
An Invariant Preserving Transformation for
PLC Models

Jan Olaf Blech, Anton Hattendorf, Jia Huang
fortiss GmbH

Guerickestraße 25, 80805 München, Germany
{blech,hattendorf,huang}@fortiss.org

Abstract—Many applications in the industrial control domain
are safety-critical. A large number of analysis techniques to guar-
antee safety may be applied at different levels in the development
process of a Programmable Logic Controller. The development
process is typically associated with a tool chain comprising
model transformations. The preservation of safety properties in
model transformations is necessary to achieve a safe system.
Preservation can be guaranteed by showing that invariants are
preserved by transformations. Adequate transformation rules
and invariant specification mechanisms are needed for this.

We report on a transformation from Sequential Function
Charts and Function Block Diagrams of the IEC 61131–3
standard to BIP. Our presentation features a description of
formal syntax and semantics of the involved languages. We
present transformation rules for generating BIP code out of IEC
61131–3 specifications. Based on this, we establish a notion of
invariant preservation between the two languages.

I. INTRODUCTION

In the industrial control domain, many applications are
mission-critical or safety-critical. For example, a misbehaving
robotic arm might lead to large damage to the plant or even to
the operating human. Thus, safety analysis of such systems is
highly desirable. The use of formal specification and modeling
techniques for analysis, transformation, and verification of
the involved software is a prerequisite for the application of
analysis and verification tools and the use of their results.

The IEC 61131–3 standard [21] describes a set of languages
widely used in the industrial control domain to write programs
for Programmable Logic Controllers (PLC). The standard
defines in total five languages. In this paper we consider a
subset of IEC 61131–3 languages supported by EasyLab [2],
which is a model-based development tool that features a graph-
ical interface and several simulation/debugging facilities to
allow efficient design of control programs. EasyLab supports
a subset of the Sequential Function Chart (SFC) language and
the Function Block Diagram (FBD) languages. We provide a
formal definition of this subset of IEC 61131-3 and present
a transformation specification to the BIP [4] language. BIP
is a language to describe component based systems. It is
based on state transition systems that represent components.
Components can be connected with each other. Via connectors
they can interact and synchronize. Our transformation to BIP
is designed to preserve the behavior of the PLC while using as
much of BIPs parallelism as possible. We present a description
formalism for invariants on the IEC 61131–3 language and

show how invariants can be transformed between the two
languages.

A. Our Tool Chain

We are addressing a development tool chain (Figure 1)
where models get transformed into other models and finally
into deployable machine code. The first stage comprises the
modeling of a system using EasyLab and the IEC 61131–
3 standard. There are two possible ways to get deployable
machine code out of an IEC 61131–3 specification:

1) We can transform the model into the BIP language. An
invariant and deadlock discovery tool (D-Finder [5]) can
be invoked on the BIP level and then we can generate
code from the BIP model (BIP code generation).

2) On the other hand, we can directly generate code from
the IEC 61131–3 model (EasyLab code generation).

While the way via BIP is more suitable during the development
phase, for verification and simulation purposes, generating
directly code from the IEC 61131–3 language can be used for
a final product since it might be more efficient. It is possible to
specify safety properties either on the IEC 61131–3 level or
on the BIP language. The languages from the IEC 61131–
3 standard and BIP where designed for different purposes.
The IEC 61131–3 languages are classical examples of domain
specific languages, while BIP is a general modeling language.
Comparing these languages with respect to abstraction pos-
sibilities and expressiveness goes beyond the scope of this
paper.

In addition to the transformation we are interested in lifting
invariants representing safety properties between IEC 61131–3
and BIP. In particular we are interested in two different use-
cases.

Use-Case 1: Lifting Invariant Properties from BIP to
IEC 61131–3: Suppose we want to use the EasyLab code
generation but still want to use invariants and safety properties
discovered on a corresponding BIP representation. In this case
we have to perform a lifting of invariants and connected safety
properties that might have been discovered by D-Finder on the
BIP representation back to the original IEC 61131–3 model.
This use-case aims at guaranteeing that discovered safety
properties do also hold if we use the EasyLab code generation.
In order to perform a lifting of invariants that ensures safety
properties we have to ensure the following conditions:

2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops

978-0-7695-4377-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISORCW.2011.46

63

Fig. 1: Our Tool Chain

• The IEC 61131–3 model allows at least as much behavior
as the corresponding BIP model.

• Invariants on the BIP model are at most as strong as
corresponding invariants on the IEC 61131–3 model.

The fact that invariants may only get stronger when trans-
forming them to an IEC 61131–3 representation ensures the
preservation of safety properties.

This use case would benefit from a code generation that
provides some correctness guarantee. This remains future
work.

