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Abstract— In order to increase the acceptance of vehicles that
drive (partly) autonomously, it seems advantageous that the
driving style of autonomous cars is human-like. Furthermore,
the acceptance of autonomous cars is believed to be increased
when their actions and current state becomes more transparent
to the passengers. These aspects can be tackled by implementing
emotions to an autonomous car which allows a situation specific
adaption of driving functions and vehicle dynamics. In this
work, the emotions are modeled by the cognitive appraisal
model as described by Ortony, Clore and Collins. The approach
is presented for a traffic scene where two lanes are merged into
one.

I. INTRODUCTION

Current research on autonomous cars focuses on accom-
plishing increasing complex driving tasks. Although remark-
able progress has been made (which could be observed e.g.
at the DARPA Urban Challenge), passengers would not feel
comfortable in current autonomous cars. The reasons are
mainly twofold: the autonomous cars drive robotic-like when
following planned trajectories which often feels unnatural
compared to human driving. The second reason is, that the
passengers have no idea if the autonomous vehicle recog-
nizes and evaluates traffic situation correctly or if a critical
maneuver has to be performed. These two shortcomings can
be diminished when implementing emotions into a car. This
is because the emotional state of the car allows to adapt
the vehicle dynamics to the current emotion such as joy,
resentment or fear and furthermore can make the driving
decisions much more transparent to the passengers in a
natural way. The generation of the emotions is performed
according the cognitive appraisal model of emotions by
Ortony, Clore and Collins (OCC) [1]. The mentioned au-
thors specifically developed their theoretical approach with
a view to computational implementation. They postulate that
emotions emerge as a result of cognitions and interpretations
and therefore focus on the cognitive elicitors of emotions. A
first adaption of this model to the context of autonomous
driving has been presented in [2]. Other works that consider
emotions in autonomous vehicles, but with another model
for emotions, are e.g. [3], [4]. Further related work has been
published dealing with the modeling of emotional agents,
e.g. [5], [6]. Applications of emotion models can be found
in the field of Human Machine Interaction like in embodied
characters [7], as well as in decision making modules [8]
and machine vision applications [9].
The presented work differs from the above mentioned by us-
ing emotion models in the entire perception-cognition-action
loop of a real autonomous vehicle in order to implement
a human-like situation adaptive driving style. This is done
by adjusting the controllers of the autonomous driver by

means of just one central situation assessment instance – the
emotion model. The paper especially presents an approach
to determine a specific emotion value given by a particular
traffic scenario.
The paper is organized as follows: In Section II an introduc-
tion into the cognitive appraisal model according to [1] and
its adaptations to the requirements of the application area
traffic will be given. Section III describes the generation of
the intensity value crash probability within this model that
contributes to certain emotions. Finally, Section IV shows a
numerical example. The approach presented herein towards
an emotionally driving car has been carried out within the
Cognitive Automobiles research project [10].

II. EMOTION MODEL

Autonomously operating automobiles have already been
built at the beginning of the 50s of the last century. However,
no design has been proposed yet, which provides autonomous
cars with the capability of a deep (cognitive) understanding
of their environment, which is required for situation aware
driving. Marvin Minsky [11] already noted in 1988:

‘The question is not whether intelligent machines
can have any emotions, but whether machines can
be intelligent without any emotions.’

Emotions determine our actions and the manner of the
execution of those. They arise as a result of certain cognitions
and interpretations of external influences from the environ-
ment, and their entity defines the inner state of a person or
system.

In general, the selected emotions for artificial or technical
systems are from a subset of the human emotions (such as
fear, joy,...). Certain sensors are assigned to these inner states,
whose data influence the emotions. Based on the current
emotion values, decisions and behaviors can be derived. The
advantage of this approach lies in the abstraction of the
situation, which is complex due to the large number of sensor
data. The data are aggregated into emotions according to
specific and application adjusted rules and hence into higher-
level information.

A. General Structure of the Model

The proposed emotion model, derived from [1], represents
emotions as valenced reactions to certain perspectives of the
world – in the presented application this perspectives are
restricted to the traffic scenario. Emotions are distinguished
between ones that elicit as reaction to the consequences of
events, to the actions of agents or to the aspects of objects.
Thus, three basic emotion classes arise: being pleased vs.
displeased (reactions to events), approving vs. disapproving
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Fig. 1. The original OCC Model [1].

