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Abstract— Predicting the movement of other traffic partic-
ipants is an integral part in the motion planning of most
automated road vehicles. While simple predictions, e.g. based on
assuming constant velocity, may suffice for deciding a driving
strategy, predicting the set of all possible behaviors is required
to ensure safe motion plans. In this work, we propose a novel
tool for the latter problem based on reachability analysis:
Set-Based Prediction Of Traffic Participants (SPOT). Our tool
can predict the future occupancy of other traffic participants,
including all possible maneuvers (e.g. full acceleration, full
braking, and arbitrary lane changes), by considering physical
constraints and assuming that the traffic participants abide by
the traffic rules. However, we remove assumptions for each
traffic participant individually as soon as a violation of a
traffic rule is detected. Removal of assumptions automatically
results in larger occupancies and thus a smaller drivable area
for the ego vehicle, ensuring that the ego vehicle does not
cause a collision during the time horizon of the prediction.
Experimental results show that we obtain the set of future
occupancies within a fraction of the prediction horizon. Our
tool is available at spot.in.tum.de.

I. INTRODUCTION

While maneuvering on public roads, one must constantly

anticipate possible behaviors of other traffic participants.

For this reason, predicting the movement of other traffic

participants has become an active research area in automated

driving [1].

We briefly review existing prediction techniques and refer

to [1] for a more extensive survey. Single future behaviors

are predicted in e.g. [2], [3]. Since another traffic participant

will most likely not follow the prediction exactly, such

approaches cannot be used to ensure safe motion. This

deficiency is mitigated by computing several possible future

behaviors for each traffic participant; often, probabilities are

assigned to each behavior obtained from Monte Carlo simu-

lation [4], [5]. Instead of using Monte Carlo simulation, one

can also predict the probability distribution of the occupancy

as done in e.g. [6], [7].

None of the previously reviewed approaches can guaran-

tee that all possible behaviors for given assumptions are

computed. This, however, is required to ensure safety as

described in [8] (referred to as zone model) or in [9]. Our

proposed tool SPOT uses reachability analysis to predict the

occupancy of surrounding traffic participants in a rigorous

and set-based way. The obtained results are provably an

over-approximation compared to the exact set of possible

occupancies, given the assumptions made.
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To the best of our knowledge, no tool for set-based

prediction of other traffic participants exists. Furthermore, we

have not found any other stand-alone tool for the prediction

of other traffic participants. Simple prediction techniques,

however, are often integrated in other software frameworks

(see e.g. [10], [11]). This paper significantly extends our

previous work on set-based prediction [12]:

• We present the open source tool SPOT to compute

the future occupancy of multiple traffic participants on

arbitrary road networks.

• We can additionally handle opposite driving directions

and intersections.

• For the first time, we describe how we react to observed

violations of assumptions, e.g. when a traffic participant

performs an illegal lane change.

• We introduce a novel abstraction which considers that

other traffic participants are prohibited from merging in

front of the ego vehicle in a way which violates the safe

distance. However, as mentioned above, we provide the

necessary reactions if this happens.

The remainder of this paper is organized as follows: Sec. II

presents the concept of our tool and its applications. In

Sec. III, we define the models of the road network and

traffic participants, which are required for our set-based

prediction. Its implementation is described in Sec. IV, where

we introduce the overall algorithm and the computation steps

needed to obtain the future occupancies. Sec. V presents

numerical examples of SPOT for different multi-lane roads

with several traffic participants.

II. CONCEPTUAL OVERVIEW AND BENEFITS

SPOT computes the future occupancy for consecutive time

intervals as shown in Fig. 1. To ensure that we do not miss

any possible behavior, we compute an over-approximation

of the occupancy based on reachability analysis. Please note

that it is impossible to compute the exact occupancy for the

nonlinear dynamics of traffic participants [13]. In addition to

uncertain future behaviors, we can also consider uncertain

initial states bounded by sets, as described in detail later, to

account for uncertainties in the perception of a traffic scene.

