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Abstract

In this paper, we present a new design methodology for automotive applications, com-
bining the strength of model-based design using MATLAB/Simulink and virtual prototyping
using SystemC. The design flow starts from an automotive application modeled in MAT-
LAB/Simulink. By including a vehicle model, testing and debugging of the desired appli-
cation is possible. In a first step, the application model is automatically transformed into
SystemC code. In a second step, the ECU (Electronic Control Unit) architecture including
control units and communication buses of the vehicle is also modeled in SystemC. While
the application model defines the functional property of the envisioned algorithm, the ECU
architecture model is responsible for modeling non-functional properties, e.g., time, area
and power consumption. Finally, the SystemC application model is related to the ECU ar-
chitecture model by mapping activations of the application to the modeled control units and
buses. In that way, non-functional properties can be evaluated by the help of the SystemC
simulation kernel.

Furthermore, the flexibility of the proposed approach allows for assessing the effect of
different design decisions in early design phases, as the entire ECU architecture is mod-
eled in SystemC. Hence, partitioning the application model onto many ECUs or multiple
processors inside ECUs can be done easily by only changing a single configuration file. We
will demonstrate the benefits of the proposed approach using a brake-by-wire application
mapped onto an ECU architecture based on a FlexRay bus system.

1 Introduction and Motivation

Model-based Design using MATLAB/Simulink [1] is a de-facto standard for system modeling in
the automotive domain. These models serve as high-level reference, executable specification,
and allow for functional simulation and even automatic software code generation. However, as
the focus is set on functional modeling, important non-functional properties, as timing informa-
tion, area and power consumption, etc. are hard to evaluate in early design phases.

On the other hand, the SystemC language [2] is gaining a great acceptance in other appli-
cation domains like, e.g., multi media, communications, and digital signal processing. SystemC
is a C++ class library and has recently become an IEEE standard. Its major application domain
is at the electronic system level, and it is often used for virtual prototyping. Virtual Prototypes
written in SystemC permit modeling and simulating of entire hardware/software systems, the
development of firmware before a chip prototype is available, and the early evaluation of non-
functional properties.

Figure 1 shows the differences between a functional model in Simulink and different hard-
ware/software implementations where non-functional properties affect the overall execution la-
tency. In Figure 1(a) an exemplary Simulink model is given. Two sensors gain measurements
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Figure 1: (a) A Simulink model is composed by blocks. (b) Each block has an associated
activation period. (c) Software implementation causes execution times for each block. (d) A
multiprocessor implementation potentially allows parallel execution of blocks, but introduces
communication latencies. (e) Execution conflicts may occur if execution and communication
latencies of an implementation became too large.

from the environment and a block (Function) takes the output values from the sensors as input
values. A memory block is used as rate transition between different sample times. The output
computed by the Function block is used by the Actuator in order to perform some kind of reac-
tion. E.g. the model could represent a simple force-feedback mechanism of an electrical brake
pedal in a car: Pedal pressure caused by a driver and brake force measured at the wheels is
used to compute feedback forces applied by an electromechanical brake pedal. All blocks in
such a model are executed at a certain sample time. Here, block Sensor1 is activated every
5 ms, while the remaining blocks are activated at a period of 10 ms. The ideal execution of such
a reactive Simulink model is depicted in Figure 1(b). Activation of blocks is depicted by events.
Execution of blocks is assumed to be infinite fast. Still, the partial ordering of the blocks in the
model given by its communication dependencies has to be preserved. This results in some
kind of micro-step execution scheme similar to delta-cycles.

Real Time Workshop, a toolbox for Simulink, allows for generation of embedded C code
running on embedded processors. For code generation, the partial ordering of a Simulink
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Figure 2: Simulink models are transformed to SystemC models. Architecture and mapping de-
tails are added to the SystemC model via configuration files in order to form a virtual prototype.
Simulation allows evaluating the non-functional performance parameters.

model is turned into a total execution order. Code for the blocks is generated in individual
functions or is in-lined if possible. In a main, function the individual function calls for the blocks
are placed according to a total ordering that preserves the semantics of the Simulink model.
Also cyclic dependencies that include registers are supported, if the registers allow breaking
up the cyclic dependencies. An execution trace for such a generated software code is depicted
exemplary in Figure 1(c). There, the execution of blocks running at different sample times can
be seen. The entire software program runs at a low sample time. This sample time has to
be a common divisor to all sample times occurring in the model. The execution of functions is
guarded via modulo counters. In the example in Figure 1(c), the counter for block Sensor2 is
tested and incremented at 6 ms. As result from this test, the code is not executed, but checking
the counter requires some execution time.