(reactions to agents) and liking vs. disliking (reactions to
objects). In this use case events are considered to be any
relevant traffic constellation disregarding the cause of their
origin. Agents can be any kind of traffic participant, like
bikes, motorcycles, passenger cars or trucks and their actions
might be following, approaching, passing, overtaking, driv-
ing with constant speed or distance, lane changing and so on.
Objects are defined as static elements of the traffic scenario,
e.g. the road itself or the lane boundaries. Altogether, 22
emotion types are specified which can be differentiated into
distinct groups of emotional categories (see Fig. 1).

B. Intensity Variables

One of the main questions is what determines the intensity
of emotions. Ortony, Clore and Collins introduce a number
of variables in order to answer this question. They distin-
guish between Global, Local and Central Intensity Variables.
Intensity variables belonging to the first group, affect the
intensity of all emotions. Among these are the variables
sense of reality, proximity, unexpectedness and arousal.
Intensity variables belonging to the second group, merely
refer to emotions classified in certain emotional categories.
These are likelihood, effort, realization, desirability for other,
deservingness, liking, strength of cognitive unit, expectation-
deviation and familiarity. For more detailed information we
refer to [1], except for the computation of likelihood that
will be explained in detail in Section III.

The appraisal of an emotion-inducing situation is mainly
influenced by three Central Intensity Variables, namely desir-
ability, praiseworthiness and appealingness. They affect the
event-based, the agent-based and the object-based emotions.
The latter are evaluated by the degree of liking certain aspects
of the object depending on one’s attitudes. Regarding, for
example the object road, certain attitudes could be:

• the more drivable lanes, the better (because of lower
traffic density on condition of constant number of traffic
participants)

• the wider the lane, the better (because of higher lateral
safety distances)

• the lower the curvature of the road, the better (because
of lower lateral acceleration)

Actions of agents are assessed with respect to a certain
catalog of universal traffic standards and norms. Depending
on how much the action of an agent conforms to these
standards, the higher the praiseworthiness of this action is
judged. Transferred to the traffic scenario, such standards
could be:

• formal: observing traffic rules like speed limits, safety
distances, right of way,...

• informal: thoughtful driving, e.g. permit merging in

The consequences of events are considered as desirable or
not desirable in terms of one’s own goals and desires. These
are structured in complex hierarchical networks considering
different kinds of goals and subgoals with inherited depen-
dences between them.

For a certain traffic situation main goals and subgoals can
be identified according to Fig. 2. The connections between
these are labeled by abbreviations expressing the kind of
influence, that the subgoals exert on the higher goals. More
precisely, the degree of sufficiency or necessity for achieving
the higher goals. The abbreviations stand for Sufficient,
Necessary, Inhibitory and Facilitative. The facilitating links
descend from goals, that when achieved, increase the proba-
bility of attaining higher goals, even though not guaranteeing
it. In the example considered in this work, the main goals are
Accident-free Driving and Time Efficient Driving, whereas
the latter is mainly mentioned here to show, that subgoals
like Avoidance of Close Gaps may exert in different ways



on several higher goals. If Accident-free Driving is seen
as the crucial goal, e.g. in the situation of an ending lane
before a road works occurs (example will be discussed in
Section IV in more detail) and considerations are restricted
to this goal then it will be influenced by three subgoals :
Keeping Safety Distances, Trajectory with low/zero Crash
Probability and (Maladjusted) High Speed. The goal Keeping
Safety Distances affects the main goal in a facilitative and
sufficient way, since going below the safety distances not
automatically leads to an accident, but the risk of a collision
is significantly increased. The choice of a Trajectory with
low/zero Crash Probability is essential, however, and thus a
necessary goal. (Maladjusted) High Speed - besides violating
safety distances - is counted among the main causes of
accidents on roads worldwide and is therefore an inhibitory
goal regarding to Accident-free Driving. Conversely, the
(Maladjusted) High Speed can be identified as a facilitative
goal regarding higher objectives as Time Efficient Driving
and so has a justification as a subgoal. Furthermore the
identified subgoals can be clearly subdivided into tasks of
longitudinal and lateral control in the autonomous driving
mode. Therefore active influence on the experience of certain
emotions becomes possible by the adaptation of the con-
trollers. If, for example, a car cuts into our lane in front of
us too close and the whole situation elicits a strong emotion
of fear, then the control parameters of the distance controller
are tightened and so lead to a more dynamic reaction that
helps to defuse the situation faster.
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Fig. 2. Goals in certain traffic situations

