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ABSTRACT

Low transparency is one of the major drawbacks of passivity-based
control approaches in teleoperation systems, particularly when time
delay exists in the communication channel. In this work, we im-
proved the transparency of time-delayed teleoperation. For this,
we used a passivity-based control approach with the generalized
scattering transformation. To maximize a transparency criterion,
the parameters of the generalized scattering transformation were
optimized. Moreover, we show that communication channel dis-
turbance attenuation is also improved. The proposed approach is
validated on a master-slave robot interacting with an human eyeball
model via a time delayed communication. Two classes of parame-
ter sets are considered and compared against each other in sense of
transparency and stability. Results verify a noticeable enhancement
of transparency in stiffer environments by the proposed method.

Index Terms: Teleoperation systems, Tele-Robotic ophthalmic
surgery, Generalized scattering, Transparency, Optimization.

1 INTRODUCTION

Teleoperation systems enable human operators to interact with en-
vironments which are physically distant, inaccessible or even dan-
gerous. Relevant applications range from hazardous space mis-
sions to the scaled environments like biomedical manipulation and
telesurgery. Conventionally, a combination of visual, auditory and
haptic information is exchanged between the Tele-Operator (TO)
and the Human-System-Interface (HSI) device, to provide a feeling
of presence for the user, see Fig.1. In many applications, haptic
and force feedback information, help the user to significantly im-
prove the operation and performance of more precise and complex
tasks [1]. In such a system setup, the teleoperator interacts with the
target environment based on the human operator commands. De-
pending on the system architecture, the pose, velocity and/or force
is fed back to HSI. In an ideal teleoperation system, the human oper-
ator has the feeling of natural and direct interaction with the remote
environment. A transparent teleoperation system is a system which,
the user does not feel dynamics of the intermediate system, i.e. the
mechanical impedance displayed to the user equals to the mechani-
cal impedance of the remote environment [2]. However, achieving a
high level of transparency is difficult if the communication between
HSI and teleoperator suffers from time delay.

Even a small time delay in the communication may result in
instability of the teleoperation system, as a global control loop is
closed via the communication channel [3]. Also in most of the ap-
plications, this time delay value is unknown or varying. The scat-
tering transformation (alternatively called wave variable transfor-
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Figure 1: Teleoperation system with multiple types of information ex-
change used in eye telesurgery

mation) [4, 5] is one of the well-known approaches to guarantee
stability of teleoperation systems with arbitrarily large time delay
based on passivity arguments.

However, it compromises the performance of the system which
is conventionally measured as terms of transparency [6]. It means
that the impedance which is appeared to the user on the HSI, is
not exactly what the environment is. Mathematically speaking,
transparency is achieved if the displayed impedance equals to the
environment impedance [2]. By having more information about
the environment dynamics, a teleoperation system can be improved
in sense of stability and transparency [7]. In [8, 9], by exploiting
the dissipativity parameters of the environment, a more general-
ized form of the scattering transformation is introduced. The gen-
eralized scattering transformation provides adjustable parameters
to improve transparency based on the lack or excess of passivity of
the individual components of the teleopration system [10]. How-
ever, an investigation for finding the optimal parameters in has not
been performed yet.

The contribution of this paper is to improve the transparency of
the system based on optimal parameter design. The main idea is
to introduce a broader class of parameter sets for the generalized
scattering and to optimize the system with those parameters as op-
timization variables under stability constraints. We use a quantita-
tive measure for this similarity to define a cost function which can
be used in a suitable optimization tool. Determining parameters
of the generalized scattering transformation is a design problem
and in this work, the search for the optimal parameters is carried
out by using swarm optimization. The preliminary evaluation of
the proposed approach for robotic eye surgery [11] considering the
mechanical tissue characteristics of the human eye was performed.
Master-Slave robot assisted eye surgery is one of the teleopera-
tion areas which is affected the most from the system transparency.
Fragility of the anatomy and the required precision for performing
ophthalmic procedures, specifically in intraocular operations, are
the most important reasons which makes the factor of transparency
a must for ophthalmic operation setup.

The remainder of the paper is organized as follows: in section 2,
a brief background is given on dissipative systems and generalized
scattering. Section 3 derives some desirable properties of general-
ized scattering transformation parameters. A transparency measure
and optimization objective are defined in section 4. In section 5 and
6, simulation and experimental results are represented for compari-
son.
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Figure 2: Teleoperation system block diagram with time delay and
generalized scattering transformation blocks (marked by M and M−1).