Figure 1(d) shows a potential benefit of saving execution latency by a multiprocessor im-
plementation of the Simulink model. While preserving the partial order, the code for blocks
Sensor1 and Sensor2 is executed in parallel on different microprocessors ECU1 and ECU2.
Also shown is the additional communication latency caused when transmitting the data from
block Sensor2 to the Function block. Not in all cases, a multiprocessor implementation guaran-
tees shorter execution latency. E.g. in Figure 1(e) it can be seen that communication latencies
and different execution times on different types of microprocessor may cause a higher execution
delay. From this example, it can be seen that a good knowledge on possible implementation
variants of a model is necessary to draw successful design decisions. Building hardware pro-
totypes is costly and time consuming and thus not appropriate at an early stage of the design.
Virtual prototypes can be used to assess the non-functional parameters of implementations of
a system with fewer efforts. Still much effort has to be spent for building a virtual prototype from
a Simulink model.

In this paper an approach is presented that helps to close the gap. The design flow is given
in Figure 2. A modified C code generator transforms a Simulink model into a SystemC model.
An architecture model and mapping information is added to this functional SystemC model
using XML-formatted configuration files. Performance simulation allows to assess execution
latencies and to determine if execution latencies will obtain real-time performance. Different
variants in mapping and architecture can be easily evaluated by simply modifying the config-
uration files. The approach has many similarities to the Y-chart approach [3], as application
model and architecture model are separated initially. Mapping both models together forms a
virtual prototype at an abstract level and allows for performance simulation.

The rest of the paper is structured as follows. In Section 2, approaches related to our
proposed methodology are discussed. Section 3 gives a brief overview on Simulink. Transfor-
mation of Simulink models to SystemC models is presented in Section 4. A case study using



an automotive application of a brake-by-wire system is given in Section 5. Finally, Section 6
discusses the presented approach.

2 Related Work

Huang et al. [4] presented a case study of a Simulink-based MPSoC design flow. An initial func-
tional Simulink model is composed to a combined algorithm and architecture model (CAAM),
which is derived by hand using hierarchical grouping of functional blocks. Here, the hierarchi-
cal structure represents the partitioning into CPU subsystems and thread subsystems as well
as inter- and intra subsystem communication blocks. Afterwards, the Simulink CAAM model
may be implemented at different abstraction levels (Virtual Architecture, Transaction-accurate
Model and Virtual Prototype) using a Multithreaded Code generator. A very similar approach
is reported by Atat and Zergainoh [5]. The functional Simulink model is refined to a Simulink
transactional model. Using tool support, the transactional model is transformed to the more de-
tailed Macroarchitecture Model or the even more detailed Microarchitecture Model. Simulation
allows for verification at each abstraction level. In contrast to our work, partitioning into mixed
hardware/software systems is done within the Simulink model, by grouping functional blocks
and inserting special interface blocks.

Caspi et al. [6] proposed a layered approach quite similar to our own, while translating
Simulink models to SCADE/Lustre [7], a synchronous language, and afterwards implementing
it on a time triggered architecture. Their focus lies on designing safety critical software for the
automotive and avionic industry. This is achieved by using SCADE/Lustre, which features a
level-A certified automatic software code generator.

An approach to the transformation of Simulink models to the System Property Intervals
language is reported by Jersak et al. [8]. This approach transforms the time-driven model of
computation into a data-driven model, by introducing virtual FIFO-queues for synchronization
between different sample times.

Stefanov et al. [9] presented a design flow for implementing MATLAB code on a target
platform utilizing a microprocessor and an FPGA. A nested loop program specified in MATLAB
code is transformed to a Kahn Process Network, which can be mapped to the target platform.