As an objective evaluation criteria of consequences of
events with respect to the subgoal Keeping Safety Distances,
the time gap computed of the relative distance and the
actual driving speed (e.g. on motorways: value of the safety
distance equates half the value of the speedometer, i.e. 1.8 s
Time Gap) can be used. For the evaluation of Trajectory
with low/zero Crash Probability an appropriate prediction
of the situation with probabilistic reachable sets (according
to following Section III) is carried out and the subgoal
(Maladjusted) High Speed can be determined by a variable
we call TTB (Time to Brake-Reaction). This is the time you
have left before full brake deceleration is needed in order to
just prevent a collision. It is calculated according to formula
1, where TTC is the Time-to-Collision, vrel is the relative
velocity and amax(dec) is the maximum deceleration.

TTB = TTC − 0.5 · vrel/amax(dec) (1)

In this section, the cognitive appraisal model of Ortony,
Clore and Collins and its adaptations to the use case traffic
were presented. Thus, the possibility to derive emotions from
traffic situations is given. Emotions are determined by certain
computed variables that reflect valenced reactions to the
construal of the actual traffic situation and that are suitable
for activating certain emotions. So, in a concrete example of a
fear-eliciting situation, first, the situation has to be evaluated
in terms of the desirability of the consequences. If the event
is displeased with respect to one’s goals and the focus is
on the consequences for oneself and the prospect of the
event is relevant, then the next step would be to evaluate
the local intensity variable likelihood. This will be done in
the following section.

III. SAFETY ASSESSMENT

In principle, the safety assessment of the autonomous
vehicle works like an artificial co-pilot that warns the ve-
hicle when a dangerous situation is approaching. In order
to determine the threat level of a situation, the following
information has to be gathered by the scene interpretation
module of the vehicle:

• the geometric description of the relevant road sections,
• the position and geometry of static obstacles,
• the position, velocity and classification of dynamic

obstacles.

Additionally, the safety verification module requires the
planned trajectory of the autonomous car, which is available
within the vehicle anyway. Static obstacles are a special case
of dynamic obstacles with zero velocity and thus the further
discussion focuses on dynamic obstacles. The classification
of dynamic obstacles (=̂ other traffic participants) is under-
stood as the grouping into cars, trucks, motorbikes, bicycles
and pedestrians.
Measurements are subject to uncertainties which cannot be
neglected. Thus, in this work, the initial state (position and
velocity) of the traffic participants is modeled by a proba-
bility distribution. Based on a dynamic model of the traffic
participants, the future probability distribution of positions
and velocities is computed, where the acceleration of the
traffic participants is also specified by a probability distri-
bution. The probabilistic information about future positions
of traffic participants allows to compute the probability of a
crash when the autonomous car follows its planned trajectory.
This is exemplarily shown for a simple traffic scene in Fig.
3 where the autonomous vehicle plans to turn into another
street when another car is approaching. For the time interval
τ1 = [0, t1], no crash can occur, as the stochastic reachable
sets do not intersect, whereas a crash may occur in the next
time interval τ2 = [t1, t2].

A. Models of Traffic Participants

The paths of other traffic participants are chosen as the
centerline of drivable lanes. The lateral deviation along
these paths is modeled by a piecewise constant probability
distribution f(δ) and δ is the deviation along the paths,
see Fig 4. The probability distribution along the paths f(s)



is determined by the longitudinal dynamics of the traffic
participants for the position s and the velocity v:

ṡ = v, v̇ =

⎧⎪⎨
⎪⎩

c1 · (1 − (v/c2)2) · u, u > 0
c1 · u, u ≤ 0
0, v ≤ 0, v ≥ vmax

. (2)

The constant c1 models the maximum possible acceleration
due to tire friction and c2 the top speed - these constants are
chosen according to the specific properties of the different
classes of traffic participants. The acceleration input u is
normalized and varies from [−1, 1] covering all input com-
mands from full braking to full acceleration. The constraint
v̇ = 0, for v ≤ 0, v ≥ vmax restricts backward driving
and speeding (where vmax can be chosen a little higher than
the official speed limit). Note that the suggested longitudinal
dynamics model can be exchanged by other models without
compromising the approach.
The lateral and longitudinal probability distribution can be
combined to f(s, δ) = f(s) · f(δ) (see also Fig. 4 for an
exemplary probability distribution of a vehicle on path 2) as
independence is assumed. For unstructured scenarios, such
as parking lots, the approach in [12] is suggested which uses
the same mathematical principles as introduced herein.

