig. 9. Time courses of the avoidance in x-direction (left) and y-direction
(right). The plot shows the desired trajectory xd and the real motion of the
robot x.
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Fig. 10. Dynamic collision avoidance with tracking system.
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Fig. 11. The plot depicts the behavior for being pushed by a human. After contact is lost, the robot recovers quickly from it and converges to the goal
configuration.

with the environment, see Fig 12. The attached video shows
all experiments, especially pointing out that the combination
of multiple disturbance inputs at the same time can be easily
managed.

The result of the second experiment is given in Fig. 10.
The robot is commanded to reach the desired goal config-
uration x∗

d. As soon as the human holds his arm into the
workspace and blocks the possible motion path, the robot
circumvents the hand and reaches the goal. The original
desired motion is depicted (dashed) and the generated virtual
forces are shown along the human motion path as well as on
the resulting robot trajectory. The human moves from right to
left, while the robot intends to reach the right configuration.
As soon as the robot is affected by virtual forces it starts
deviating from the path and after the human surpassed it, it
moves again towards the goal and terminates there.

From Figure 11 one can see how the method can cope
with external forces in the same way as with virtual ones.
The human pushes the robot while it is moving. The desired
motion is deformed such that the robot is deviated from its
path, see Figure 11. When contact is lost, the robot converges
quickly to the goal again.

In Figure 12 a further response to external contact forces is
shown. In the experiment the robot collides with a table after
being pushed by the human into this unknown object. Then,
the contact information (force magnitude and direction) is
used to recover from this second collision. Finally, the robot
reaches its goal position.

Especially for the table impact one can see how the
Cartesian impedance control, the external force estimation,
and the collision avoidance work together to recover from an
unexpected very rigid contact, while still reaching the goal.
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Fig. 12. The plot depicts the behavior for pushing the robot harder, which results in a second collision with the table. Even though the robot has no prior
knowledge of the table it quickly recovers from the second contact and finds it way into the final goal.

V. CONCLUSION

In this paper we outlined a new method for reactive motion
generation based on intuitive physical interpretation. The
method is well suited to serve in between global motion
planning and control to establish well defined and safe
behavior even for unexpected virtual and physical contact.
It is designed to serve as relief for both sides and provides
a smooth motion in complex environments, taking into
account both, proximity to objects and external forces. The
algorithm allows to command arbitrary velocity profiles to
the robot and provides collision avoidance behavior at the
same time. Even during circumvention the track speed can be
commanded such that no unexpected velocity or acceleration
jumps, nor high velocity values may occur.
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