Use-Case 2: Lifting Invariant Properties from IEC
61131–3 to BIP: In the second use-case we start with an
invariant (e.g., a property stating that a certain state is never
reached) on the IEC 61131–3 model. The following items
guarantee preservation of safety properties:

• The IEC 61131–3 model allows at most as much behavior
as the corresponding BIP model.

• The invariant on the IEC 61131–3 representation is at
least as strong as the corresponding invariant on the BIP
model.

In this work we are presenting a transformation that preserves
the exact behavior of IEC 61131–3, i.e., we do not eliminate
or introduce non-determinism during the transformation from
IEC 61131–3 to BIP. One intention is to use it together with
the tool chain sketched in [8].

B. Related Approaches

Our work is influenced by approaches to guarantee the
correctness or distinct properties of compiler runs (e.g., [20],
[16], [18]). Our transformation rules for the IEC 61131–3
to BIP transformation can be regarded as the definition for
a compiler. Guaranteeing correctness of our transformation by
using translation validation like techniques and establishing an
approach to guarantee properties of the transformation similar
to [6], [7] is a long term goal of our work.

The aspect of property preservation during transformations
is influenced by [17]: The work presents a proof stating condi-
tions for abstractions that preserve temporal logics properties.
Our transformations may be regarded as abstractions. The
invariant based safety properties regarded in this paper are
a simple (but yet powerful) case of these properties.

SFCs, their semantics and the verification of properties by
using model checkers have been studied in [3], [11]. This
semantics formalism for SFCs was the starting point for our
semantics of the IEC 61131–3 subset.

Various other BIP transformations exist that are relevant for
our work. Most notably synchronous BIP [12] is a language
subset of BIP that is especially suitable for the transformation
of synchronous languages into BIP. The languages of IEC
61131–3 are also synchronous. Furthermore the translation
from AADL to BIP has been studied [13]. Coq certificates
guaranteeing correct invariants for BIP have been studied
in [9].

The transformation of contract specifications and their
proofs has been studied for object oriented programs [19]. In
addition to these approaches, formal specification and correct-
ness of model to model transformations have been extensively
studied in the context of graph-transformations [14].

C. Overview

We define a formal semantics of the used IEC 61131–3
subset in Section II. A summary of the BIP language and its
semantics is given in Section III. The transformation from
IEC 61131–3 into BIP is described in Section IV. Invariants
and their preservation are discussed in Section V. Finally,
Section VI features a short discussion of our implementation
and Section VII features a conclusion.

II. SEMANTICS OF IEC 61131–3
In this section we present the semantics of SFCs and

FBDs. Both are graphical representations. The IEC 61131–
3 standard leaves some semantical aspects open to concrete
implementations. Unlike a programming language standard
behavior of PLCs is influenced by concrete hardware elements
and their physical wiring. In the following we describe a
semantics definition consistent with EasyLab and the PLCs
targeted for use with EasyLab. While SFCs are used to
describe the overall control flow, FBDs are used to describe
function-like computations and can be referenced within an
SFC to perform such a computation.

A. Semantics of SFCs

The following description of SFCs builds upon [3]. SFCs
comprise control locations of the system (called steps) and the
transition of control between them. The passing of control can
be restricted via guards. Behaviors of the program is described
in action blocks which can be associated with steps. These
actions may be realized as FBDs but can be written in any
other languages described in IEC 61131-3. In the following,
we first define the basic components of SFCs and then describe
the composition of them.

64

Variables in the SFC Language: SFCs have variables
that are visible to all their components, such as steps, guards
and actions. We use X = {x1, x2, ..., xn} to denote the set
of variables. The current values of X are described using a
variable valuation function (usually denoted f in the context
of this paper) of type X → valX , which assigns a value
compatible to the respective data type (valX) to each variable
in X . We use F to denote the set of all valuation functions
of X .

Action Blocks and Steps: Action blocks and steps are
the basic SFC units for describing the behavior. In the case
of EasyLab an action is an update function of type F → F
which might be modeled as an FBD.

Definition 1 (Step): For a given set of actions A, a step of
an SFC is a pair s = (n, Ω), where n is a unique identifier
for the step and Ω = 2A is a set of actions belonging to the
step. We use s.Ω to refer to the set of actions associated with
step s.
The steps can be in inactive or active state. The set of actions
will be activated for execution if the associated step is active.

Guards and Transitions, SFC Definition: Steps in SFCs
are connected via transitions. A transition features a guard
expression.

Definition 2 (Guard): A guard g is a predicate over a
valuation function. It has the type g : F → bool, where F
is the set of all valuation functions. It evaluates to true if the
current values of X satisfy g.

Definition 3 (Transition): A transition (tsrc, tg, ttgt) de-
scribes the moving of control from source steps tsrc to target
steps ttgt. A transition is enabled if the guard tg evaluates
to true. A transition is taken if no conflicting transition with
higher priority is enabled.