3 Simulink

Simulink is a toolbox for MATLAB, developed by The MathWorks [1], which can be used to
graphically model and simulate hierarchical systems. Another toolbox for MATLAB is the Real-
Time Workshop, which offers a code generator, to generate highly optimized C code from a
Simulink model. Simulink provides an interactive, block-diagram based, graphical environment.
Libraries offer a broad variety of predefined blocks that can be used along with user-defined
functions. These can either be described by embedded MATLAB code or as so called S-
Functions [1]. Data-flow between the blocks is realized using directed connections represented
by arrows. Blocks are evaluated at a certain time, the sample time, which can be set globally
or for each block individually.

Figure 1(a) presents an example of a Simulink model consisting of five blocks. Each block
has a certain sample time in this example. Due to different sample times between blocks
Sensor1 and Function, a memory (Rate Transition) is used for down sampling the input sensor
data. Discrete simulation of a Simulink model runs at steps of a minimum period that is a
common divisor to all sample times used in a model. A block is only evaluated at a given time
step, if this time stamp is an integer multiple of the blocks sample time. Thereby the partial
ordering given by data dependencies is preserved. As can be seen in Figure 1(b), the Simulink
simulation would compute the output value of the Sensor1 block in parallel to the Sensor2 block



at time 0 ms. Then, output data from block Sensor1 is stored in the Memory block. An old value
potentially stored in the Memory is discarded. Afterwards, the Function block and afterwards
the Actuator block are simulated. At time stamp 5 ms only the block Sensor1 is executed and
its output values is written to the Memory block. The other blocks are not activated at this time
stamp. At time stamp 10 ms the execution of the model starts again as in time stamp 0 ms.

Simulink is often used to simulate and verify algorithms in early stages of a design, as it al-
lows for rapid design, simulation, and generation of real-time C code. The option of hierarchical
model development simplifies the design and reuse of systems.

4 SystemC representation of Simulink

In this section, we give a brief overview on SystemC and present the transformation step from
Simulink models to SystemC. Furthermore we clarify how the SystemC model can be config-
ured with architecture and mapping information in order to form a virtual prototype.

4.1 SystemC

The IEEE standard SystemC [2] is a C++-based design language, which is well suited for de-
signing hardware/software systems. SystemC permits modeling at a wide range of abstraction
levels. While modeling at register transfer level is possible, SystemC is typically used at higher
levels of abstraction like the behavioral level or even the electronic system level.

A SystemC model is composed of modules. Modules may be composed by other modules
allowing for hierarchical modeling. SystemC supports different kinds of concurrent processes,
namely threads and methods. A module may contain one or more processes, while each pro-
cess is related to only one module. Communication between modules is restricted to dedicated
channels only. The SystemC reference implementation comes with a simulation kernel allowing
for discrete event simulation of SystemC models. Execution time delay occurring during execu-
tion of processes can be modeled with the SystemC function call wait. Passing a delay value
to this function (e.g. wait(20, SC NS);) causes the simulation kernel to stop the execution of
the calling process until the given time has passed by. Sophisticated tracing mechanisms in
SystemC allow for monitoring variable and channel values during simulation.

4.2 Code generation

The straight-forward approach of mapping Simulink to SystemC is as follows: Each Simulink
block is transformed into a SystemC module consisting of a thread process. Signals in Simulink
are mapped to channels in SystemC. The concurrency in a Simulink model, as well as the ex-
ecution semantics has to be preserved during the transformation of a Simulink model. To be
more precise, we do not transform the Simulink model to SystemC directly, but to a custom mod-
eling library for actor-oriented design [10] that is based on SystemC. By mapping the Simulink
model to a synchronous reactive model-of-computation, we preserve the concurrency and se-
mantics of the original Simulink model. A detailed description of this transformation steps can
be found in [11].

The proposed method to generate SystemC code from Simulink models is based on the
Real-Time Workshop (RTW) [12] toolbox. RTW is able to generate highly optimized C code
from Simulink models, while code generation can be customized by the Target Language Com-
piler (TLC) [12]. By mainly using Target Language Compiler directives, we can use most of the
inherent flexibility, e.g., the automatic generation of code for user-specific Simulink blocks.