B. Computing the Longitudinal Probability Distribution Us-
ing Markov Chains

The probability distribution f(s) along the paths of other
traffic participants is efficiently computed by abstracting the
original system dynamics in (2) by Markov chains, see [13],
[14]. This approach, which was previously proposed by the
authors, is introduced in a concise fashion in the following.
Markov chains are stochastic automata with discrete states
z ∈ N

+, which are not exactly computed, such that one
computes with the probability of state values i: pi = P (z =
i) and p is the probability vector of the Markov chain. By
definition, the probability vector evolves according a linear
map of the previous time step:

p(tk+1) = Φ p(tk) (3)

where tk = k · T and k ∈ N
+ is the time step and

T ∈ R
+ is the time step size. The probability values Φji =

P (z(tk+1) = j|z(tk) = i) contain the probability values that
the state value changes from i to j after one time step.
In order to abstract the continuous vehicle dynamics by a
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Markov chain, two subtasks have to be dealt with: Relate
the discrete states of the Markov chain to the continuous
variables of position and velocity and compute the transition
probabilities in Φ.

1) Discretization of the State and Input Space: The dis-
crete states of the Markov chain are defined as state space
regions of the previously continuous state space, spanned by
the position and velocity of the vehicle, see Fig. 5. In order to
end up with a finite number of discrete states, the state space
is discretized for a subset X ⊂ R

2 into rectangular cells
Xi of equal size. Besides the state space, the input interval
u ∈ [−1, 1] is also discretized in equidistant intervals U α

and α is the value of the discrete input which is denoted
y. In order to distinguish indices of state space cells from
indices of input intervals, input indices are superscripted and
Greek.

2) Transition Probabilities of the Markov Chains: The
transition probabilities for different input intervals α are
denoted Φα

ji(T ) and are defined as Φα
ji(T )= P (z(tk+1) =

j|z(tk) = i, y([tk, tk+1]) = α) and y([tk, tk+1]) denotes
the discrete input for the time interval t ∈ [tk, tk+1]. The
transition probability from cell i to another cell j is based
on the volume ratio of the reachable set Rα

i starting in cell
i under input α that intersects with cell j (see Fig. 6(a)):

Φα
ji(T ) =

V (Rα
i (T ) ∩ Xj)

V (Rα
i (T ))

, (4)

where V () is an operator returning the volume. For further
information on the computation of reachable sets, the reader
is referred to [15]. In an analogous way, one can compute
the transition probabilities Φα

ji([0, T ]) for the time interval
t ∈ [0, T ] by substituting Rα

i (T ) with Rα
i ([0, T ]) which

is the reachable set for t ∈ [0, T ]. The reachable set of
Rα

i ([0, T ]) is exemplarily shown for the vehicle dynamics
(2) in Fig. 6(a). The corresponding stochastic reachable cells
are illustrated in Fig. 6(b), in which the reachable set of Fig.
6(a) is indicated. A transition to a cell is the more likely,



the darker the color of the cell is. Note, that the transi-
tion probabilities in Φα

ji(T ) and Φα
ji([0, T ]) are computed

offline, such that computationally expensive operations are
performed beforehand.
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Fig. 6. Reachable set of the original system and the corresponding
stochastic reachable set of the Markov-chain.

C. Computing Stochastic Reachable Sets using Markov
Chains

The computed transition probabilities Φα
ji(T ) and

Φα
ji([0, T ]) allow to compute the probability distribution of

the next time step and time interval as shown in (3):

p(tk+1) = Φα(T )p(tk),
p([tk, tk+1]) = Φα([0, T ])p(tk).

(5)

The above computation in (5) can only be applied if the input
α is known for each time interval. If this is not the case, one
can define the joint probability pα

i = P (z = i, y = α) and
compute the probability distributions as

pα(tk+1) = Φα(T )pα(tk),
pα([tk, tk+1]) = Φα([0, T ])pα(tk).

