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Abstract—As the complexity of traffic conditions in large cities
increases it becomes important and highly desirable to be able to
analyse the spatial and temporal nature of such systems. Due to
the heterogeneity of traffic demand and road network topology
[1], it is possible to find “hot spots” in a network that present a
challenge for city planning and conventional intersection control
methods. This paper presents an approach to identify such places
as physical intersections in a traffic network with dynamically
changing demand conditions in time and to quantify the level
of volatility at those locations. We design a model that is used
to simulate commuters path choices using a stochastic routing
approach. We perform a case study for the city of Singapore
and calibrate our model with national survey data describing the
travel habits of the population. The results from our simulation
are used to analyse the traffic conditions in the city. We are able to
identify and study highly dynamic intersections and observe that
such locations in fact exist and contribute to the heterogeneous
dynamic profile of the road network.

I. INTRODUCTION

IDENTIFYING “hot spots” in a complex network is a prob-

lem that is of great interest to engineers and researchers.

The analysis of such locations is used in order to gain a

deeper understanding of the system’s dynamics and to possibly

control it. In the case of transportation systems, dynamically

changing parts of the network present challenges to city

planners and force them to find various solutions for their

optimal control by planning new infrastructure developments

[2], control strategies [3], novel policies [4], etc. When looking

for special locations in transportation networks one has to

choose whether to examine the roads (edges) or intersections

(nodes). The intersections are actually the places where drivers

make choices, and what is sensed at the roads are just the

consequences of those choices. Therefore, instead of examin-

ing roads, a more topologically central approach would be to

examine intersections instead.

Intersections in cities are usually controlled by traffic lights.

Cities that exhibit high traffic demands also may employ smart

traffic lights [5], that adapt in real time to changes in the traffic

system are being integrated in modern cities in order to opti-

mise the flow of traffic. As there are many discussed strategies

for traffic light control, there is a fundamental element that is

not present. How can we find the locations where those smart

traffic lights should be installed? The installation costs of such
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type of technology are not negligible and therefore it is not

advisable just to install one at every intersection. Moreover,

some intersections exhibit very static behaviour throughout the

day and for them a static frequency controlled traffic light

system can be sufficient. There is, however, a need of a method

that is able to point out to the intersection that have the biggest

demand for adaptive control due to their unpredictable and

constantly changing dynamics.

When a traffic light signal pattern is being optimised the

traffic demand throughout the day is taken into account and the

best possible timings of the signals are chosen. It is important

to note, however, that the traffic demand may change abruptly.

For example between morning and evening rush hours the

migration patterns of the commuters are qualitatively different,

going from the residential areas to the business and industrial

areas in the early part of the day and returning after work. In

this case a universal timing solution might just be inapplicable

and even lead to further congestion as shown in Fig. 1. It is not

necessary that the dynamics of the intersection have a bimodal

nature due to morning and evening conditions. It might be the

case that even higher degrees of variations and abrupt changes

in the drivers demands at an intersection occur throughout the

whole day as a result of the complexity of the system.

Even if there is a successfully implemented dynamic control

over the flow of vehicles, the varying volumes of cars taking

different turns at the intersections will demand a changing

capacity of the respective roads. The number of lanes and

therefore the capacity of roads is, however, rather fixed.

Consequentially, the number of lanes must also be optimized

according to the traffic demand. If the worst case scenario is

always considered, the roads will be planned with too many

lanes and space will be not utilised during most of the time.

Moreover, the construction of such broad roads might not be

possible at all times. If the average case is considered (daily

optimal), due to the extreme variability of the intersection, at

some point the flow will have a radically higher value than

the capacity of the road. This may further create an avalanche

of congestions that can spread throughout the whole network.

In summary, such types of intersection can hardly be re-

solved by traffic lights and proper road width planning and

seem like a source of imminent problems. It is, therefore,

desirable that such locations are to be avoided in the first

place by careful road structure planning. The existence of such

highly dynamic intersections implies an improper combination

of traffic demand and network topology. Of course, there are

other ways to fix such locations if they already exist by either

using traffic lights at other intersections to redirect flows or

construction of new roads in order to relax the variability.
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When dealing with complex networks and systems it is

always better to consider the whole system rather than to look

at specific locations in it. Fixing or optimising one intersection

with dynamic behaviour might create another one at a distant

intersection due to the high degree of interconnectedness in

traffic networks. Therefore evaluating the dynamic profile of

all network intersections and comparing it to this of other net-

works can give precious inside about their dynamics. Volatility

and very dynamic and rapid changes in traffic demand at

intersections makes their control challenging. Therefore, it is

desirable to have less such intersection in a city in order to

reduce congestion. In this line of thought, the level of such

dynamics can be used as a optimisation heuristic that needs

to be minimised so that the traffic itself is improved.