Definition 4 (SFC): An SFC is a 5-tuple S =
(X, A, S, S0, T), where

• X is a finite set of variables, A a finite set of actions,
• S is a finite set of steps, comprising action blocks which

depend on A, S0 is the set of initial steps,
• T ⊆ (2S\{∅})×G× (2S\{∅}) is the set of transitions,

where G is the set of guards,
For some applications priorities of transitions between steps
are required. In our framework we propose a realization by
using appropriate guard expressions.

Example: Figure 2 depicts an example SFC model con-
sisting of four steps and three actions. Its formal definition
is:

S =
˘
{x, y}, {S1, S2, S3, S4}, {a1, a2, a3}, {S1},
{({S1}, x1 < 10, {S2}), ({S1}, x > 10, {S3}),

({S2}, x > 15, {S4}), ({S3}, x < 5, {S4})
({S4}, true, {S1})}

¯
1) Operational Semantics: As proposed in [3], the opera-

tional semantics for SFCs is based on configurations describ-
ing the system state :

Definition 5 (Configuration): A configuration of an SFC is
a 3-tuple c = (f, activeS, activeA), where f is the function
describing the current values of variables, activeS is the set
of active steps and activeA is the set of active actions.

S1 x=x+1;a1

x=x-1;a2

y=x;a3

S2

a1

a1

a3

S3 a2

a3

S4

x<10 x>10

true

t1 t2

t3 t4

t5

x>15 x<5

Fig. 2: An example SFC

Execution of one SFC-cycle consists of two major phases:
• Phase 1: execute actions contained in set activeA and

update the values of variables correspondingly;
• Phase 2: perform step transitions and update the sets of

active steps activeS and active actions activeA for the
next cycle.

In each of the two phases, the configuration of the SFC system
is updated. The semantics of an SFC can then be regarded as
a transition system of the configurations.

Definition 6 (Transition system of an SFC): An SFC S =

(X, A, S, S0, T) is associated with a transition system E(S) =
(C, c0,→), where C is the set of configurations, c0 is the initial
configuration and →⊆ C × C is the transition relation.
Let JSMKSFC denote the set of all possible configuration
transitions of an SFC SM . It can be formally defined as
follows:

(c, c′) ∈ JSMKSFC iff

executeAction(c, c′) ∨ stepTransition(c, c′)

The term executeAction and stepTransition represent the
two possible types of configuration transitions. Formally, for
c = (f, activeS, activeA), c′ = (f ′, activeS′, activeA′):

executeAction(c, c′) = ∃ â ∈ activeA . f ′ = â(f)

∧ activeS = activeS′ ∧ activeA′ = activeA\{â}

stepTransition(c, c′) = ∃ t ∈ T .

tsrc ⊆ activeS ∧ tg(f) ∧ f = f ′

∧ (activeS′ = activeS \ tsrc ∪ ttgt)

∧ ∀s ∈ tsrc . activeA ∩ s.Ω = ∅
∧ activeA′ = {a|∃s . s ∈ ttgt ∧ a ∈ s.Ω} ∪ activeA

The first type of transition corresponds to the execution
of an active action. In a transition of the second type, the
step transition guards are evaluated and the new active steps
and actions are computed. The conditions on activeA and
activeA′ enforce that all actions of a step have been executed
before passing control to a succeeding step. The reachable
configurations of SM can then be inductively defined as
follows, demanding that the initial state is reachable and each
reachable configuration must be able to be reached from the
initial state via valid transitions.
ReachableConfigSFC(c) =

c = c0

∨ ∃ c′.ReachableConfigSFC(c′)
∧ (c′, c) ∈ JSMKSFC

9=; smallest fixpoint

65

B. Semantics of FBDs
Actions may be regarded as functions that reading some

values from input variables write some values to output
variables. FBDs allow the modeling of such functions in a
PLC way. An FBD consists of nodes (e.g., blocks that perform
a certain computation) that are connected with each other via
ports and connectors.

Definition 7 (FBD): An FBD is a tuple (N,P, C, R,W)
comprising:
- a set of nodes N with associated ports P ,
- a set of directed connections C ⊆ P × P ,
- a set of variable readers R ⊆ N ,
- a set of variable writers W ⊆ N .
The semantics of an FBD is defined via a fixed-point iterations
where:

• Initial variables are read from the SFC configuration via
the R nodes.

• Nodes where all incoming connections have values com-
pute their value.

Circular dependencies are allowed, however, a well-
formedness condition requires that a fixed-point can be com-
puted. Once this is done, the values of W nodes are written
to the succeeding configuration of the SFC.

III. BIP AND ITS SEMANTICS

In this section we present a subset of the BIP language.
BIP (Behavior, Interaction, Priority) is a software framework
designed for building embedded systems consisting of asyn-
chronously interacting components, each specified as a non-
deterministic state transition system. We discuss its semantics
and an example BIP model. Parts of this section follow the
presentation given in [9] building upon [4]. Tools developed
for BIP comprise static analyzers and code generation.