SPOT is designed for verifying motion plans of short time

horizons, since due to the full consideration of uncertainties,

the future occupancy of other traffic participants grows over

time and thus limits the solution space for the ego vehicle.

For this reason, we suggest performing trajectory planning

for two time horizons in parallel as in [12]. Non-formal oc-

cupancy prediction techniques help to find long-term motion

plans: One could predict a single behavior or probabilistic

occupancies for example (see overtaking maneuver in upper
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Fig. 1. Snapshots of the predicted occupancy of the traffic participant for
selected consecutive time intervals.

part of Fig. 2). We suggest applying our formal prediction

to the first part of the long-term plan only, as shown in the

lower part of Fig. 2, since the short time horizon does not

result in overly large occupancy sets. One should additionally

plan a fail-safe maneuver into a safe state [14]. If we verify

the first part of the intended trajectory as safe using our

set-based prediction, this part can be executed while we try

to verify the next part. Otherwise, the previously verified

fail-safe trajectory is initiated. Thus, we can even guarantee

that no collision occurs beyond the prediction horizon. To

summarize, non-formal techniques provide long-term plans

based on likely behaviors of other traffic participants, while

set-based prediction guarantees safe maneuvers. For more

details on integrating the verification into the framework of

automated vehicles, the interested reader is refered to [12].
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Fig. 2. Comparing non-formal, long-term prediction with formal, short-
term prediction.

a) Application Areas: Based on the future occupancies

of other traffic participants obtained by SPOT, the drivable

area of the ego vehicle can be computed [15]. Such drivable

areas can be used to prune the search space of the ego vehicle

to more efficiently find feasible, safe motion plans. SPOT can

also be used to verify planned motions [9]: If none of the

computed occupancies intersects with the occupancy of the

ego vehicle for all points in time, one can guarantee that the

ego vehicle does not cause a collision (see Fig. 1).

b) Features: SPOT provides the following key features:

• The tool is open source so that parts of the code can be

used for one’s own purposes.

• Uncertainties in measurements (position, orientation,

dimensions, velocity, and acceleration) and in the future

behavior of traffic participants are explicitly considered.

• Even though SPOT is implemented in MATLAB (gen-

erally slower than compiled code), we achieve compu-

tation times within a fraction of the predicted horizon

(typically less than 1.0%).

• SPOT has only a few lines of code (fewer than 5000).

This makes understanding how it works, as well as

extending its features, easy.

• SPOT is designed to be fed by different types of input.

As a stand-alone tool, the user defines a traffic scenario

in an XML file and specifies the time horizon for the

prediction. It is also possible to embed SPOT in a

motion planner and feed it with environment data. Given

a planned trajectory, SPOT can check it for collisions

with the predicted occupancies.

III. MODELS

In order to predict the future behavior of other traffic

participants, the surrounding environment of the ego vehicle

is modeled in a traffic scene, which consists of a road

network, traffic participants, and static obstacles.

A. Road Network Model

The road network is modeled by lanelets [16], which are

atomic, interconnected, and drivable road segments. They are

defined by their left and right bound, where each bound is

represented by an array of points (a polyline), as shown in

Fig. 6. The driving direction of a lanelet is implicitly defined

by its left and right bound. To consider all possible routes

through the road network, we introduce relations between

two lanelets: predecessor, successor, left, right. We further

define lanes as the union of lanelets which are longitudinally

adjacent, i.e. are successors and predecessors of each other.

Note that a lanelet which has multiple successors, as in the

case of road forks, becomes an element of multiple lanes

(see Fig. 6).

B. Traffic Participant Model

In addition to the road network, the dynamics of traffic

participants have to be modeled. Please note that in the

current version of SPOT, we only consider vehicles; other

traffic participants like cyclists and pedestrians are added in

the future.

We typically do not have a precise model M0 of other

traffic participants (in contrast to the ego vehicle). Thus,

we use different abstractions for the complicated dynamics

described by differential inclusions

ẋ ∈ fi
(

x(t), u(t)
)

, (1)



where x ∈ R
n is the state, u ∈ R

m is the input, and the index

i refers to the ith model Mi. The possible initial states and

the inputs are bounded by sets: x(0) ∈ X0, ∀t : u(t) ∈ U .