In a more fundamental aspect, traffic is determined by two

factors: traffic demand and transportation network topology.

The existing measures governed mostly by the demand are

link flow, link average speed, etc. Measures connected to the

topology are centrality, heterogeneity, entropy, etc. There have

been previous efforts to define entropy of a node or a link but

only in a purely topological sense [6]. We strongly believe

in the need of employing the information contained in the

OD matrix as well in order to come up with a more useful

analysis measures of traffic networks. In this study we define

the dynamic factor of a node using both information about the

traffic demand and topological information about the network.

The main contributions of this work are:

• Definition of the dynamic factor measure for a node in a

traffic network used to identify dynamic intersections.

• Definition of the dynamic factor of a network in order to

compare it to other networks.

• Stochastic routing modelling and calibration of path

choices.

• Case study for a realistic scenario for the city of Singa-

pore.

• Analysis and discussion of heterogeneity of dynamic

factor measures for a real world system.

II. LITERATURE REVIEW

Intersections that experience a large amount of traffic have

been studied widely in literature. They are typically called

“critical intersections” [7] and [8] and the critical traffic vol-

ume through the has been defined in [9] and further modelled

in [10] using queue dynamics and in [11] for unsignalised

intersections. The characteristics of critical intersections has

also been an object of statistical analysis in [12], where data

from various congested intersections in Shanghai during peak

hour is processed and analysed. The study shows that the

characteristics of intersections varies evidently from site to

site.

Modelling traffic volumes in a city, which directly deter-

mines flows at intersections, has been performed in [13] by

using a gaussian mixtures approach. One of the crucial factors

that determines the performance of a network is how much the

traffic demand on it varies in time. In [14] the variations of

traffic on a daily and weekly scale are examined using cluster

analysis techniques.

Fig. 1: Diagram describing a simplistic example of change in

demand depending on the time of day. Next to the roads we

can see the flow vs time chart. It can be observed that during

the morning, most of the agents make a right turn, while in the

evening most of the agents would make a left turn. This creates

a dynamic intersection that experiences varying traffic demand

throughout the day. As we can see after the roads merge again

there is no variation. A static optimal control strategy would

be to have equal amount of cars go to the left and to the right

throughout the whole day. In this case congestions will occur

for the cars making a right turn in the morning and a left turn

in the evening.

The criticality of a road can also be defined using the

network robustness index based on link flows, capacity and

topology [15] or by identifying the most used link among all

shortest paths computed on a graph as in [16]. While in [17]

the importance of roads is simply defined to be proportional to

the traffic load on them, in [18] three measures of centrality for

a street are suggested: closeness, betweenness and straightness

and their correlation to various economic activities in the

respective areas are examined. Another study that uses a

combination of factors to determine the criticality of a link

is [19] where road criticality can be defined as a combination

of three factors: road flow and capacity, which looks at V/C
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ratio, path level, examining estimation of path travel time, and

on a network level, looking at the percentage of OD pairs that

use this road.

Measures of entropy are also used in literature in order

to study the topological structure of networks such as in

[20] where existing measures of heterogeneity, connectivity,

accessibility, and interconnectivity are reviewed and three

supplemental measures are proposed, including measures of

entropy, connection patterns, and continuity. Furthermore, in

[6] a family of graph measures used in various fields based

on entropy are summarised.

In order to be able to plan or simulate an intersection one

also has to evaluate the turning probabilities of the traffic

participants. This has been done in [21], where using those

probabilities a road density prediction method is described.

It should be noted that most methods found in literature are

concerned with analysing and simulating intersections for rush

hour conditions, while neglecting the temporal nature of traffic,

the change that the flows might exhibit throughout the day and

their effects.

