Identification of human limb stiffness in 5 DoF
and estimation via EMG
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Abstract To approach robustness and optimal performance, biolbgioaculo-
skeletal systems can adapt theirimpedance while intagetith their environment.
This property has motivated modern robotic designs indgdiariable-impedance
actuators and control methods, based on the capabilityrjowsco-elastic proper-
ties actively or passively. Even though variable-impedaatuation and impedance
control in robotics is resolved to a great part, a generalo$eules by which
impedance is adjusted related to the task at hand is stkiigc This paper aims
to fill this gap by providing a method to estimate thdfegss of the human arm in
more than two degrees of freedom by perturbation. To oveedtiroonditionedness
of the impedance and inertial matrices, we propose andatalichethods to sep-
arately identify inertial and dtiness parameters. Finally, a model is proposed to
estimate the joint diness from EMG-measurements of muscle activities.

1 Motivation, Problem Statement, Related Work

Dynamic interaction with the environment means handlingdnts and unknown
contact forces. Therefore compliant systems are activiesapf research in the
field of robotics. Surpassing traditional rigid robots, tantrol loops of modern
robotic systems are extended with additional impedancenpeters, viz. sfiness

and damping.
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Even though the implementation of impedance control in tiobds resolved to
a large part, one important issue still needs to be addrelssedare the impedance
parameters set to optimally perform a task? Traditionedllgptic tasks are only de-
fined in target end{ector positions or, in some cases, effiiéetor trajectories; but
the impedance around these positions or trajectories nsn@amatter of common
sense, at best. For instance, when performing a peg-intdsiehigh stiiness in the
perpendicular and low stness in the lateral directions, so as to allow for imprecise
positioning while solving the task, appears to be usefut.Hgw do we find general
rules-of-thumb for setting these extra parameters?

Beside heuristic methods tuning the impedance paramebtérscking the be-
havior of the human arm is an auspicious field of research |eadbs to what we
call biologically-inspired robotics. By measuring and setyuently analyzing hu-
man arm impedance parameters, we can attempt to extracedenles and project
these to the robotic domain.

The human arm’s capability to alter its impedance has miatilVanultiple de-
velopments of robotic manipulators and control methodgtdvides advantageous
during manipulation such as robustness against extestardances and task adapt-
ability. However, how the impedance of the arm is set dependbe manipulation
situation; a general procedure is lacking.

The only direct method to measureftess in a functioning feedback system
is to apply external force perturbations to the limb and tcasuee the resulting
displacements; such measurements have only been satifactalized in planar
(2D) movements [8, 12, 4, 5, 10, 2, 11]. To date, no fully $atidry methods exist
to investigate the time-varying impedance during moveseiarly dgforts were
subject to error because they assume that subjects pefiersate movement on
repeated trials and they ignore the non-linear inertiapprties of the musculo-
skeletal system.

We provide a method to identify human arm impedance in maxa thdegrees
of freedom. We do this by initially identifying the kinemetand inertial parame-
ters of the arm through movement. Subsequently we identifpess parameters of
the human arm in 5 degrees of freedom (shoulder, elbow, amer larm rotation),
while taking the numerical stability of the data into accbiine data are related to a
representation of the fithess by electromyography (EMG) signals which, in combi-
nation with the kinematics, gives us a 3D Cartesian ideatifin of the impedance
parameters of the human arm.

2 Technical Approach

An adequate model describing the human limb dynamics cambarated in two
power interconnected subsystems: the mass inverse dysafibe skeleton (in-
cluding the mass distribution of the muscles)

F(qv q’ q’ f) =T+ Texts (1)
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whereq € R" are joint positions¢ € R are base inertial parameters ang are
external torques and general impedance functions of theuarssystem, acting as
force elements on the joints:

T=-h(0.0.9). )

We assumé : g, 0, a — 7 to be continuous, while the muscle activiteeare motor
commands, which are able to shift the equilibrium point &f timpedance. Thus,
linearization in the working pointy := (q(t = 0), g(t = 0), a(t = 0)) yields:

h* = hiy, + oh(a. a. a) g+ dh(a. 6. a) 4 oh@aa| , (3)
— aq |y, gy, oa Iy,
o Kq Dq

Additionally, we assume that activatioas= const (this can be fulfilled by certain
experimental conditions); consequently the joint torqasting due to muscles can
be approximated by: _

T=-7q— Kqf - Do, (4)

whered = g — qq is the tracking errorry are equilibrium torques anidy, Dq are
joint stiffness and damping matrices, respectively.