Atomic Components: BIP models are composed of atomic
components [4], [5]. An atomic component (L,P, T, V, D) is
a state transition system consisting of a set of locations L, a
set of ports P , a set of transitions T , and a set of variables V
which are mapped to values of type D. An atomic component
has a distinct state of type L×(V → D) comprising a location
and a variable valuation. The latter is a mapping from variables
to their values. Transitions are of type T ⊂ L× ((V → D) →
bool) × ((V → D) → (V → D)) × P × L They comprise a
source location, a guard function, an update function, a port,
and a target location. Our semantics requires that a transition
from one location to another can be performed iff the guard
function evaluates to true using the variable valuation in the
current state. During a transition the variable valuation is
updated for the succeeding state. Furthermore, it is possible to
restrict transitions by putting constraints on the port involved
in the interaction. Values may be exchanged during such an
interaction.

Each port p ∈ P can have an associated variable. This vari-
able is used to exchange data between different atomic compo-
nents in composed components (see below). For composition
the definition of an atomic component may be augmented with
such a function. The functions V(p) : P → V ∪ {ε} defines
the association between port and variable. If the result of V is
ε, the port does not exchange data.

Composed Components: Atomic components may be
glued together to form composed components. The behavior of
the resulting system can be restricted by linking components
with connectors. These put constraints on ports in the different
atomic components. A composed component is a tuple (A,C)
comprising a set of atomic components A and a set of connec-
tors C: C ⊂ (A×P)× 2A×P . Connectors have the following
form: ((as, ps), {(a1, p1), (a2, p2), ..., (an, Pn)}) comprising
atomic components ax ∈ A;x ∈ {s, 1...n} and relevant ports
px ∈ Pax

with Pax
being the set of ports associated with ax. If

the connector is used to exchange data, the data is copied from
as to all ai; i ∈ 1...n. For connectors without data exchange
there is no difference in the treatment of as and ai.

In an extended version the connectors may contain guard
functions, depending on the variable valuations of the linked
components, and update functions which are performed on
these variable valuations and mechanisms for value exchange
between components.

Gluing components together by using connectors realizes
weak and strong synchronizations as well as broadcasts be-
tween components. Update functions on the involved variable
valuations are used to pass values between components.

Semantics of Composed Components: The state of a
composed component is the product of its atomic components’
states: (L1 × (V1 → D1)) × . . .× (Lm × (Vm → Dm)). A
state transition relation JBMKBIP is defined upon them for a
composed component BM = (A,C). We assume an indexing
of atomic components A = {a1, ..., am}

(((l1, x1), ..., (lm, xm)) , ((l′1, x
′
1), ..., (l

′
m, x′m))) ∈ JBMKBIP

iff

∃(cs, Cr) ∈ C . ∀i ∈ {1...m} .`
∃j ∈ {1...m} . (∃p : (aj , p) = cs ∧ V(p) = vj)

∧ (li, gi, fi, pi, l
′
i) ∈ ai . T ∧ gi(xi)

∧ V(pi) = vi ∧ x′i = fi(xi)[vi ← xj(vj)]

∧ (ai, pi) ∈ ({cs} ∪ Cr)
´

∨
`
li = l′i ∧ ¬(∃p . (ai, p) ∈ ({cs} ∪ Cr)) ∧ xi = x′i

´
ai.T denotes the set of transitions associated with component
ai.

Reachable States of BIP models: The set of reachable
states for a BIP model BM for a given initial state s0 is
defined by a predicate RBM via the following inductive rules:

RBM (s0)

RBM (s) (s, s′) ∈ JBMKBIP

RBM (s′)

The first rule says that the initial state is reachable. The second
inference rule captures the transition behavior of BIP using the
transition relation.

An Example

Figure 3 shows a temperature control system modeled in
BIP, which has been well discussed in the literature (e.g., [5],
[1], [15]).

The system controls the cooling of a reactor by moving two
independent control rods. Each one has its own timer t1, t2.
After the usage of a rod there is a timeout tmax until it can be
reused again. The goal is to keep the temperature θ between
θmin and θmax . When the temperature reaches the maximum

66

Rod2

tick

l6

heat

tick

l5

θ = θmin

θ < θmax

θ := θ + 1

cool

θ > θmin
θ := θ − 2

θ = θmax

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ tmax t2 ≥ tmax

Rod1 Controller

Fig. 3: Temperature Control System

value, one of the rods has to be used for cooling. The BIP
model comprises three atomic components: one for each rod
and one for the controller. Each contains a state transition
system. Transitions can be labeled with guard conditions, val-
uation function updates, and a port. The components interact
via ports thereby realizing cooling, heating, and time elapsing
interactions. In the figure, possible interactions are indicated
by arcs connecting ports from different components. These
require that either in every connected component a transition
labeled with the connected port must be taken in parallel
or none of these transitions is taken. For example, the time
elapsing tick transitions must be taken in each component in
the same parallel step (tick1 , tick , and tick2). Depending on
the values of θmax , θmin , and tmax the system might either
contain a deadlock or not.

