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Abstract. This article presents a modular, distributed and scalable
many-camera system designed towards tracking multiple people simul-
taneously in a natural human-robot interaction scenario set in an apart-
ment mock-up. The described system employs 40 high-resolution cameras
networked to 15 computers, redundantly covering an area of approxi-
mately 100 square meters. The unique scale and set-up of the system
require novel approaches for vision-based tracking, especially with re-
spect to the transfer of targets between the different tracking processes
while preserving the target identities. We propose an integrated approach
to cope with these challenges, and focus on the system architecture, the
target information management, the calibration of the cameras and the
applied tracking methodologies themselves.

1 Introduction

1.1 Related Work

Intelligent camera surveillance is commonly employed for both security purposes
as well as for smart rooms, which can autonomously react to perceived situa-
tions. Such systems can be found operating in real-time or focusing on the post-
processing of previously acquired video data. Several surveys including Valera
et al. [13] (with an emphasis on distributed systems) and Šegvić et al. [11] give
a good overview of state-of-the-art techniques in that field.

A multi-agent-based approach is presented by Patricio et al. [7]. Smart rooms
also frequently employ visual tracking, such as Lanz et al. [4]. Teixera et al. [12]
present a camera sensor network for behavior recognition using address-event im-
age sensors and sensory grammars in an assisted living environment. Other pow-
erful approaches using smart-cameras with onboard processing that directly de-
liver data instead of images are presented by Rinner and Wolf [9] or in Hengstler
et al. [3] with an eye on application oriented design of the sensor network. A
related approach, also using color information and Monte-Carlo filtering using
distributed cameras is described by Yamasaki et al. [14].

Precedents prove to be hard to find with respect to the large-scale and the
real-time operation as presented in this article.
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1.2 Overview of the System

Apartment Mock-Up On an experimental area of approximately 100 square
meters, a kitchen and a living room have been arranged and furnished accord-
ingly (see Figure 1), in which robots and humans can move freely. If we consider
the exemplary scenario of robots serving beverages to humans, several challenges
arise due to the fact that different people can order specific drinks. Therefore, a
robust and fast way to estimate the position of humans is required, including a
unique identification in order to be able to serve the desired beverage to the cor-
rect person even if the person moves along while fetching the drink itself. This
information can also be useful to facilitate other human-robot joint activities
including teaming, task-distribution among robots, or natural motion planning.
For a comprehensive report on related research conducted on this mock-up,
please refer to Brščić et al. [1].

Fig. 1. View of the 40 partly overlapping camera views observing the apartment mock-
up. Different illumination conditions are caused by object shadows, while varying chro-
matic appearances result from using cameras with different specifications and specular
reflections are caused by light sources behind the ceiling-mounted cameras.
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Hardware Installation The installed hardware consists of a total of 40 color
cameras, each having a native resolution of 1024 × 768 pixels at a rate of 28
to 30 frames per second. All cameras are Ethernet-connected using the GigE-
Vision communication standard as described in [2], and are installed on a metal
scaffolding mounted at the ceiling. The camera fields of view (FOVs) cover the
whole area facing top-down. This setup achieves a total FOV redundancy of
approximately 75% at a height of 1.7 m, which according to Ogden et al. [5] is
the approximate average height of an adult person. The cameras are grouped
in threes and pairs respectively to form 14 camera groups, each of which is in
turn linked via a Gigabit Ethernet (GigE) switch to a diskless processing node,
where image capturing and processing itself takes place. A single server computer
manages the diskless node network, and hosts the server applications described
in Section 3.2.

For robustness and load-balancing reasons, adjacent cameras are assigned to
different camera groups. This helps to compensate for the observable fact that
human beings tend to flock together in social scenarios, rather than distribute
evenly over the surveyed area. Besides the drawbacks of a relatively high amount
of cameras being required to cover the area, and the requirement of managing
frequent transfers of targets between camera FOVs, this specific camera setup
offers the following advantages:

– The image resolution of each local FOV shows a high quality, compared to
solutions using less cameras.

– All cameras are almost co-planar. This allows for application of the same
tracking techniques and assumptions for the whole covered area, which re-
duces the system and algorithmic complexity.