Moreover, the network itself can have some properties that

are usually based on the structure of the system and not on

local properties of its elements. In [22] the development of

the Swiss road and railway network during the second half

of the 20-th century is investigated. It is observed that the

spatial structure of transportation networks is very specific,

which makes it hard to analyse using methods developed for

complex networks.

As road networks are subject to evolution, when societies

change and cities grow the traffic demands and the road net-

work itself changes with a high degree of self-organization and

spontaneous organization of hierarchies . This phenomenon

observed in [23] leads to imperfections of the once planned

infrastructure. Long term temporal variations in the relative

importance of parts of the network are studied as well. In [24]

the evolution over 200 years of a North Milan road network

is observed. Two main processes can explain the processes

that occur. Densification of the road network around the main

roads and emergence of new roads as a results of urbanisation.

In conclusion even if the network was once optimally planned,

it will probably become suboptimal as a result of changes in

both the travel patterns and the network itself.

In order to analyse traffic one needs a model. Dynamic

traffic assignment models such as the one described in [25]

need a dynamic network load model and routing choices of

agents model, which basically means that they need the OD

matrix combined with a routing model such as in [26] based

on stochastic conditions. Commuting patterns seem not to vary

excessively as observed in [27]. It is shown that daily traffic

is highly predictable and that there exist regular patterns that

can be exploited. This stability of choices made by traffic

participants together with network topology also leads to traffic

concentration on mainly a few links of the network as shown

in [1].

III. MEASURING THE DYNAMIC FACTOR OF NODES AND

THE WHOLE NETWORK

In this section we introduce the dynamic factor of nodes.

We define a node as dynamic if many vehicles (agents) pass

through it and if the choices that agents make at this node vary

abruptly. In order to measure the variation of agent choices

we need to calculate the evolution of turning probabilities of

agents in time. After that we simply weigh it by the throughput

of agents. In this way we can measure how big and how fast

are the variations at the nodes combined with how central their

role in the traffic is. Let us introduce some notation that will

be used throughout the paper first:

Nij - number of cars that moves from node i to node j for

the whole day

Pl - the path of the l-th agent

f l
ij - function that equals 1 if the sequence of nodes ij is in

the path of agent l and 0 otherwise

A - a set containing all the agents

ptij - probability that an agent that is at node i will continue

on to node j during time period t
Si - set of nodes that are successors to node i
N t

ij - number of cars that pass sequentially through node i
and j during time period t
T - number of regions the day is split into

L - length of a time period

Vij - variation of traffic on the road segment between nodes i
and j
Vi variation of traffic at node i
Dij - dynamic factor on road segment between nodes i and j
Di - dynamic factor at node i
Ci - capacity of a node wi - average number of lanes

associated with a node Gt
ij - congestion factor of road segment

between nodes i and j for time period t D̂ij - normalised

dynamic factor on road segment between nodes i and j
D̂i - normalised dynamic factor at node i
M - dynamic factor of a city

In order to calculate the dynamic factor of an intersection

and a whole system we follow the procedure described below:

1) Calculate turning probabilities:
Let Nij be the number of cars that pass through the i-th
node and after that through the j-th node and let Pl be

the path of the l-th agent. Then let the function f l
ij :

fij(Pl) =

{
1 if nodes ij are in Pl

0 otherwise
(1)

Then:

Nij =

|A|∑
l=1

f l
ij(Pl) (2)

, where |A| is the number of agents.

Let ptij be the probability that an agent at node i
continues to node j during time period t
Let Si be the set of nodes that are successors of node i.
Then we can define the turning probability as the ratio

between the number of cars that pass through node i
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and then proceed to node j and the total number of cars

that pass through node i :

ptij =
N t

ij∑
k∈Si

N t
ik

(3)

2) Calculate the variation of turning probabilities at
nodes:
The variation of the turning probabilities is calculated

using a measure of slowness similar to [28]. The

derivative of the probability evolving through time is

examined. High values of the absolute value of this

derivative mean high degree of variation of the turning

probabilities and vice versa as we can see in equation

4. The term 〈〉t is used to depict averaging over t.

It is interesting to point out that we have chosen to

use the derivative to determine the degree of variation

rather than the more natural choice which would be

the variance. The reason for this lies in the fact the

our observations are sequential. We observe the change

of turning probabilities in time and the sequence in

which these changes occur matters for us. Therefore,

a measure that takes into account this factor such as

computing the derivative is preferred over the variance,

which is intrinsically order invariant. Moreover, we are

interested in the dynamics of the changes of behaviour

at the nodes rather than their deviation, and naturally

the changes in a time series are observed by examining

their derivatives.