In contrast to (5), the above computation has to be performed
for all input values α, as the exact input is unknown. The
change of the input probability distribution can be computed
by a further Markov chain:

pβ
i (tk)′ = Γβα

i pα
i (tk). (6)

The prime indicates the instant change of the probability
distribution at time tk and Γ is the transition probability that
the input value changes from y = α to y = β when the state
is z = i: Γβα

i = P (y′ = β|y = α, z = i). The transition
matrices Γi can be learned by observation of traffic scenes
or set by a combination of simulations and heuristics, where
the latter is used in this work. A possible way of specifying
Γi is given in [16].

IV. NUMERICAL EXAMPLE

The presented concept for generating emotions in an au-
tonomous car is demonstrated for a traffic scenario where two
lanes merge into one. For this reason, the autonomous car

has to perform a lane change while respecting the vehicles
on the neighboring lane. Furthermore, the vehicle has to
consider that the location where the lanes merge into one is
coming closer, such that an action becomes imminent. The
probabilistic prediction of the traffic scene can be seen in
Fig. 7 for a prediction that was computed at the time t0.
The autonomous car is indicated by an A and the vehicles
B and C are the vehicles on the right lane, see Fig. 7. The
initial speed of vehicle B (uniform probability distribution
within 30± 2 m/s) is chosen greater than the one of vehicle
C (uniform probability distribution within 20± 2 m/s), such
that the gap for a lane change becomes closer over time.
This is why the lane change is more risky when executed
at the time point t3 = t0 + 1.5 sec as shown by the traffic
prediction in Fig. 8. The traffic scene have been predicted
for a time horizon of tf = 3 sec (the plots do not show all
predicted time intervals) which took 0.59 sec in Matlab on
a 3.7 GHz single core PC, such that the prediction is about
5 times faster than real time.
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Regarding the intensity variables introduced in Sec. II-B
and their effects on the emotion type fear, the progress of
this emotion value can be seen in Fig. 10. Considering the



consequences of the presented event we have to evaluate its
desirability in terms of the goals according to Fig. 2. Thus,
the closer the autonomous car A gets to the lane ending
without considering a lane change, the lesser the time gap to
the road construction, the higher the negative contribution
to the goal Keeping Safety Distance. This equals for the
progress of the objective evaluation criteria Time to Brake-
Reaction (TTB), that influences the goal (Maladjusted) High
Speed. The less the TTB, the more it contributes to the
maladjustment of the driven speed, which in turn inhibits
to attain the main goal Accident-free Driving. Furthermore,
with regard to the next step in emotion processing (follow-
ing the branch of Prospect-Based Emotions) the progress
of likelihood, formally represented as the maximum crash
probability, is depicted in Fig. 9.
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Fig. 9. Progress of the maximum crash probability

In summary, the intensity value of the emotion fear is
a function of both the values of desirability and likelihood
that may be additionally emphasized by the values of the
global intensity variables that affect all emotions in general.
Additionally, the progress of another emotion value – re-
proach – is shown in Fig. 10. The narrower the gap for
car A gets to pull out into moving traffic, the higher the
reproach of the behavior of car B is judged with regard to
the informal standard of permitting to merge in. It has to
be mentioned, that both the thresholds above which certain
emotions just elicit and the maximum value of them first
have to be evaluated on the basis of proband studies in the
near future. So the depicted figure has to be considered as
qualitative progress of the computed emotion values.
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V. CONCLUSION

In the context of a cognitive vehicle, the presented ap-
proach allows an emotional interpretation of the scene by
the perception of the traffic area and its participants with
their descriptive parameters. It is an approach that bundles
the multitude of environmental variables, which the system
Cognitive Automobiles is exposed, by a smaller number of

theoretically interpreted emotional states. Through this data
reduction the manageability and clarity of traffic situations
can be simplified. The overall concept offers a huge potential
for applications of emotion models in the area of advanced
driver assistance systems. So, for example, depending on the
emotional state of the system, an adjusted driving style could
be established by adaptive control strategies. Experiments
with different kinds of predefined maneuvers (like lane
changing, lane keeping etc.) from normal to fear-like are
part of our actual investigations. It is also possible to select
certain actions, in a way, that the emotional state of the
vehicle is steered away from the current emotion towards
a target emotion. Latter may, for example, be characterized
by a low degree of risk-taking and thus contributes to road
safety.
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