– Under the assumption that people do not climb over each other, a full-body
mutual occlusion is almost impossible to occur.

– Since the camera transformations w.r.t. a common world frame are known,
the hand-over regions (shared FOV regions in which a target transfer may
occur) can be defined and evaluated easily.

– Because of the local distribution of computational power, the number of
simultaneously tracked people can be increased or the computational power
can be shared in a scalable and distributed way with other computationally
intensive approaches e.g. for gesture recognition or or activity analysis.

2 Single Camera Person Tracker

2.1 Person Detection

New persons are detected as they enter the FOV of a camera using a foreground-
background segmentation (adaptive mixture of Gaussians) [15], followed by a
blob clustering [10] and a data association method. No further a priori informa-
tion about the person’s appearance including color or texture clues is used up to
now. Every blob that results from a foreground region is classified as a human
by analyzing the area size and the aspect ratio of the outer dimensions.
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The center of mass of a blob as x and y position on the sensor projection
layer is subsequently upgraded to a 3D translatorial pose of the human target
in the world frame using the extrinsic camera parameters. A virtual ray given
by the focal point of the camera and the computed mass center of the blob is
casted and then intersected with the ground floor, which has a z-coordinate of 0.
Minor position errors due to perspective distortions and the fact that the height
of the detected person can not be estimated using top-down mounted cameras
are corrected in the first tracking step.

In addition, the person detection method is employed for validation and
target association during the target transfer process described in Section 3.2.

2.2 Model Building

The 3D model approximating the human shape consists of a simple cylinder,
roughly corresponding to human size in real-world coordinates. Once the over-
all scale has been computed from the detected blob, the relative proportions
(location of the head with respect to the torso, relative size, etc.) are fixed ac-
cording to an average model of the human body. The statistical color model
is obtained by collecting the image pixels for the respective blob, in a 3D his-
togram in HSV color space. Different bin sizes are used, in order to give more
importance to the color attributes rather than the intensity values, which are
illumination-dependent. In this case, a robust combination of 8 bins for hue, 8
bins for saturation and 4 bins for value were used. In order to collect only pixels
that do belong to the person, the background segmentation image is treated as
a mask.

2.3 Multi-target MCMC filter

The color model of a person is now used in order to instantiate a new target, to
which a unique ID number is assigned, and that will be tracked across the image
sequence by this camera, until the person leaves the camera’s FOV.

Tracking operates on a pre-defined set of degrees of freedom, which for our
rigid 3D shape model is defined solely by the 2D translation on the floor (x, y
coordinates). Therefore, the state vector of the i − th target is given by si =
(tix, tiy).

The tracking methodology basically consists in matching the reference color
histogram to the current image, underlying the projected shape of the person.
By using a calibrated camera model, we also take into account perspective effects
while computing the silhouette in the camera image. These effects have a high
impact for our setup, since the relative distance between the camera and the
person is comparable with the depth extension of the target (i.e. the height of
the person). Therefore, they cannot be neglected, especially for people in the
peripheral view field.

In order to estimate the state of each person on the image sequence, a
Bayesian Monte-Carlo tracking approach is used, described in more detail in [6].
This methodology consists of a particle filter, which maintains the global system
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state, s = (s1, ..., sm) of the m currently active targets in the scene, by means
of a set of hypotheses sh (or particles), that are updated from frame to frame
by means of Markov-Chain Monte-Carlo sampling (MCMC). In particular, the
Markov-Chain generation proceeds by iterating (for each particle n = 1, ..., N)
two steps, that correspond to the Metropolis-Hastings algorithm.

The efficiency of the MCMC formulation is due to the fact that we update
a single target i at a time (randomly chosen), which results in the computation
of the proposal ratio only for this target P (si,t| si,t−1).