Identifying the complete parameter set (i&.Kq and Dg) from measurements
of Text Would lead to an ill-conditioned least-squares problemtffjs we estimate
& separately by projecting the inertial forces to the sut§jenbunting base where
they can be measured with a fofderque sensor, i.e.,

X0(0, 0, 8, €) = Xsensor 5)

Once the inertial parametefsre known, the not directly measurable joint torques
can be estimated via the inverse dynamic model and the fabatiton model reduces
to

an+ qu =Text_r(q’ q: q:‘f)_Td s (6)

where only the left hand side is unknown. This separatiomwalisevered identifi-
cation of parameters for each subsystem—to overcome tgonmf badly scaled
least-squares estimations [7].

The complete 5-DoF identification procedure requires tHiewang steps:

1. identification of center of rotation for the 3-DoF shoulpent and 2-DoF elbow
joint, respectively;

2. solving inverse kinematics, which gives an approxinratitthe Jacobian matrix;

3. estimating the inertial parameters via kinematics dath lzase force torque
sensing;

4. separated identification of the impedance parametels EMG signals of the
active muscles are recorded,;

5. train a model in order to predict ftiess from EMG data which finally gives the
possibility to estimate dtiness without mechanical measurements.
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2.1 Kinematic identification

To identify the positions of the human limb joints, a methadgosed by [1] is
conducted. We assume that at least two axes of rotatiorsaderThe absolute posi-
tion r of the point of intersection can be represented via markersed at the joint
adjacent body segments, i.e.

ri=p, +Rjdi, (7)
o =p+ R;dz, (8)

wherep andR; denotes the absolute position and orientation of a markerdan
is the distance of the intersection point w.r.t. ftle marker. Thus minimizing the
integral error

.
s=1 [ - (- e, ©

determines the unknowaly andd,.

2.2 Inverse Kinematics

The kinematics of the human limb consists of uncertainéiggs, non-ideal joints and
varying segment lengths. In order to minimize these err@gmwpose a numerical
solution of the inverse kinematics, i.e.

argmin|T(g)Tgt - 1lF , (10)

whereT(q) andT4 are the parameterized and desired homogeneous transifommat
matrix to the wrist, respectively arid|r denotes the Frobenius matrix norm. This
optimization problem is continuous and unconstrained amdoe solved with, e.g.,

a quasi-Newton method.

2.3 Inertial parameter model

For the identification of the inertial parameters, a model lsa considered where
the dynamical forceg torques are projected to a coordinate system at the sub-
ject’'s mounting base, i.e., under the seat (a similar amproes proposed by [13]).
The equations of this model can be obtained analytically bams of the iterative
Newton-Euler formalism:

X = |:fI:| — [ ) Fi(q’ q’ q?§)+ Ri,i’jl(q)le
T Ni(9, @, 8 &) + Riia(@Niva + P (Rijsa(@ Finn) |
fOf | = nbody, nbody - 1, ceey 0 . (11)
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wherey; is the wrench acting on theh body.R; .1 andp;,; are the relative rotation
and distance between bodgndi + 1, respectively. Furthermoré,,; andn;,; are
Cartesian forces and torques propagated fromitkeljst body. FinallyF; andN;
are the forces and torques due to the inertial dynamics. aeye computed by:

Fi=mVi+ @S+ @S) . (12)
Ni = Q& + @i (Giw) + SV . (13)

Hereinw € R¥® denotes the skew symmetric tensor composed of components
o € R3. v, w; andVi, w; are absolute translational and angular velocities and ac-
celerations of théth body. The inertial parametens € R, S € R3, and@®; € R>3

(i.e., mass moments zeroth, first, and second order) arar lineghe base base pro-
jected modeky(a. 0, §, €) = xsensordnd can be identified by common least-squares
estimations.

2.4 Impedance identification

Due to the constraint of energy conservation the force fietltegated by mechanical
stiffness must be integrable [6], i.e.,fBiess matrices are symmetric and positive
definite (SPD). In order to enhance the robustness of théifidation procedure we
also determine the $ihess separated from damping. Therefore we take the reduced
model

an = Text — F(q’ ‘fred) —Td, (14)

into account. This model is valid for the stationary cgse § ~ 0. In that case the
stiffness balance the (non-linear) gravity and external torques
The identification model is linear ik and consists of the form

AX =B, (15)

whereA = §', X = Kg andB = (ext — I'(Q. €e) — 7a)"- To ensure the SPD
constraint the area criterion proposed by [3]:

f(Y)=||AY -BY |, (16)

whereX = YYT, will be minimized. WhenP = ATA andQ = BB the unique
solution is given by

Kq =X = UpZptUgZqULZ5'Up , (17)
where

P =UpX3UL, (18)
Q= ZpULQUpZp = UsZ3UL (19)
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are the Schur decompositions@fandQ, respectively.