We denote a possible solution of (1) as χi(t, x(0), u(t)). To

define our abstractions, we require the definition of a reach-

able set, i.e. the set of states reachable at a certain point in

time r from a set of initial states subject to uncertain inputs:

R(Mi, r) =
{

χi(r, x(0), u(t))
∣

∣x(0) ∈ X0, ∀t : u(t) ∈ U
}

(the notationR(Mi, r) neglects the dependence on X0 and U
for brevity). Further, we introduce a mapping from the state

space to the set of points in Cartesian space occupied by the

traffic participant as map(x) : X → P(R2), where P(R2)
is the power set of R

2. For a set of states X , the mapping

is defined as map(X ) := {map(x)|x ∈ X}. Ultimately, we

are interested in the over-approximative occupancy O(t) of

a traffic participant, which is defined as

∀t > 0 : O(t) ⊇ map
(

R(M0, t)
)

. (2)

Since reachability analysis of the original model M0 is com-

putationally expensive [12], our aim is to find abstractions

Mj (j = 1, . . . ,m) such that ∀t > 0 : R(M0, t) ⊆ R(Mj , t).
Thus, we can efficiently over-approximate the reachable set

of the original model as

∀t > 0 :

map
(

R(M0, t)
)

⊆

m
⋂

j=1

map
(

R(Mj , t)
)

⊆

m
⋂

j=1

Oj(t).
(3)

In particular, we have implemented three abstractions in

SPOT so far: M1, resulting in the acceleration-based oc-

cupancy O1(t) (see Sec. IV-D); M2, resulting in the lane-

following occupancy O2(t) (see Sec. IV-E); and M3, result-

ing in the safe distance occupancy O3(t) (see Sec. IV-F).

The set of the overall occupancy of a traffic participant is

O(t) = O1(t) ∩ O2(t) ∩ O
∁
3(t), (4)

where O∁
3(t) denotes the complement of O3(t). Since we

compute O3(t) as an under-approximation, i.e. O3(t) ⊆
map

(

R(M3, t)
)

, O∁
3(t) is over-approximative and thus O(t)

is over-approximative. As set representation for the occu-

pancy, we choose polygons consisting of a tuple of vertices.

In addition to providing abstractions for the dynamics of

traffic participants, we also consider a number of constraints

listed in Tab. I: While Camax
and Cengine are physical

constraints, the other ones are a formalization of the Vienna

Convention on Road Traffic [17]. The parameterized speed

vmax is selected to be the minimum of three parameters:

capable velocity of the obstacle, official speed limit of the

obstacle’s current lane times a speeding factor fS > 1,

and the critical velocity vcritical beyond which one cannot

follow a lane anymore due to reaching maximum tire forces

(computed based on [18]).

Due to measurement uncertainties, the possible set of

initial states X0 is constructed by the Cartesian product of in-

tervals, e.g. of position [x0, y0]
T and of velocity [vx,0, vy,0]

T .

Based on X0, each obstacle is characterized by a set of

parameters, which are listed in Tab. II. The shape of a traffic

TABLE I

OBSTACLE CONSTRAINTS.

Constraint Variable Description

Camax
amax Maximum absolute acceleration is limited

by amax.

Cvmax
vmax Positive longitudinal acceleration is stopped

when a parameterized speed vmax is reached.

Cengine vS Above a parameterized speed vS , acceleration

in driving direction is along = amax
vS
v

,

which models limited engine power.

Cback bback Driving backwards in a lane is not allowed.

Clane blane Leaving the lane is forbidden. Changing lanes

is only allowed if the new lane has the same

driving direction as the previous one.