3 Upgrading to a Many-Camera Set-up

3.1 Calibration of Cameras

The calibration procedure is performed in two steps, with the intrinsic camera
parameters being determined independently on all cameras in the first step. The
second step then aims at determining the extrinsic parameters of all cameras
w.r.t. the global world origin. To ensure optimum inter-camera consistency of
calibration, which is an important issue regarding the transfer of tracked per-
sons from one camera to another, we make additional use of an infrared tracking
system consisting of six Visualeyez VZ 4000 [8] tracker bars, that measure accu-
rately with a root mean square error of below 0.5 mm. A standard calibration
pattern was enhanced with 4 infrared diodes, so that the infrared tracking sys-
tem is able to determine the pose of the calibration pattern accurately at any
position within the scene. The obtained pose information was transmitted to the
diskless clients managing the cameras, with the cameras being used to record im-
age sequences simultaneously, which can then be used to determine the extrinsic
parameters via prevalent calibration methods.

3.2 Management of Tracking

The tracking algorithm described in Section 2 is working independently and
asynchronously for each camera without knowledge about other cameras or syn-
chronization mechanisms on the client sides. Using this design principle, a server
application handles the centralized management of the tracking results and takes
care of the transfer of tracked targets between camera FOVs (and consequently,
processing nodes). The advantages of this approach lie with its full scalability
and the lack of need for synchronization. To realize the approach, global modules
for registration of the single trackers, a global display module, a module for the
generation of unique target IDs and for the management of the transfer of targets
between tracking clients were implemented. All of these modules are running on
the server computer of our hardware installation, while the client applications,
responsible for detection and tracking, run on the diskless processing nodes, as
described in Section 1.2.
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Global Registration The global registration instance of the system possesses
a global representation of all connected cameras and processing nodes. This
includes knowledge about 1) the unique IDs of the cameras and their connection
to specific processing nodes, 2) the extrinsic and intrinsic parameters of each
camera, 3) the possibility to enter the surveyed area through a specific camera
FOV, 4) the expected sizes for camera images for the streaming process and 5)
the expected size of a connected display.

The aforementioned knowledge about the setup is loaded to the system and
can be exchanged, in order to adapt the system to other scenarios and setups.
The client applications, which register their camera in the registration server,
obtain the expected size of images to be sent to connected displays in return.
Furthermore, the client applications request the global knowledge about the sur-
veyed area and use the obtained information to instantiate their system with the
correct intrinsic and extrinsic camera parameters. This leads to the advantage
that no client application has to keep local information on the setup. Therefore,
if the setup is changed e.g. by adding new cameras, moving cameras or recali-
bration, a simple restart of the registration and the client applications updates
the whole system.

Global ID Generation In a distributed, asynchronous tracking system with
completely independent tracking processes, it is an essential need that the tracked
targets keep their identity after a target transfer from one tracking process to
another, which occurs if a tracked target switches between camera FOVs. Once
the detector module of a client application has found a new target, it can only be
introduced and added in the server to the global system state using a uniquely
generated ID. Therefore, the client requests a new ID from the global ID gen-
erator module. Using this ID, the client is able to add the target in the server
with its current position in world space. Subsequently, the target’s position will
be broadcast to connected processes, e.g. those running on the robots in the
scenario described above.

All clients have a direct connection to the server to add targets, update
the target positions, or to initiate handover targets in case they are leaving
the surveyed area. In order to maintain the scalability of the system, the server
module does not possess a priori knowledge on the number of client applications.
Therefore, a communication channel was created that broadcasts the control
commands: a) transfer target: to give a client the responsibility to track a certain
target and b) remove target: to release the responsibility of a client to track a
certain target. Every client listens to this control channel and reacts only if the
mentioned target is within his responsibility (remove target) or if he should take
over the tracking (transfer target).

Management Server A challenging task is to decide which client should do
the tracking, when to transfer targets, and where to transfer targets to. Per-
forming the evaluation of 40 camera location at every position update (up to 15
Hz) requires very high computational power (n− 1 comparisons). At this point,
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(a) Frame 100 (b) Frame 150 (c) Frame 200 (d) Frame 250

Fig. 2. Example image sequence: joint view of four adjacent cameras tracking two
different persons. a) and (b) show the tracking of a single person before and after a
hand-over of the person target took place. In the same way (c) and (d) depict the
tracking results of two persons, before and after the respective handover situations
have occurred.

it is possible to utilize the extrinsic and intrinsic calibration parameters of the
cameras, that are stored in the registration server. After fetching this informa-
tion, a quad-tree is built up, dividing the scene in quarters: In the first step each
center point and FOV of all cameras are projected on the floor. Now, the tree is
iteratively refined dividing each node in 4 sub-nodes (areal quarters) until each
node has only one camera left.