The SystemC modules created by our customized Target Language Compiler have a static
template which is then augmented with functional C code, generated by RTW. Each module de-
clares input and output ports and uses constructor code for initialization according to the given



block’s functionality. For discrete Simulink models, blocks may have internal discrete states
(DSTATES), e.g., a memory block is able to store the last input. Blocks with discrete states
may be used to break combinatorial feedback loops that otherwise could not be supported for
C code generation. In this case, two functions update() and output() are created by the orig-
inal RTW. Feedback-loops are broken by calling first the output() function writing the output,
and later, when sufficient data is available, the update() function. Obviously, this behavior rep-
resents a Moore finite state machine, where outputs only depends on the actual state and may
be produced independently from inputs. We cope with discrete state blocks by using a module
with two processes. The two processes represent the output() and update() functions used
for writing outputs depending on the internal state and updating the internal state depending
on the inputs, respectively. As a result, input and output signals are decoupled and feedback
loops are executed in the same manner as in the original Simulink model.

Currently, we only support discrete Simulink models. Therefore, only the fixed step, discrete
state solver is supported, while Simulink offers a couple of different types of solvers for simu-
lation. In particular, we do not support any continuous blocks. Using continuous solvers would
make the model-of-computation ambiguous and therefore not appropriate for designing mixed
hardware/software systems. Moreover, we do not support multidimensional or complex signals.

All blocks that are stateless, e.g. mathematical operations or any type of source, as well as
all blocks from the discrete library, e.g. a Discrete Transfer Fcn, are supported for translation
to SystemC. We support user-defined functions representing analytical functions by means of
the simple Fcn block (e.g. y = x2 + sin(x)). Other kinds of user-defined functions are not
implemented yet.

In Simulink, it is possible to have blocks running at different sample times in the same model.
For code generation using RTW, they must be separated by so called Rate Transitions. A Rate
Transition in Simulink holds the signal from the predecessor block until it changes, similar to
a register. So, at whatever sample time the successor is running, it always gets a valid input
signal. In order to support different sample times, we assume the entire SystemC model is
executed at a minimum period given by the greatest common divisor of all sample times. To
achieve the individual sample times of blocks, we use counters to guard the execution of the
functionality inside modules.

4.3 Virtual Prototypes

In order to generate a virtual prototype, we need to extend the SystemC model with an ap-
propriate architecture mapping. This step is supported by a custom library for modeling the
architecture by the terms of Virtual Processing Components (VPC) [13]. The library is imple-
mented in SystemC and allows for performance simulation of SystemC models. It works by
creating SystemC modules representing components in the architecture like microprocessors,
hardware module, buses, memories, etc. E.g. in Figure 3(a) the three components ECU1,
ECU2, and Bus are modeled in the VPC library. The components in the architecture model are
configured in the VPC library by an XML formatted configuration file as given in Figure 3(a).
Mapping of SystemC modules representing Simulink blocks is twofold. On the one hand the
C code in each SystemC module in the application model has to be extended by a function call
using the compute function from VPC with the module name as parameter. This function call is
automatically added to each SystemC module during the transformation from Simulink to Sys-
temC. On the other hand the mapping for each application module to a component has to be
modeled in the VPC using the configuration file. The mapping and its XML code for the module
Sensor1 to the ECU1 component is given in Figure 3(a). With each mapping a core execution
time is associated. In the example Sensor1 has an execution delay of 10 us when mapped to
ECU1. In a similar manner, the communication channels are mapped to the architecture. In
case of the FlexRay bus, additional parameters are required for the FlexRay schedule and the
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Figure 3: (a) The architecture model and the mapping of SystemC modules to architecture
components are configured by an XML file. (b) Performance simulation models delays for
execution of modules and communication of data.

mapping of communication messages to FlexRay slots.
If several modules are mapped to the same component, the potentially occurring resource

contention is solved by the VPC using sophisticated scheduling policies assigned to each com-
ponent. Those policies allow modeling the operation system scheduling occurring on micropro-
cessor, as well as arbitration schemes used in shared communication media like buses.

Synchronization between application model and architecture model is implemented in the
function compute. An exemplary execution scheme for the virtual prototype in Figure 3(a) is
given in Figure 3(b). At time 0 ms the module Sensor1 and Sensor2 are activated in the appli-
cation model as a new activation period is started. Both modules compute their functionality,
e.g. reading sensor values from the environment model. Afterwards both modules call the
compute function where the core execution time and the overhead possibly caused by pre-
emption and scheduling is simulated.1 The compute function returns the process control to
the application module when the simulated execution time has passed. Afterwards, the output
data is committed to the output channels. After communication delay which is modeled by a
compute function also, the data is received by the Function module. Thus, the Function module
is activated and again functionality and execution time is simulated. Those mechanisms are
repeated for all modules and afterwards the very next activation period is started.