Csafe – Minimum distance to the ego vehicle ξsafe

must be kept to comply with safe distance

regulations.

participant is enclosed by a rectangle of length l and width w,

where measurement uncertainties in terms of the obstacle’s

dimension are considered by enlarging its dimensions to l̃ < l
and width w̃ < w as shown in Fig. 5. Note that l and w can

vary when the initial state is updated, e.g. through updated

sensor measurements.

TABLE II

OBSTACLE PARAMETERS BASED ON THE CONSTRAINTS IN TAB. I.

Parameter Variable Parameter Variable

max. acceleration amax in m/s2 Boolean for Cback bback

max. velocity vmax in m/s Boolean for Clane blane

switching velocity vS in m/s length (incl. unc.) l in m

speeding factor fS width (incl. unc.) w in m

IV. IMPLEMENTATION

This section describes the representation of traffic scenes,

the overall structure of SPOT, and the abstractions currently

implemented in SPOT.

A. Traffic Scenes

To represent traffic scenes with all the details required for

set-based prediction, we use the CommonRoad XML data

format [19] as specified in its documentation1. One can either

download existing traffic scenes (from our website2 or from

the CommonRoad website1), or create new ones as described

in our manual2. It is also possible to upload new scenarios

through our website. Please note that XML files specifying

traffic scenes are the only interface required for SPOT and

can also be used to import perception information from a

real vehicle.

1commonroad.in.tum.de
2spot.in.tum.de



B. Class Structure

The architecture of SPOT is presented in Fig. 3 using the

class diagram of UML3. We emulate the perception of the

ego vehicle (class Perception) to consider sensor range

limitations among others. Our model of the traffic scene

is stored as a map (class Map) and contains lanes (class

Lane), obstacles (class Obstacle), and the ego vehicle

itself (class Vehicle). A hierarchical class structure behind

the superclass Obstacle allows us to distinguish between

static and dynamic obstacles (class StaticObstacle and

DynamicObstacle) and to represent different types of

traffic participants, like passenger cars, trucks, and bicycles.

To combine these different types, we use the terms obstacle

and traffic participant interchangeably. Each obstacle has a

property of the class Occupancy, which is computed as

described in the next section. For further details on our class

structure, please see our manual.

Perception Map Occupancy

Lane

Lanelet

Obstacle

DynamicObstacle

StaticObstacle

Vehicle

Composition

Generalization

1..N

1..N

1..N

1..N

1 1 1

1

1

11

Fig. 3. Unified Modeling Language (UML) class diagram of SPOT.

C. Overall Algorithm

Alg. 1 shows the overall algorithm of SPOT, which

predicts the occupancy for a traffic participant up to the

prediction horizon and can run in parallel for each traffic

participant. First, the constraint management configures the

parameters according to the set of last-measured states of the

obstacle (line 1) as detailed in the next paragraph. Second,

the reachable lanes are extracted from the road network with

respect to Clane (line 2) as presented in the subsequent

paragraph Reachable Lanes. Next, the occupancies of all

abstractions are computed (line 4 and Sec. IV-D to IV-F).

Finally, the overall occupancy of an obstacle is returned as

the intersection of all occupancies according to (4) (line 6).

Please note that we store a separate occupancy polygon for

each traffic participant, time interval, and lane to make an

efficient collision detection possible.

a) Managing Constraints: As mentioned before, we

immediately adapt our model when constraints are violated.

During the prediction, the method manageConstraints

constantly checks for violations of the constraints based

on the set of last-measured states, i.e. initial states X0,

and previously-measured states X−1 of every obstacle. As

3uml.org

Algorithm 1 Occupancy Prediction for an Obstacle

Require: map

1: parameters ← MANAGECONSTRAINTS

2: reachableLanes ← REACH(map, parameters)

3: for all VALIDABSTRACTIONS(parameters) do

4: Oj ← OCCUPANCYj (reachableLanes, parameters)

5: end for

6: return O ← INTERSECT(Oj)

soon as we detect violations of traffic rules, we individually

adjust the obstacle’s parameters according to Tab. III. We

briefly motivate our actions for each constraint: If a traffic

participant is driving faster than the speed limit by more

than the speeding factor fS , we increase the latter to ensure

an over-approximative occupancy. When constraint Cengine

is violated, our classification of the engine limits has been

incorrect, and thus we remove this constraint. As soon as

we detect that a traffic participant is driving backwards, its

occupancy for negative speeds is included in our prediction.