Fig. 3. Target transfer example sequence: Joint view of four adjacent cameras. Areas
marked by blue dots represent valid target transfer regions between adjacent FOVs.
The dots result from the application of space discrete (in world coordinates) tests,
which consist of evaluation of the target transfer tree that was pre-computed from the
respective camera projection matrix. The red cylinder represents the tracked person
that walks through adjacent FOVs.

The tree nodes contain all the important information to select the optimal
camera to transfer a target to. This includes the projection center of the camera
on the ground floor, the FOV, the camera index, and the hostname of the client
to which the camera is connected. After each update of the target’s position,
the pre-calculated tree can be traversed efficiently to find the next host and the
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next camera index. Figure 3 depicts 4 adjacent cameras with blue dots which
represent valid target transfer points between cameras. These points are the
result of a space discrete (in world coordinates) test using the pre-calculated
target transfer tree.

4 Results

The system was implemented using the proposed tracking and communication
architecture. Subsequently, the system was evaluated by tracking persons ex-
hibiting high variance w.r.t. their height, appearance and motion habits, as well
as under different illumination conditions during the respective days. This was
done in order to test the applicability of the rather coarse model assumptions,
being the average height of people (1.7m), the applicability of the rigid non-
articulated cylindrical shape representation and the evaluation of color statistics
from the top view.

As depicted in Figure 1, the client-server architecture is able to stream minia-
turized camera images to multiple connected display processes, which may be
distributed over the internet. Figure 2 depicts the joint view of four adjacent
cameras simultaneously tracking two individual persons. (a) and (b) shows the
tracking of one person including a hand-over procedure. (c) and (d) depict the
tracking of two persons. Figure 3 illustrates the pre-computed target transfer
regions in a joint view of four adjacent cameras. The transfer regions can be
estimated by evaluating the quad-tree which is computed using the extrinsic
camera parameters.

Regarding the the coarse 3D cylindrical person model, several tracking ap-
proaches were tested. E.g. Figure 4 shows the comparison of two different evalu-
ation strategies for the sampling of the color statistics, comparing the accuracy
achieved and required computational time. The first strategy consists of the
sampling of pixels within the underlying rotated bounding box of the cylindrical
model. The second strategy projects the 3D cylindrical model into the sensor
image and thus computes the full and exact shadow, which is used as a mask
before pixel sampling takes place. Based on these results, we decided to adopt
the full shadow approach, since the improved accuracy outweighs the drawback
of a slightly higher computational cost in our setup.

5 Conclusion and Future Work

In this paper, a flexible, scalable and modular many-camera system for simul-
taneous tracking of multiple persons using natural features was presented. The
approach was realized and evaluated using an apartment mock-up, sensorized
by 40 GigE cameras which fully cover its approximately 100 square meters.
Given this large amount of cameras, distribution of the computational process-
ing among multiple computers is required, which is addressed using 14 diskless
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Fig. 4. Using the full shadow of the cylindric human shape approximation to compute
the measurement results in a significant gain in accuracy while requiring only slightly
more computation time. left : Time needed to evaluate measurement using rotated box
or the full shadow. X axis denotes the number of frames, Y axis denotes the time in
seconds, running three tracking modules simultaneously. right : Accuracy using rotated
box or full shadow. X and Y axes denote pixel positions within the image.

client processing nodes operating up to three cameras each. A functional sys-
tem for the management of target detection, target tracking and target transfer
between processing nodes was presented.

Future work includes improving the detection step by application of a more
robust classification of persons, rather than assuming every foreground pixel
to be belonging to a human. This will help avoid erroneous detection alarms.
Furthermore, the degrees of freedom tracked can be extended by including the
estimation of persons’ rotation angles. In our application context, this additional
information would allow robots to intentionally approach persons from specific
directions, as well as facilitating the evaluation of psychological experiments
within the surveyed area.
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