Module execution times and communication delays are traced by our VPC library. The trace
is post processed after simulation in order to measure the latencies that occur in the activa-
tion periods. Also, the trace is analyzed if any execution conflicts between different activation
periods occur due to execution delays.

5 Case Study: Brake by Wire

The proposed approach in this paper has been tested with an automotive brake-by-wire appli-
cation. A brake-by-wire system and a vehicle model have been modeled using Simulink. The

1Execution delay on a component is modeled by the wait function in SystemC.
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Figure 4: (a) The brake-by-wire application is modeled in Simulink. After transformation to
SystemC, the application is mapped to a decentralized implementation (b) and a centralized
implementation (d), each using five ECUs and one bus. (c) Latency values for one execution
are recorded during simulation of different architecture variants.

brake-by-wire model is depicted in Figure 4(a). The Main node in the model is responsible for
computing break force values for the individual wheels and force feedback values for the break
pedal. Each of the four wheel nodes (RL, RR, FL, FR) computes corrected brake forces in
order to implement the ABS functionality. Furthermore, the model consists of several blocks
responsible for monitoring wheel speeds and applied brake forces to each wheel (S1-S4) and
for monitoring force applied to the break pedal and its position (S5). Five actuators apply the
brake force to the individual wheels (A1-A4) and a feedback force to the break pedal (A5). All
blocks run at the very same sample time of 10 ms. During simulation the input values to sen-
sors and output values of actuators are controlled by the vehicle model. The vehicle model is
modeled in Simulink and is used to verify the functional model and is used as test-bench for
the performance simulation.

We transformed both Simulink models, brake-by-wire and vehicle model into SystemC mod-
els using our modified code generator. The SystemC model is linked against the VPC library
and configured with architecture and mapping information. Two different mapping variants to an
architecture consisting of five ECUs and one FlexRay bus are depicted in Figures 4(b) and 4(d).
The centralized mapping in Figure 4(d) performs main node and wheel node computations on
ECU5 and sensor and actuator functionality is performed on ECUs 1-4. Another mapping de-
centralizes the computation as depicted in Figure 4(b). Here, each of the four wheel nodes and
the main node are mapped to different ECUs. In both mappings, communication is assumed to
take place on internal ECU buffers if possible or on the FlexRay bus for communication between
different ECUs.

We assumed artificial execution delays for each block in the brake-by-wire model and no
execution delays in the vehicle model. The ECUs are assumed to be identical and thus the
execution times are identical for different mappings of individual blocks. Note that, in order to



model heterogeneous ECUs, individual delays need to be modeled for each mapping. During
performance simulation the latency for each activation period is measured. The typical latency
values observed for both mapping variants are given in the table in Figure 4(c). Sample times
of blocks is modeled with 10 ms and thus, the latency needs to be less than 10 ms to guarantee
correct functionality of the brake-by-wire system. The centralized and decentralized mappings
achieve typical latencies of 2.64 us and 0.94 us. Here, both mapping variants are compatible to
the sample time of 10 ms.

6 Discussion

We have presented an approach for transforming Simulink models to SystemC models. Fur-
thermore, the SystemC models are enriched by architecture models and appropriate applica-
tion to architecture mappings forming a virtual prototype at a high level of abstraction. The
virtual prototype allows to asses the non-functional performance parameters of a candidate ar-
chitecture variant. By varying the configuration, the design space spanned by the mappings,
architecture, ore even scheduling and arbitration parameters can be explored for suitable im-
plementation candidates.

A drawback of our approach lies in the used code generation technique based on the Real-
Time Workshop. Optimization steps occurring in the Real-Time Workshop cause in-lining of
some Simulink blocks during code generation. Such optimizations may be used to speedup
execution on a single processor. Nevertheless those optimizations hide parallelism in the
SystemC model that potentially could be used to reduce execution latency in multiprocessor
systems. We could overcome the limitation by changing the code generation technique to a
separate transformation of each single Simulink block in a SystemC model. A second trans-
formation step is needed to generate the communication dependencies and the instantiation of
SystemC modules. In this case, the Real-Time Workshop is bypassed by working directly on
the original Simulink model.
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