2.5 Stffness determination from EMG

To predict a sffness matrixZ; from EMG datax;, a nonlinear two-layer model was
used. AsZ; is symmetric and positive definite, we note that it can be dgmused
intoZj = L; LiT via the Cholesky decomposition.

Constraining the output of our model to be positive definitd aymmetric can
thus be done by not modelirgy, butL; instead.

In more detail, giverN time windows{x;} ¢ R™™ wheren is the length of the
time windows andnis the number of EMG electrodes, we predict the components
of the Cholesky decomposition via

= Wi (Wap(6) + by) + by (20

whereg is a function that extracts features from each time windogais a nonlin-
ear function applied component-wise. We then tiginto a lower-triangular matrix
L; by rearranging the components from vector into matrix forhe final prediction
is subsequently formed by; = L; LiT.

The parameters of the modek (W1, W5, by, by} are either matriced/; andw,
or vectorsb; andb,. To learn such model, we assume that the measurements of the
stiffness matrice&Z;} are subject to Gaussian noise and minimize the negative log
likelihood:

logA = Z IY: - Zili? . (21)

The resulting optimization problem is unconstrained anatiooious. The gradients
are dficiently computed via dynamic programming and the chain. flifeus, stan-
dard df-the-shelf optimizers are used to find good solutiongfor

3 Experiments

During the whole experiment subjects were seated on a $gdwa depicted in
Figure 1(a) while the upper body was restrained by a seatAtdte wrist a plastic

cuff supported the connection to the robot’s erfibetor. JR3 forc¢ torque sensors
were placed at the interconnection (between robot and lianlo) at the subject’s
mounting base (under the seat). The data of both fotosjue sensors were sam-
pled at 2 kHz. To estimate the kinematic configuration optreeking markers were
placed at the upper body, upper arm and forearm, respactivel used data from
Vicon T10 cameras to track the markers position and oriemtasampled at 500 Hz.

To map EMG to stiness, we recorded EMG signals from eight sources on the arm
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(see Fig. 1(b)). We used Delsys Trigno wireless electrosispled at 2 kHz. Ex-
perimental instructions and visual feedback were giveheéosubject via a display.

At the beginning of an experimental session, data from thigagracking sys-
tem was recorded to identify the subject’s individual jgiutsitions and compute
the arm kinematics. Here the subject was instructed to mibyeimt axes of the
limb randomly. After this, data (40 trials) for the inertgdrameters were gathered,
while different predefined kinematic limb configurations had to beheadn free
movement. These initial recordings where followed by thalfgtifthess identifica-
tion procedure in which subjects had to fulfill a force taskeBubject’s wrist was
coupled to the light-weight robot’s endfector and desired and actual interaction
forces/ torques were displayed. After holding a certain fott@rque level (4 levels
in Cartesian X and Z direction each) for a random durationvbeh 15 and 25
seconds, the robot perturbs the limb in one direction rarigatrosen from the 10
possibilities (two for each joint DoF). All smooth (polyndahfifth order) displace-
ments were planned in joint coordinates of the human limih &it amplitude of
~ 0.08rad via the Jacobian matriX, i.&Xronot = Jiimp(Q) 49. Typical disturbances
are shown in Figure 2.

(@) ’ | (b)

Fig. 1 aExperimental setup1j DLR light-weight robot applies disturbances to the human,a
(2) JR3 force/ torque sensor measures interaction forc8%,JR3 force/ torque sensor mea-
sures subject’s mounting base forced), \{icon T10 optical tracking system5) Subject’s visual
feedback.b EMG electrode placement for estimatingffstess from EMG. A total number of 8
electrodes are placed. EMG signals of dominant muscledviestan shoulder and elbow joint
movements are gathered: brachioradigiRAD), biceps long BILH), deltoid clavicular DELC),
pectoralis major clavicularAMJC), deltoid scapular@ELS), triceps long TRIO), triceps lateral
(TRIA), and triceps mediallRIM).
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4 Results

4.1 Estimated sffness and prediction via EMG

After estimating the joint positions, the inverse kinerosibf all trials (i.e., inertial
and stifness measurements) were computed. First identificatioitsese obtained
from stationary parts of the recorded data, i.e., where #iecity is lower than a
certain threshold. Therefore the inertial identificatioodal reduces to