Here we present an example invariant for the example model
with θmax = 1000, θmin = 100, and tmax = 3600:

(atl5 ∧ 100 ≤ θ ≤ 1000) ∨ (atl6 ∧ 100 ≤ θ ≤ 1000)

This invariant states that the temperature will always be
between 100 and 1000. ati is a predicate denoting the fact
that we are at location i in a component.

IV. IEC 61131–3 TO BIP TRANSFORMATION

In this section we describe the transformation from IEC
61131–3 models into BIP. We concentrate on the transfor-
mation of SFCs into BIP. Since we are interested in the
preservation of structural invariants, an explicit formal trans-
formation specification of structural entities is required. This
paper presents a brief transformation specification, a more
detailed version can be found in [8].

For a given SFC S = (X, A, S, S0, T), the transformed
BIP model is a composed component B = (Â, Ĉ), with Â ⊂
L×P × T × V ×D being the set of atomic components and
Ĉ ⊂ (Â× P)× 2Â×P the set of connectors. In the following
we describe the transformation of various semantic entities.
In the generated BIP model, an SFCManager component is
introduced to enforce synchronization of them: the execution
of the SFC program comprising two periodic phases.

Fig. 4: BIP Atomic Component for an Action Control Block

tIn

act

tOut

DISABLED

ACTIONS

tIntOut

fTick

fTick

act

ACTIVE

fTick

Fig. 5: BIP Atomic Component for an SFC Step

A. Atomic Components

Several transformation templates can be identified for the
transformation of SFC elements into BIP elements.

Actions: Actions are described as FBDs. FBDs are trans-
lated into C code. An action BIP component is created that
encapsulates this C code.

Action Control Blocks: For an action component â ∈
Â transformed from an SFC action a ∈ A, a special atomic
component called Action Control Block (ACB) is equipped,
which steers the execution of an action.

We use b̂a to denote the ACB component created for â and
B̂ for the set of ACB components for all actions.

Fig. 6: BIP Atomic Component for an SFC Guard

67

Fig. 7: BIP Atomic Component for SFC Manager

read write

WAIT
write
{t=write.v;}

readREAD

WRITE

tTick
{v=t;}

wTick

read

wTicktTick

Fig. 8: BIP Atomic Component for Global Variable

Figure 4 shows a graphical representation of the ACB
component. The work and done ports are used to drive its
action component, the xT ick ports are used to synchronize
the execution phases and the N port is used by the step
components to activate the action.

Steps: A step in SFC s ∈ S is represented by an atomic
BIP Component ŝ ∈ Ŝ shown in Figure 5. The tIn and tOut
Ports are used to enable and disable the steps; fT ick is used
for synchronization within the SFC evaluation phases. The act
port is used to activate actions.

Guard: For each step transition t = (tsrc, tg, ttgt) ∈ T
in SFC, a guard tg is associated. This guard is built as an
atomic component t̂g ∈ ÂG in the BIP domain (Figure 6).
The most important part of the guard is g, which represents
the condition for this guard. Because the conditions may differ,
a BIP guard component has to be customized for each SFC
guard. Also, access to variables has to be added. The sample
guard in Figure 6 just reads one variable val.

SFC Manager: The SFC Manager component, displayed
in Figure 7, enforces the synchronization of the SFC execution
phases by periodically enabling its wTick, tT ick and fT ick
ports. The wTick interaction starts execution of active actions,
the tT ick interaction starts evaluation of step transitions and
fT ick interaction starts computation of the active actions for
next cycle.

Variables: The BIP language does not support global
variables that are accessible to all components. Hence, an SFC
variable x ∈ X is encapsulated as an atomic BIP component
representing a global variable shown in Figure 8.

Starter: This component activates the initial steps of the
SFC program.

B. Transformation Steps

The following describes the steps necessary to convert an
SFC program to a BIP system. All created instances of atomic
components are added to Â.

• For each global variable x ∈ X we create an instance of
the BIP global variable atomic component x̂ ∈ ÂX .

• For each Action a ∈ A we create an instance â ∈ ÂA of
it in BIP.

• For each Action a ∈ A we create an instance of the ACB
component b̂a ∈ ÂB in BIP and connect the work and
done ports correspondingly.