Likewise, we anticipate an illegal lane change of an obstacle

in the set of its reachable lanes (which are described next).

Note that Camax
cannot be violated, since it is a physical

constraint. Constraint Csafe must also not be checked for

violations as explained later.

b) Reachable Lanes: To consider all possible routes

through the road network, the method reach searches for all

reachable lanes according to constraint Clane. As mentioned

before, a lane is the union of longitudinally adjacent lanelets.

Additionally, we define the current lanes of an obstacle as

all lanes in which the obstacle is currently positioned (e.g.

in Fig. 6, lane2 and lane3 are the current lanes of the traffic

participant) and introduce currentLane(lane) as a predicate

which evaluates to true if the obstacle is positioned in the

given lane. The set of reachable lanes Oroad of a traffic

participant is defined as follows, where blane is taken from

Tab. II, and drivingDir(lane) returns the driving direction

of the given lane:

blane : Oroad ∈
{

lanei
∣

∣∀j :

currentLane(lanej) ∧
(

lanei = lanej∨

lanei = left(lanej) ∨ lanei = right(lanej)
)

∧

drivingDir(lanei) = drivingDir(lanej)
}

¬blane : Oroad ∈
{

lanei
∣

∣∀j :

currentLane(lanej) ∧
(

lanei = lanej∨

lanei = left(lanej) ∨ lanei = right(lanej)
)}

D. Acceleration-Based Occupancy (Abstraction M1)

Abstraction M1 considers the limits of the absolute accel-

eration (Camax
) of traffic participants while ignoring other

constraints. As a result, the occupancy for a reference point

of a traffic participant (see Fig. 5) at time t can be exactly

computed by a circle with center c(t) and radius r(t) [20]:

c(t) =

[

x0

y0

]

+

[

vx,0
vy,0

]

t, r(t) =
1

2
amaxt

2.



TABLE III

CONSTRAINT MANAGEMENT.

Constraint Check constraint condition If constraint condition is violated, do

Cvmax
v0 > speedLimit · fS fS = fS + v0

speedLimit

Cengine a0 > amax
vS
v0

∧ vS < v0 < vmax vS → ∞

Cback v0 < 0 ∧ bback bback = false

Clane drivingDir(lane(X0)) 6= drivingDir(lane(X
−1)) blane = false

The occupancy for a given time interval τk = [tk, tk+1] is

bounded by two circles at tk and tk+1 and a concave bound

as derived in [9]. We can over-approximate this occupancy

with a convex polygon Q(q1, . . . , q6) as shown in Fig. 4.

The coordinates of the vertices qi are given in [12].

O1(tk)

O1(tk+1)

q1

q2 q3

q4q5

q6

r(tk) r(tk+1)

c(tk) c(tk+1)

Fig. 4. Polygon Q(q1, . . . , q6) encloses the occupancy for a reference
point of a traffic participant for the time interval τk = [tk, tk+1].

Next, the dimensions of the traffic participant (including

uncertainties) are added as shown in Fig. 5. Polygon Q, rep-

resenting the occupancy for the reference point, is enlarged

by half of l and w in each direction to obtain polygon P ,

which is the over-approximative occupancy O1(τk).

p1

p2 p3

p4p5

p6

q1
q2 q3

q4q5
q6

0.5l

0.5w

l̃

l

w̃w

reference point

Fig. 5. Polygon P (p1, . . . , p6) is the occupancy O1(τk) of an vehicle.
The vertices q1, . . . , q6 are taken from Fig. 4.