Since we are examining intersections, we need to look

at all the successors of a node in order to evaluate the

variation of the node itself. Therefore, we define the

variation of a node as the average of the variations of

the turning probabilities associated with it as shown in

equation 5. We use the average instead of a simple

summation in order to avoid intersection with static

properties but many possible transitions to have high

variation value.

Vij =
〈∥∥ṗtij∥∥〉t (4)

Vi =

∑
k∈Si

Vik

‖Si‖ (5)

3) Weight the variation of every node with the number
of agents that pass through it:
In order to differentiate between nodes that have a

variation value that have high or low traffic throughput,

we weigh the variation of every node by the number

of agents utilising it. The dynamic factor of a node i
is defined as in equation 7. It represents how fast is

the activity at this node changing. More precisely, it

represents how rapid and diverse are the changes in the

choices that agents make at this node. Therefore, the

nodes that experience rapid changing dynamics and are

central in the sense of traffic demand will receive a high

dynamic factor value.

More precisely, the change in traffic demand throughout

one time period is weighed by the number of agents

that pass through the node during this time. In this

way, in case of a big change that does not affect many

agents the dynamic factor is still small. Moreover, we

are taking the logarithm of the flow since, we are mainly

interested in the change of the turning probabilities. The

term that includes the volume of cars is added in order

to distinguish between busy intersections and ones that

have very small throughput since the latter may not

have such a big effect on the global traffic. In case

the dynamic factor is calculated with the original flow,

busy intersections that do not have that much variation in

turning probabilities will get very high dynamic factors.

Dij =

〈∥∥ṗtij∥∥ log∑
j∈Si

N t
ij

〉
t

(6)

Di =

∑
k∈Si

Dik

‖Si‖ (7)

4) Extension for Calculating the Dynamic Factor of a Net-

work In order to extend this methodology to compute the

dynamic factor of a whole network, our measure should

be normalised in order to be universal for every different

network. The term that actually needs normalisation is

the number of vehicles that pass through the node. Some

cities might experience more traffic than others, while

the infrastructure can still take support it. In order to

be able to compare one city to another a more global

measure must be used. We propose a congestion factor

that constitutes the flow over the node over its capacity

as shown in equation 10.

wi =

∑
j∈Si

wij

‖Si‖ (8)

Ci = 2000Lwi (9)

Gt
ij =

N t
ij

Ci
=

N t
ij‖Si‖

2000L
∑

j∈Si
wij

(10)

In order to calculate this we also need to know the

capacity of the node. The capacity of a link is defined

as the number of lanes multiplied by a standard number

of cars that can pass per lane per hour [29]. In order to

get the capacity of the node we simply take the average

of the capacities of the roads that are connected to it.

Now after we have our normalised measure of flow, we

can replace the flows in the dynamic factor formula with

the normalised measure as shown in equation 12. Since

the traffic flow is already normalised we do not need to

take the logarithm anymore.

D̂ij =

〈∥∥ṗtij∥∥ ∑
j∈Si

Gt
ij

〉
t

(11)

D̂i =

∑
k∈Si

D̂ik

‖Si‖ (12)
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If the dynamic factor of every node is calculated then a

distribution of the dynamic factors in the whole network

can be accumulated. In order to compare the dynamic

factors of the traffic conditions of two or more cities

one will need to compare those distributions. We define

the dynamic factor of a city M as the generalised mean

with power factor α = 2 of the distribution of D̂i as

in equation 13. The generalised or power mean is used

in order to put an emphasis on the extreme values in

the distribution that make the network more dynamically

changing.