ĈA :=
n““

b̂a, work
”

, {(â, work)}
”
|â ∈ ÂA ∧ b̂a ∈ ÂB

o
∪

n““
b̂a, done

”
, {(â, done)}

”
|â ∈ ÂA ∧ b̂a ∈ ÂB

o
• For each SFC Step s ∈ S we instantiate the BIP Step

component ŝ ∈ ÂS .
• For each initial step s ∈ S0 we create a BIP Starter

instance r̂s ∈ ÂS0 and create a connector to ŝ: ĈS0 .
• For each SFC transition (tsrc, g, tdst) = t ∈ T we create

a guard component ĝt ∈ ÂG in BIP and connect it to
tOut of tsrc and tIn of ttgt. If the reading of variables is
needed for evaluating the condition, necessary read ports,
locations and transitions are created according to Figure
6.

ĈT :=
[

(tsrc,g,ttgt)∈T

n“
(ĝt, guard) ,

[
s∈tsrc

{(ŝ, tOut)}

∪
[

s∈ttgt

{(ŝ, tIn)}
”o

• Connect all actions and guards to global variables if
necessary.

ĈX :=
[

(x̂,â)∈
ÂX×ÂA

˘`
(x̂, read) , {(â, x̂r)}

´
,

`
(â, x̂w) , {(x̂, write)}

´¯
∪

[
(x̂,ĝ)∈

ÂX×ÂG

˘`
(x̂, read) , {(â, x̂r)}

´¯

• For each step s ∈ S create a connector to the ACB b̂ of
all actions it activates.

ĈB :=
[
s∈S

n“
(ŝ, act) ,

[
a∈s.Ω

˘`
b̂a, N

´¯”o

• Create an instance of the SFC manager component m̂
and connect the wTick, tT ick and fT ick ports to all
components that expect these signal.

ĈM :={((m̂, wT ick), {(â, wT ick)|â ∈ ÂB ∪ ÂX ∪ ÂS0})}
∪{((m̂, tT ick), {(â, tT ick)|â ∈ ÂB ∪ ÂG ∪ ÂX})}
∪{((m̂, fT ick), {(â, fT ick)|â ∈ ÂS ∪ ÂG})}

• Putting everything together :

Â :=ÂX ∪ ÂA ∪ ÂB ∪ ÂS ∪ ÂS0 ∪ ÂG ∪ {m̂}
Ĉ :=ĈX ∪ ĈA ∪ ĈS0 ∪ ĈT ∪ ĈB ∪ ĈM

B :=(Â, Ĉ)

V. INVARIANT PRESERVATION OF THE SFC TO BIP
TRANSFORMATION

Semantics of IEC 61131–3 and BIP, invariants and safety
properties do specify sets of states / configurations. Invariants
are an over approximation of the semantics of a system: The
state / configuration space associated with a system is a subset
of the state / configuration space specified by the invariant.
Safety properties can be regarded as an over approximation of
invariants.

68

In this section, we define safety property preserving in-
variant transformations. These correspond to our use-cases
from Section I-A. By definition, an invariant for IEC 61131–3
is a predicate on configurations that holds for all reachable
configurations. This definition implies a restriction to SFC
based invariants and the treatment of actions as (atomic)
functions. An invariant on a BIP model is a predicate that holds
for all reachable states. Given an SFC S = (X, A, S, S0, T)
and the transformed BIP model B = T (S), we define an
invariant transformation function TI and a safety property
transformation function TR. The former takes an invariant on
a BIP model and returns an invariant on an SFC model, the
later takes an unsafe SFC configuration (can be translated into
a desired invariant) and returns a corresponding BIP invariant.

TI corresponds to the use-case 1 discussed in Section I-A.
The function TR corresponds to the second use-case.

Invariants on SFCs: The syntax of an SFC invariant can
be expressed as follows:

I ::= i ∧ i

i ::= i′ | i′ ∨ i′ | ¬i′

i′ ::= C | AS| AA

C ::= cond(X)

AS ::= s ∈ activeS

AA ::= a ∈ activeA

Where cond(X) is a predicate on the set of SFC variables
X .

Invariants on BIP Models: An invariant in a BIP model
can be expressed using the following syntax:

Î ::= i ∧ i

i ::= i′ | i′ ∨ i′ | ¬i′

i′ ::= C | L | C ∧ L

C ::= cond(var(ŝ))

L ::= atl(ŝ) = l

where atl(ŝ) = l is true if the component ŝ is at location l, and
cond(var(ŝ)) is a predicate on the variables of ŝ. The structure
of this invariant language reflects the invariant generated by
D-Finder [5] and our examples from Section III.

A. Transformation of BIP Invariants to SFC Invariants
Our invariant transformation function TI takes a BIP invari-

ant and returns the corresponding invariant in the SFC domain.
It is defined inductively:

TI(i1 ∧ i2) = TI(i1) ∧ TI(i2)

TI(i1 ∨ i2) = TI(i1) ∨ TI(i2)

...