E. Lane-Following Occupancy (Abstraction M2)

In the previous subsection on abstraction M1, we have

only considered maximum absolute acceleration. However,

as constraints Cvmax
and Cengine describe, a traffic participant

cannot always accelerate with amax in driving direction, but

is restricted by maximum velocity and maximum engine

power. A traffic participant also cannot drive backwards

unless for a parking maneuver, which forbids movement

in negative driving direction (Cback). Thus, abstraction M2

constrains the movement of the traffic participant in driving

direction when following lanes, while assuming that any

movement in lateral direction is allowed, i.e. perpendicular to

the driving direction. Since motion is limited to the reachable

lanes of the road network (Clane), the occupancy is only

extended to all laterally adjacent lanes which are part of

Oroad. To sum up, abstraction M2 fully considers Cvmax
,

Cengine, Cback, and Clane, while Camax
is only considered

in driving direction.

In order to efficiently enforce these constraints, we require

the shortest path through the road network to obtain an over-

approximation of the reachable set. Since this is a time-

consuming optimization problem, we adopt the solution in

[12]. As shown in Fig. 6, the shortest path is obtained by

following inner lane bounds, while changing the side of

the lane instantaneously at inflection points. Clearly, this

is not possible in reality; however, this does not result in

too conservative over-approximations in practice. The reach-

able occupancy O2(t) is computed by moving along inner

lane bounds and assuming that everything perpendicular

to them is reachable. Uncertainties in the initial velocity

and acceleration are considered by choosing the respective

maximum value in driving direction, which ensures an over-

approximation as proven in [9]. The details for computing

O2(t) are presented in [12].

shortest path along inner bounds

inflection point

O2(t) in current lanes

O2(t) in adjacent lanes

driving direction of lane

lanelet1

lanelet2

lan
ele

t3

la
ne
let

4

lanelet5

lane1

lane2,3

lane1

lane2

lane3

left bound

right bound

reference point
point of polyline

Fig. 6. Occupancy O2(t) is obtained for all reachable lanes Oroad.

F. Safe Distance Occupancy (Abstraction M3)

Intersecting O1(t) with O2(t) results in an over-

approximative occupancy, which can be used by the ego

vehicle to safely plan its future motion. However, our pre-

diction can block space in front of the ego vehicle since

we allow other traffic participants to change lanes. For

example, imagine a scenario as depicted in Fig. 9. When the

future occupancy of an obstacle in an adjacent lane reaches



in front of the ego vehicle, an intended trajectory cannot

be verified as safe, even though traffic regulations forbid

such a maneuver: The Vienna Convention on Road Traffic

demands sufficient distance between two successive vehicles

[17, 13§5], and the German traffic law, Straßenverkehrs-

Ordnung (StVO), states that one shall not endanger any

following traffic participants when changing lanes [21, 5§4].

Consequently, one has to keep a sufficient distance from the

preceding and following traffic participants in order to abide

by the traffic rules. We denote this distance by safe distance

and consider it under constraint Csafe. In the following, we

explain this novel abstraction in more detail.

Assuming equal maximum deceleration among traffic par-

ticipants, the safe distance can be computed according to [22]

as

ξsafe =
1

2amax

(

v2f,0 − v2p,0
)

+ vf,0δ, (5)

where vf,0 and vp,0 are the initial velocities of the following

and preceding vehicles, respectively, and δ is the reaction

delay, i.e. the time between the preceding vehicle’s full

brake at time zero and the following vehicle’s full braking.

To under-approximate the safe distance, we use δ = 0.3 s,
which is an assumption of [22] for automated vehicles and

much shorter than the reaction time of human drivers of

approximately δ = 1.0 s [23, Fig. 1].

Abstraction M3 is applied to traffic participants which are

in laterally adjacent lanes to the ego vehicle. Since we are

interested in the safe distance in front and in rear of the

ego vehicle, (5) is evaluated at each time step for two cases:

The traffic participant is considered in one case to be the

preceding vehicle (resulting in ξsafe,front) and in the other

case to be the following vehicle (resulting in ξsafe,rear), as

shown in Fig. 7. After taking the minimum distance and

constructing a polygon perpendicular to the corresponding

lane bounds analogously to M2 (see [12]), we obtain the

occupancy O3(τk), which is an under-approximation of the

legal safe distance.

traffic participant

ego vehicle

trajectory for τk

under-approximative safe distance O3(τk)

ξsafe,rear(tk) ξsafe,front(tk)

ξsafe,rear(tk+1) ξsafe,front(tk+1)

Fig. 7. Front and rear safe distances ξsafe of the ego vehicle at tk and
tk+1 with respect to the traffic participant result in O3(τk).