2 BACKGROUND

2.1 IF-OFP system model for the teleoperation

In the velocity/force architecture, the environment is considered as
a mapping from velocity to force as output. This mapping can be
assumed as admittance/impedance models with unknown values of
Inertia, damping and stiffness. By having the prior knowledge only
about the lower bound for damping from the unknown environ-
ment, it can be represented as input-feedforward-output-feedback
passive (IF-OFP) systems [12]. This means that the environment
is assumed an energy dissipative system with its dissipation rate
is bounded from below. Note that also the sub-systems human,
HSI, and teleoperator can each be represented by an IF-OFP sys-
tem. The overall system is a interconnection of different IF-OFP
systems and time delays [13]. Consider the system Σ : u �−→ y,
where u ∈Rp and y ∈ Rq and u,y are system’s input/output respec-
tively. It is called Output Feedback Passive if there exist a positive
semi-definite storage function S : Rn → R+ such that for each ad-
missible u and t ≥ 0

S(x(t))−S(x(0)) ≤

∫ t

0
uT y−δuT u− εyT ydτ, (1)

for some δ ,ε > 0. In a matrix format it can be written as

S(x(t))−S(x(0)) ≤
∫ t

0

[
u y

]
P

[
u
y

]
dτ, (2)

and
P =

[
Q S

ST R

]
,

where Q ∈ Rp×p, R ∈ Rq×q and S ∈ Rp×q and u, y have depen-
dency on time, τ . Also p and q are number of input and outputs
of the system respectively. The matrix P is also not unique for a
system and every set of Q, S and R which satisfies the inequal-
ity (2.1) can be acceptable [13]. As a physical description for the
above definition, it can be mentioned to mechanical systems which
are stimulated by an external energy source. A part of this energy is
stored in the system like potential energy in the masses or springs.
The other part is dissipated e.g. in terms of heat energy. So, ac-
cording to the definition, the stored energy of a passive mechanical
system, can be only increased by external sources and it does not
generate energy by itself. In other word, its stored energy is always
equal or less than the energy which is given to the system.

A single-input single-output IF-OFP system can be achieved by

choosing S= 1
2 , Q = −σ and R = −δ which gives

P =

[
−δ 1

2
1
2 −ε

]
,

where δ ,ε ∈ R. For δ = ε = 0, passive systems are recovered with
the bilinear supply rate uT y. The stability of two interconnected IF-
OFP systems can be guaranteed based on a condition on the their
IF-OFP parameters. For this, onsider two IF-OFP systems Σ1 and
Σ2 with δi, εi, i ∈ 1,2. The negative feedback interconnection of Σ1
and Σ2 is finite gainL2-stable if

ε2 +δ1 > 0 and ε1+δ2 > 0,

see also [14] for more details.
This very useful property of IF-OFP systems is used in [8] to

derive the parameters of the generalized scattering the to guarantee
the delay independent stability of the teleoperation system. The
approach will be described in the next section.

2.2 Generalized scattering

In order to overcome the destabilizing effects of time delay in the
control loop, the generalized scattering transformation is developed
in [8] as an extended version of standard scattering transforma-
tion [5]. A schematic representation of passivity based teleoper-
ation system with generalized scattering blocks (marked by M and
M−1) is shown in Fig.2. In our work we consider the velocity-
force architecture. At the right hand side, are the blocks for the
teleoperator and environment and at the left hand side the blocks
for HSI and human are located. The blocks M and M−1 represent
the right- and left-hand-side generalized scattering transformation.
The communication channel is modeled by a time T1 in the forward
path and a time delay T2 in the backward path. After applying the
transformation, ul is transmitted instead of the HSI velocity ẋm, and
the variable υr is transmitted from the teleoperator side instead of
the force. The desired teleoperator velocity ẋs and the desired dis-
played force fm at the HSI are computed from the transformation
equations according to

[
ul

υl

]
= M

[
ẋm

fm

]
,

and for the left hand side[
ẋs

fe

]
= M−1

[
ur

υr

]
.

Since these transformations are inversion of each other and placed
at input/output ports of the subsystems, in case of zero time delay,
they cancel each other out. For the right hand side, variables ur and
υl denote the output of the time delay blocks in the forward and
backward channel, respectively.

The transformation M is decomposed to a rotation matrix R and
a positive definite matrix B

M = R ·B =

[
cosθ sinθ
−sinθ cosθ

][
b11 b12
b21 b22

]
, (3)

where Det(B) �= 0 and θ is the rotation angle which is chosen based
on the IFP- and OFP-properties of the environment. It can be de-
scribed how to calculate this angle to guarantee delay-independent
stability of the system. The basic idea is to modify the IF-OFP pa-
rameters of the block Σt in Fig.2 such that they become the same
as the block Σe. If the system is stable then according to the stabil-
ity criterion for interconnected IF-OFP systems without time de-
lay, it would be also with time delay. In the following a con-
structive way is presented to compute the transformation param-
eters achieving this independent of the time delay [9]. For that,
consider the subsystem Σt : ẋ �→ f comprising the IF-OFP environ-
ment and teleoperator Σe with the total dissipativity parameters of

Qe =−δe,Re = εe,Se = 1
2 , the static system M = RB. Time delay

T1,2 is constant. If for each B the angle θ is chosen as one of two
solutions of

cot2θ =
εB −δB

2ηB
, (4)

where εB,δB,ηB are the dissipativity parameters of the system
ΣB which is defined by

PB = B−T PeB−1, (5)
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Figure 3: An example of mapping on a set of points. Original shape
is square(left). Since M is a right polar decomposition, it is angle
preserving when B is diagonal (right-green). With a symmetric B

angles can be also skewed (right-red).