The function TI keeps the structure of BIP invariants and maps
each elementary BIP predicate to a corresponding predicate in
the SFC domain. Given a BIP model B = T (S) transformed
from an SFC model S, the mapping of elementary predicates
on B to predicates on S is described using following rules. The
notation ŝ.L denotes the set of all locations of BIP atomic ŝ.

1) For a predicate on variables p = cond(var(ŝ)) we
distinguish the following cases:

• if ŝ is a global variable component created for SFC
variable x, ŝ has two local BIP variables v and t by
definition. Since the relationship between v and t is
a simple assignment, the condition can be written in
the form condt(t) ∧ condv(v). Then, the corresponding
predicate in the SFC domain is TI(p) = condv(x), i.e.
we ignore the condition on t and apply the condition on
v to SFC variable x;

• if ŝ is an ACB component, it contains a local BIP boolean
variable e. The predicate p is a boolean expression on
these variables. Let a be the corresponding SFC action
that ŝ is created for, the transformation of p is done
by keeping the structure of expression and doing the
replacement: TI(e) = a ∈ activeA;

• if ŝ is an other component, TI(p) = true, since only
global variable and ACB component contain variables
according to the model transformation rules.

2) For predicates on locations we distinguish the following
cases:

• if ŝ is a step component,

TI(atl(ŝ) = l) =

¬(s ∈ activeS) iff l= DISABLE
s ∈ activeS otherwise

where s is the step in SFC that ŝ is transformed from;
• if ŝ is a ACB component created for SFC action a,

TI(atl(ŝ) = l) =

(W
s∈SN (a)

s ∈ activeS iff l= ENABLE

false otherwise

where SN is the set of steps to which the action a is
associated to;

• if ŝ is another component, TI(p) = false.

In the invariant transformation procedure, some unused
predicates on locations are eliminated by setting them to false
in the transformed SFC invariant. This is safe because the BIP
component invariants have a disjunctive form as mentioned
before.

Invariant Preservation: General Proof Sketch: We divide
the proof of invariant preservation of the presented trans-
formations into two steps. In the first step, we introduce a
relation R(c, ĉ) between a reachable configuration c in the
original SFC model and a reachable configuration ĉ in the
transformed BIP model. Our first proof goal is to show that
for each SFC transition (c, c′) ∈ JSMKSFC , we can always
find the corresponding BIP configuration pair (ĉ, ĉ′) such that

R(c, ĉ)∧R(c′, ĉ′)∧ ĉ
BM−−→

+

BIP ĉ′, where ĉ
BM−−→

+

BIP ĉ′ is true if
their exists a sequence of transitions contained in JBMKBIP

that transforms ĉ to ĉ′. This property guarantees that the
behavior in the SFC domain can always be traced in the BIP
domain. Our proof goal in the second step is to show that the
invariants are preserved for two configurations in the relation
R.

The relation R puts constraints on BIP states and SFC

69

configurations. It has the following form:

∀c = (f, activeS, activeA), ∀ĉ = (atl, σ), R(c, ĉ) holds

iff

rule1(c, ĉ) ∧ ... where, e.g.

rule1(c, ĉ) = ∀ s ∈ S, ŝ ∈ ÂS .

s ∈ activeS ≡ ¬(atl(ŝ) = DISABLE)

The first proof goal can be divided into two subgoals G1a
and G1b

G1a : R(c0, ĉ0)

G1b : ∀c, c′, ĉ . c
SM−−→SFC c′ ∧R(c, ĉ)

→ ∃ĉ′ . ĉ
BM−−→

+

BIP ĉ′ ∧R(c′, ĉ′) ∧BM = T (SM)

The second step of our proof is to show that for all configura-
tion pairs in the relation, the invariant is preserved. Formally,
the second proof goal G2 is:

G2 = ∀c, ĉ . R(c, ĉ) → (∀Î . ĉ |= Î → c |= TI(Î))

where Î is a invariant in BIP model and TI is the invariant
transformation function that maps Î to an invariant in SFC
domain. The notion ĉ |= Î means ĉ satisfies Î . The proof of G1
and G2 can be conducted based on the model transformation
rules and the definition of TI . The details of the proof can be
found in [8].

B. Transformation of SFC Safety Requirements into BIP In-
variants

The safety property transformation function TR is aimed
for use-case 2 where we guarantee that certain safety critical
configurations are unreachable. Here we define it in the
following way:

TR((activeS, activeA, f)) =

∀s ∈ activeS . ¬(atl(ŝ) = DISABLE)

∧ ∀a ∈ activeA . b̂a.e = 1

∧ ∀x ∈ X . σ(x̂.v) = f(x)

The transformation function stated above is safe because the
returned invariants in the BIP domain are at most as strong as
the invariants that correspond to the safety properties in the
SFC domain (cf. [8]).