As mentioned in Sec. IV-C, constraint Csafe does not have

to be considered in the constraint management. Due to Csafe,

we do not predict lane change maneuvers which do not

comply with the legal safe distance. However, when a traffic

participant initiates a lane change, we consider its occupancy

in its new lane regardless of safe distance regulations, since

abstraction M3 restricts the occupancy only on laterally

adjacent lanes. If the assumption on the safe distance is

violated (i.e. another traffic participant does not abide by the

traffic rules) and the ego vehicle is not able to find a evasive

trajectory, a resulting collision is the sole responsibility of

the other traffic participant.

To sum up, abstraction M3 enables the ego vehicle to

verify the part of its trajectory where other traffic participants

are not allowed due to safe distance regulations as safe. If

obstacles cut in nevertheless, their occupancy is automati-

cally predicted in their new lane, and the ego vehicle can

react by trying to regain a sufficient distance.

V. NUMERICAL EXAMPLES

We demonstrate the features of SPOT on two different

multi-lane road networks. Both scenarios are taken from

the CommonRoad benchmarks4 [19] (each unique ID is

mentioned later) and are based on real roads. We use a time

step size of ∆t = tk+1− tk = 0.5 s and a prediction horizon

of tf = 3 s. All obstacles are assigned the parameters listed

in Tab. IV, in which we have obtained amax by choosing a

friction coefficient of µ = 0.82 for a dry, good road and a

gravity constant of g = 9.81m/s2 [24, Fig. 3.3].

TABLE IV

OBSTACLE CONFIGURATION FOR SCENARIO I AND II.

Parameter Value Parameter Value

amax 8.0m/s2 a0 0m/s2

vmax 50.0m/s v0,Scenario I 13.89m/s

vS 15.0m/s v0,ego vehicle 33.0m/s

bback true v0,Obstacle 4 35.0m/s

blane true v0,Obstacle 5 27.0m/s

l 4.8m fS 1.2

w 2.0m

A. Intersection (Scenario I)

At road intersections, occupancy prediction is not only par-

ticularly important but also challenging. Scenario I presents

an intersection in Munich’s inner city (CommonRoad ID:

S=GER MUC 3a): The north-south street Leopoldstraße

(5 lanes) is crossed by Hohenzollernstraße (2 lanes) and

Nikolaistraße (2 lanes), which is modeled as an uncontrolled

intersection. Fig. 8(a) shows the initial configuration at t0
with Obstacles 1-3, which are all subject to the official speed

limit of 50.0 km/h ≈ 13.89m/s. While Obstacle 1 (blue) is

driving south and can maneuver to the two left adjacent

lanes, Obstacle 2 (red) is heading north with the possibility

of continuing to one of the two straight lanes or taking a

right or left turn. Note the median strip on Leopoldstraße

where driving is not allowed. Obstacle 3 (green) is located on

Hohenzollernstraße and can take a right turn. While Fig. 8(a)

illustrates the occupancies O(t) for an intermediate time

interval t ∈ [t3, t4] = [1.5 s, 2.0 s], Fig. 8(b) shows O(t)
for the entire prediction horizon t ∈ [t0, tf ].

4commonroad.in.tum.de



Obstacle 1

Obstacle 2

Obstacle 3

(a) Initial configuration and O(t) for t ∈ [t3, t4].

(b) O(t) for the whole time horizon t ∈ [t0, tf ].

Fig. 8. Occupancies of Obstacles 1, 2, and 3 in Scenario I. The plot
shows the initial configuration at t0 and the predicted occupancies O(t) for
selected time intervals.