XO(q’ 'fred) = Xsensor (22)

where¢, .4 contains the mass moments zeroth and first order. To estfngtenean
values of the joint angleq (whereq ~ 0) and mean values of associated base
wrench componenfg,..s; Wherei = 3, 4,5 were used for least-squares regression.
The stifness identification procedure was also based on the redungel mhere
gq andry was obtained by taking the mean values in the time interviakbéhe on-
set of the disturbance. Analogously, a second intervatjfandr was chosen after
the displacement. For descriptive reasons, typical egtidnjaint stifness matrices
are transformed to Cartesian coordinates and visualisgtiffagss ellipsoids in Fig-
ure 3. Each sfiness matriXy was determined from 50 disturbance measurements;
consequently each map was constructed from 50 setsxod@0 data points. We
preprocessed the EMG data with a full wave rectification gtitlithe data into time
windows of length 70 afterwards. Fgrwe picked the maximum along each of the
signals followed by two layers of unsupervised featureamtion using the approach
of [9]. We chose 100 soft rectified linear units as the nomiitg in our model:
o(X) = In(1 + expx). All hyper parameters of the learning process were saldnje
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Fig. 2 Typical disturbances exerted by the light-weight robotppd to human arm’s joint space.
To demonstrate the repeatability the data is aligned aloagime axis.
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random search and picking those which performed best ordeoliealidation set.
The average normalized root mean squared error for thetaykred model was
0.3378. In contrast, a linear model never achieved 0.39 tbeb&or an example of
the predicted sfiness matrices, see Figure 4.

4.2 Comments

Estimating joint stithess in more than two degrees entails a chain of model as-
sumptions, while model uncertainties accumulate from rkiatcs over inertial to
stiffness identification. The identification of inertial paraerstdepend on measured
joint anglesq (and their derivatives) and are based on fgrirque data measured
on the mounting base, i.e., the measurement range mustietiuman’s whole
body mass. These aréfiected by the following assumptions:

Fig. 3 Cartesian sffness
ellipsoids of estimated joint
stiffness matrices. Each ellip-
soid represents the force-field
generated due to spheri-

cal displacements (here, the
radiusr = 5mm). The el-
lipsoid’s origins are shifted

to the point of pretension
forcesF = (Fx, Fy,F2)".
Additionally, the principle
axes (eigenvalues) of fiiness - 20 -10 0 10 9o 5
ellipsoids are displayed as

straight lines. Fx (N)

Fz (N)

Fig. 4 Hinton diagrams of the dthess matrices based on EMG prediction (left), estimatiomfr
force perturbations (middle) and the absolute value of tthifierence (right). Black boxes corre-
spond to negative, white to positive values while the sipeagents the magnitude. Data was taken
from the testing set.
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e Forhuman arm’s kinematics it is assumed that the shouldgrigoan ideal spher-
ical joint and the elbow joint consist of two orthogonal .d@rdecting axes. Fur-
thermore, it is assumed that optical markers placed on therngnd lower arm
do not move relative to the skeleton. Both issues, extelyssfadied in [1], lead
to biased estimates of joint anglg@snd their time derivatives.

e In particular for some small mass moments of inertia, thetrea force at the
mounting base undercuts the sensitivity of the fgrimeque sensor.

e For the stithess identification we assume that muscle activati@ane constant.
This implies fast perturbations, where displacementstatslized in a short time
(cf. [7]). Otherwise a change in activations would have gfeahthe impedance.

This chain of assumptions forces us to analyze the resuttistee in Fig. 3 inten-
sively. For instance, from planar measurements it is kn&ythiat stitness ellipses
align their major axis in the direction of the pretensiorckapplied. For the present
estimations thisfeect can be observed only in the directionFof.

5 Main Experimental Insights

In this work we have introduced a new and unique method to uredbke stifness
of the human arm in 5-DoF joint space, viz. 3 shoulder DoFgthew flexion, and
the lower arm rotation. Identification of arm kinematics alediving the Jacobian
matrix allows for transferring the measured jointdtegsses to the Cartesian do-
main. We thus pioneered the measurement of human arm impedamore than 2
Cartesian coordinates.

Furthermore, we have proposed and incorporated a mukidaly regression
model which maps surface EMG signals to joinffsgss. With this method, com-
bined with a detailed kinematic model, we can accuratelynege arm impedance
without the need of mechanical perturbations. This is e&dén order to determine
human arm impedance not only in static positions but alsogéotrajectory during
task execution, without the need of perturbation measunésne

Given this framework we are now able to investigate how hismaodulates arm
impedance in any task. The resulting measurements can He¢aiderive methods
of impedance modulation for robotic arms.
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