M =

(
1

N

N∑
i=1

D̂α
i

) 1

α
(13)

IV. MODEL AND CASE STUDY

The crucial type data that needs to be acquired in order to

compute are the traffic flows time series along the edges of

the network. From it the turning probabilities and, therefore

all dynamic measures can be extracted. In order to apply the

defined measures we should create a realistic scenario in order

to evaluate them. We have chosen the city of Singapore with

population 5.4 million people spread over 715 squared km of

land area and around 1 million registered vehicles. It is an

island city, which further simplifies the scenario since there is

no significant flow of vehicles in or out of the city. There are

652 km of major arterial roads and 161 km of express ways

in the city. The scenario for our experiment is as follows:

A. Agent Generation:

The data source used for agent generation is the Household

Interview Travel Survey (HITS) of Singapore conducted in

2012. It contains information of a representative sample of

people (about 0.7 % of the population) that among other

demographic data also state their daily travel patterns. The

information about all trips that are made on a daily basis

consisting of origin point, destination point and starting time

of the trip can be extracted for every surveyed person. We use

those “sample” points from the population in order to construct

an origin destination matrix describing the traffic demands in

the city and their variation in time.

The OD matrix is used in order to generate a realistic

number of agents with itineraries that consist of several trips

throughout the day (depending on the agent) consisting of

origin, destination and a start time. The sampling procedure

basically consists of choosing one itinerary from the survey

data at random and then adding noise to it in both space and

time domains (sample random origins and destinations from

a neighbourhood around the original ones and add mean 0
Gaussian noise to the starting time).The total number of agents

that we generate is around 300, 000 with starting times of trips

varying throughout the day. Most of the agents have two trips

in their itineraries, one in the morning (between 6 : 30 and

9 : 30) and one in the evening (between 5 : 30 and 7 : 30),

however there is traffic in the city throughout the whole day.

Since it is not practical to visualise all OD pairs simultane-

ously, in our visualisation of the results of the agent generation

process at Fig. 2 we are showing explicitly the intensities

of OD pairs that have as origin the university area around

the Nanyang Technical University (NTU) in the western part

of the city. We can observe a concentration of trips within

the university area, which represents students and faculty

choosing to reside in proximity to their work place and intense

movements towards the down town or central business district

(CBD) area in the south central part.

Fig. 2: Visualisation of the intensity of trips within Singapore

with origin NTU (western part). The data is a result of the

agent generation process described in section IV with data

used from HITS 2012. Green colour represents low intensity,

while red colour represents high intensity.

B. Route Calculation:

After all agents and their itineraries are generated, the

origins and destinations of their trips are used to calculate

the actual routes that will be taken. In order to represent this

process as realistically as possible the routing of the generated

agents is stochastic. Some people prefer the shortest path,

some the fastest and some have a preference comfort rather

than speed or time. We, therefore, have 3 different ways to

calculate our routes. We are able to realize the distinct routing

types by calculating the weights on our routing graph in a

different way. After that we use a shortest path algorithm that

minimizes the sum of the weights for a path between origin

and destination. The three types of weights are:

1) wd = road length - minimising distance

2) wt =
road length

road speed
- minimising time

3) wc =
road length

road speed × number of lanes
- maximising

comfort

and the probabilities that an agent has a certain prefer-

ence have been set to
1

3
for each type of weights, which

is in agreement with literature about route choices as

[30].
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After the generation of every agent one of the three preferences

is chosen at random and the corresponding route is calculated.

After the paths are computed, the sequence of links that every

agent passes through is then used in order to calculate the

turning probabilities. The day is split into 48 pieces consisting

of 30 minute intervals. In order to calculate the dynamic factor

of every node for the whole day, the starting time of the trip

is used as a time-stamp of the whole route and in this way the

passages through links in time are organized. The measure is

calculated as described in section III.

C. Dynamic Factor Calculation

In order to visualise our results in a better way, we have

calculated the dynamic factors only of the nodes that have a

significant throughput, which we set to be more than 10000
cars per day. Even though, we account for the flow of vehicles

in the definition of the dynamic factor it will still give a better

picture if in our results we are only concerned with central

intersections. After calculating the dynamic factor of every

node that satisfies our constrains a distribution of the dynamic

factors throughout the network is acquired as shown in Fig. 3

Fig. 3: Histogram depicting the distribution of Dynamical Fac-

tor values in the Singapore road network. Only intersections

with daily throughput higher than 10000 cars are taken into

consideration.