The computation times of SPOT for predicting the occu-

pancies in Scenario I for the whole time horizon are pre-

sented in Tab. V. They have been obtained using MATLAB

2016a on a machine with a 2.6GHz Intel Core i7 processor

with 20GB 1600MHz DDR3 memory and without using

parallelization. It can be seen that the computation only

requires a fraction of the prediction horizon. SPOT can also

parallelize the independent prediction of each obstacle on a

machine with a multi-core processor and thus compute the

future occupancy of many surrounding obstacles in similar

time. Since the computation time was below 0.05 s for

all tested scenarios, the required time seems to be fairly

independent of the traffic scene.

TABLE V

COMPUTATION TIMES FOR SCENARIO I.

Computation Prediction Fraction of the

time horizon prediction horizon

Obstacle 1 0.017 s 3 s 0.56%

Obstacle 2 0.025 s 3 s 0.83%

Obstacle 3 0.012 s 3 s 0.39%

B. Multi-Lane Highway (Scenario II)

Scenario II features a three lane highway, where the ego

vehicle is located in the middle lane (CommonRoad ID:

S=GER A9 2a). As described in Tab. IV, Obstacle 4 is driv-

ing faster than the ego vehicle (see Fig. 9), while Obstacle 5

is slower (see Fig. 10). In this scenario, a speed limit does not

exist, which is common for a German Autobahn. To highlight

the effect of abstraction M3 (safe distance occupancy), the

reaction time is increased to δ = 2.0 s. Please note that

for the sake of clarity, we plot the predicted occupancies

for t ∈ [t2, t3] = [1.0 s, 1.5 s] only and separately for each

obstacle.

In Fig. 9(a), the three occupancies O1(t), O2(t), and

O3(t) of Obstacle 4 are drawn separately. It can been seen

that O2(t) is smaller than O1(t), since motion in driving

direction is restricted more in abstraction M2. By combining

the three occupancies, we obtain O(t), which is shown in

Fig. 9(b) and considers that Obstacle 4 must keep a sufficient

distance from the ego vehicle. Please note that the occupancy

in the right-most lane has automatically been shortened by

extending O3(t) to the right lane, since Obstacle 4 cannot

drive backwards.

The predicted occupancies for Obstacle 5 are plotted in

Fig. 10. Since Obstacle 5 is slower than the ego vehicle, it

can only change lanes after the ego vehicle has passed.

ego vehicle
Obstacle 4

O1(t) O2(t) O3(t)

(a) Separate occupancies O1(t), O2(t), and O3(t).

(b) Combined occupancy O(t) = O1(t) ∩ O2(t) ∩ O∁
3(t).

Fig. 9. Occupancy of Obstacle 4 in Scenario II. The plot shows the initial
configuration at t0 and the predicted occupancies O(t) for t ∈ [t2, t3].



ego vehicle Obstacle 5

Fig. 10. Occupancy of Obstacle 5 in Scenario II. The plot shows the initial
configuration at t0 and the predicted occupancies O(t) for t ∈ [t2, t3].

VI. CONCLUSION AND FUTURE WORK

We present the first tool for set-based prediction of traffic

participants, which is available as open source software

at spot.in.tum.de and can be easily adapted to one’s own

needs. Using reachability analysis, we compute the set of

future occupancies of each surrounding traffic participant on

arbitrary road networks. These traffic scenes can be specified

in XML files, for which we provide a set of examples

on our website. Several applications can benefit from our

tool, where most importantly, SPOT can be used to verify

intended trajectories, since our approach is inherently safe.

We have introduced six constraints for obtaining tight over-

approximations, but adapt them individually as soon as one

is violated.

In particular, most of our constraints are derived from

traffic rules. For improved prediction, we wish to consider

more regulations, e.g. at intersections, but applicable traffic

rules have not yet been thoroughly formalized [25]. Future

research also includes sensor limits and interaction between

traffic participants. We additionally plan to integrate our

software in the Robot Operating System (ROS) [26] making

it possible to test SPOT in real vehicles.
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