VI. IMPLEMENTATION

The IEC 61131–3 to BIP transformation is implemented in
JAVA as an eclipse plug-in 1. It takes an EasyLab model
and returns the BIP code as well as an XML description
of the BIP model. The generated BIP representation can be
directly compiled using the BIP compiler. The EasyLab tool is
extensible in sense that user-defined FBD blocks can be easily
added to the component library. To sustain the extensibility,
the FBD components in the BIP domain is also provided as a
library. As a future work we plan to derive the BIP component
library directly from the EasyLab components.

1see http://www.eclipse.org/modeling/emf/

VII. CONCLUDING REMARKS

In this paper we presented the formalization of the transfor-
mation from the SFC language of the IEC 61131–3 standard
into BIP. Furthermore, we have presented transformations for
invariants / safety properties between the two languages.

We are interested in extending the supported subsets with
timers and more asynchronous behavior. This will go beyond
the features offered by the EasyLab subset. Regarding correct-
ness guarantees, we are working on a certificate generation and
checking infrastructure similar to those described in [6], [7],
[9].

Acknowledgements

This work has been supported by the European research
project ACROSS under the Grant Agreement ARTEMIS-2009-
1-100208.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 1995.

[2] S. Barner, M. Geisinger, Ch. Buckl, and A. Knoll. EasyLab: Model-
based development of software for mechatronic systems. Mechatronic
and Embedded Systems and Applications, IEEE/ASME, October 2008.

[3] N. Bauer, R. Huuck, B. Lukoschus and S. Engell. A Unifying Semantics
for Sequential Function Charts. Integration of Software Specification
Techniques for Applications in Engineering, Priority Program SoftSpez
of the German Research Foundation (DFG), Final Report, 2004.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. Software Engineering and Formal Methods. IEEE,
2006. (SEFM’06).

[5] S. Bensalem, M. Bozga, J. Sifakis, and T-H. Nguyen. Compositional
Verification for Component-Based Systems and Application. Automated
Technology for Verification and Analysis, volume 5311 of LNCS, 2008.
(ATVA’08).

[6] J. O. Blech. Certifying System Translations Using Higher Order The-
orem Provers. PhD-Thesis, ISBN 3832522115, Logos-Verlag, Berlin,
2009.

[7] J. O. Blech and B. Grégoire. Certifying Compilers Using Higher Order
Theorem Provers as Certificate Checkers. Formal Methods in System
Design, Springer-Verlag, 2010.

[8] J. O. Blech, A. Hattendorf, and J. Huang. Towards a Property Preserving
Transformation from IEC 61131-3 to BIP. eprint arXiv:1009.0817,
09/2010.

[9] J. O. Blech and M. Périn. Generating Invariant-based Certificates for
Embedded Systems. Transactions on Embedded Computing Systems,
ACM. accepted.

[10] S. Bornot, R. Huuck, Y. Lakhnech, B. Lukoschus. An Abstract Model
for Sequential Function Charts. Discrete Event Systems: Analysis and
Control, Workshop on Discrete Event Systems, 2000.

[11] S. Bornot, R. Huuck, Y. Lakhnech, B. Lukoschus. Verification of Se-
quential Function Charts using SMV. Parallel and Distributed Processing
Techniques and Applications. CSREA Press, June 2000. (PDPTA 2000)

[12] M. Bozga, V. Sfyrla, J. Sifakis. Modeling synchronous systems in BIP.
Embedded software, ACM, 2009. (EMSOFT ’09)

[13] M. Y. Chkouri, M. Bozga. Prototyping of Distributed Embedded Systems
Using AADL. Model Based Architecting and Construction of Embedded
Systems ACES-MB, 2009.

[14] H. Ehrig and K. Ehrig. Overview of Formal Concepts for Model Trans-
formations based on Typed Attributed Graph Transformation Graph and
Model Transformation. Elsevier Science, 2005. (GraMoT’05)

[15] M. Jaffe, N. Leveson, M. Heimdahl, and B. Melhart. Software
requirements analysis for real-time process-control systems. IEEE
Transactions on Software Engineering, 1991.

[16] X. Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. Principles of programming languages.
ACM Press, 2006. (POPL’06).

[17] C. Loiseaux and S. Graf and J. Sifakis and A. Bouajjani and S.
Bensalem. Property Preserving Abstractions for the Verification of
Concurrent Systems. Formal Methods in System Design, 1995.

70

[18] G. C. Necula. Proof-carrying code. Principles of Programming
Languages. ACM Press, 1997. (POPL’97).

[19] M. Nordio. Proofs and Proof Transformations for Object-Oriented
Programs. PhD dissertation 18689, Department of Computer Science,
ETH Zurich, October 2009.

[20] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. Tools
and Algorihtms for the Construction and Analysis of Systems, volume
1384 of LNCS, 1998. (TACAS’98).

[21] Programmable controllers - Part 3: Programming languages, IEC 61131-
3: 1993, International Electrotechnical Commission, 1993.

71