It can be observed that the distribution can be split into

three main parts. The first part consists of many nodes with a

dynamic factor close to 0. Those are most probably on and off

ramps to the highways and major arterial roads. Naturally there

the turning probabilities are more or less stable, however, the

throughput is still high and that is the reason they appear on

the graph. The second part of the distribution is the uniform

portion between 0.05 and 0.35. Here we probably observe

standard degrees of variation at the nodes with varying flows of

vehicles. The third, and most interesting part of the distribution

is the one that contains very few intersections with relatively

high dynamic factors. It seems like the distribution has a fat

tail and the nodes contained in the far right part exhibit very

dynamically changing turning probabilities and high traffic of

vehicles. These are the intersections that present the biggest

challenges for control and road infrastructure planning. A rule

of thumb for identifying the critical intersections would be to

examine all nodes have dynamic factors high enough to be

in the third segment of the distribution. This threshold value

can be determined by visual inspection and may vary among

different cities. On Fig. 4 we see the evolution in time of

the turning probabilities of the most “dynamic” node in the

network. We can observe that all three options that the drivers

have are varying abruptly in time and that every option is

being the most preferred one during at least one period of the

day.

Fig. 4: Turning probabilities of the most dynamic node accord-

ing to our model in the city of Singapore. The distinct time

series represent the probability that a car would choose the

corresponding outgoing road from the intersection throughout

the day.

The highly non-uniform distribution can also be observed

in the spatial distribution of the dynamic factor as shown

in Fig.5. There are several very dynamic locations that are

either intersections between major roads or are connecting

residential and business areas. The latter case presents high

dynamic factors due to the qualitatively different demands in

the morning and evening. The first type presents changes due

to a constant dynamic nature of events at those intersections.

We can also observe a cluster of points with high dynamic

factor at the central business district (south central part), which

can be due to the high concentration of business offices and

constant movement of commuters within this area.

V. CONCLUSION

In this paper we have pointed out the possible existence

of intersections in large cities that may experience unusually

dynamical behaviour throughout the day which is manifesting

itself in fast changing of the preferred turns by the traffic

participants. If this is combined with high volume of vehi-

cles passing through, such type of locations can be solely

responsible for traffic jams and worsened performance of any

implemented control strategy, which makes the identification

of such “hot spots” an important task.

The measure of the dynamic factor is defined in order to

quantify the dynamics of an intersection and to provide a full

picture of the network itself. We have presented a topolog-

ical analysis method that combines the spatial and temporal

properties of traffic and is able to identify intersections that

have uniquely abrupt and fast changing dynamics combined

high traffic flow and, therefore, present a challenge for control.
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Fig. 5: Spatial distribution of dynamic factor of intersections in Singapore according to simulated agent routes. Big red dots

mean high dynamic factor and small green dots mean low dynamic factor. Only intersections with throughput higher than

10000 cars per day are considered.

Furthermore, we have defined a dynamic factor measure

extension in order to universally quantify the dynamics of

the whole network in order to compare it to other city’s road

infrastructures.

We have carried out a case study to test our methods with

real data from the city of Singapore. Using an extensive survey

database we were able to generate a realistic traffic demand

within the city and model the routing choices of the commuters

throughout the day. We have applied our methods in order

to identify and locate the central intersections that demon-

strate extensively dynamical behaviour. We have observed the

distribution of the dynamic factor measure throughout the

network. It was shown that it has a fat tail on its positive side,

which means that there are few intersections that demonstrate

very dynamic behaviour and have a high throughput, which

coincides with our initial hypothesis.

As a further research steps it might be interesting to compare

the dynamic profile of the intersections in Singapore to other

cities. This is, however, subject to data availability. Moreover,

such an experiment can be used to verify the results of this

study by ensuring that intersections with high dynamic factors

exist in other cities as well. By comparing distributions of the

dynamic factors we can also check for qualitative differences

between cities and traffic organisation. Traffic in Singapore

is considered to be fairly well organized compared to mega

polices that have organisational and financial hardships. We

expect that the degree of inequality of the distribution of

dynamical factors will be even higher for such traffic systems.

It would also be interesting to check if the character-

istic turning probabilities at intersections are in agreement

with the number of lanes on the respective roads. Varying

turning probabilities inevitably bring imbalance of traffic on

the network as some roads become congested while others

stay empty. It is possible that as the traffic demand changes

some roads become obsolete or their high capacity is no

longer required, while other roads must accommodate higher

throughput. Following this argument it might be interesting

to use the turning probabilities at the nodes in a network in

order to point out to such locations where the topology of the

network no longer meets the needs of the traffic demand.
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