Then, the exact environment dissipativity property Pe is pre-
served into the subsystem Σt [8]

Pt =

[
−δ 1

2
1
2 −ε

]
= Pe. (6)

Those computed transformation parameters achieve IF-OFP
properties for sub-system Σt as for sub-system Σe. For stability,
however, this equality is not necessary and there is a range of
parameters guaranteeing stability [reference Iason, where he pro-
vides the angles]. Even though, transparency of the system can
be affected if the parameters are badly chosen for a given sys-
tem. To improve transparency, a matrix M should be found, which
gives the maximum similarity between environment and displayed
impedance. In Fig.2, environment and displayed impedance are
shown by Σe and Σt respectively. Possibly, within this range of
parameters we may find an M which provides better transparency
than the one computed by this method. We will investigate the in-
fluence of the generalized scattering transformation parameters on
the transparency and the disturbance rejection in the next section.

3 EFFECTS OF M ON DISPLAYED IMPEDANCE

On previous works, for simplicity matrix B is assigned a diagonal
matrix for simplification of calculations. However it can be shown
that by using a full symmetric matrix we can have a larger class for
choosing B, which can improve the transparency. In (3), M = R B
is a right polar decomposition of M where R ∈ SO(2) and B is
either a positive semi-definite symmetric matrix S or a diagonal
matrix D. Every right polar decomposition can be written as a left
polar decomposition. For example if A = UP is the right polar
decomposition(RPD) of A, where U is an orthonormal and P is a
positive symmetric matrix, then it can be alternatively written as
a left polar decomposition (LPD) [15]. It can be written as A =

P
′
U, where P

′
= UPUT , which is a representation of eigenvalue

decomposition of a symmetric matrix.
As M = R B is a right polar decomposition, M = R S generally can

not be equivalently shown as M = R
′
D. So, we can conclude that it

represents a larger set for M by using a symmetric B. Fig. 3 shows
an example of this difference.

3.1 Effect on Transparency

As mentioned before, transparency of a teleoperation system is the
equality between impedance of the environment Ze and the dis-
played impedance to the human side Zh. In other words, trans-
parency is achieved if

Zh(s) = Ze(s),

where s is a complex Laplace domain variable [2]. By neglect-
ing the controller and teleoperator robot’s dynamics, displayed

impedance in the human side Zh is calculated based on the envi-
ronment impedance Ze and generalized scattering transformation

Zh =
μ21−μ11Φe−sT

−μ22+μ12Φe−sT
, Φ=

μ21+μ22Ze

μ11+μ12Ze
, (7)

where T = T1 +T2 the round trip time delay and

M =

[
μ11 μ12
μ21 μ22

]
.

In [10], a low frequency analysis is given which extracts the dis-
played impedance assuming a diagonal B and Padé approximation

for time delay for ω < 1
3T .

Here we calculate Zh without any approximations by rewriting
the equation (7) without restricting the Ze to low frequencies. Then
we have

Zh =
μ11 μ21 +Ze μ12 μ21−μ11 μ21e

−T s −Ze μ11 μ22e
−T s

μ12 μ21e−T s −Ze μ12 μ22−μ11 μ22 +Ze μ12 μ22e−T s

=
Ze(μ12μ21−μ11μ22e−Ts)+μ11μ21(1−e−T s)

(μ12μ21e−Ts −μ11μ22)+Zeμ22(μ12e−Ts −μ12)
.

(8)

Looking into the equation above, it can be seen that to have Zh ≈
Ze we must have large values for μ11μ22 � μ12μ21. This means for
an optimal design we should have Det(M) � 0 and also μ21 and
μ22 should be small values.

3.2 Effect on Disturbance rejection

As shown in Fig.4, the transfer functions of the right- and left-hand
side systems, Zr and Zl , seen from the communication loop, respec-
tively can be calculated as

Zr =
υr

ur
=
μ21+μ22Ze

μ11+μ12Ze
, (9)

Zl =
ul

υl

=
μ12−μ11Zm

μ22−μ21Zm
. (10)

Combining the above two transfer functions with the assump-
tion of the received variable on the teleoperator side is disturbed,
i.e. ur = ul + d, the force feedback disturbance rejection transfer
function is written as

f f -disturbance rejection=
f f

d
=

1

μ22 +μ21Zm
·

Zr

1−ZrZl

. (11)

Substituting the equations 10 and 9 into equation 11 gives the
following equation

+

+

{

{

Zm Ze
d

M−1 M

f f

fh

Zl

Zr

υl υr

urul

Figure 4: Disturbance signal d affects the signal in communication
channel. Ze the environment’s impedance and Zm in the human and
HSI impedance.
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f f

d
=

(μ22−Zm μ21) · (μ21 +Zs μ22)

(ZmZs +1) · (μ11 μ22−μ12 μ21) · (μ22 +Zm μ21)

=
(μ22−Zm μ21) · (μ21+Zs μ22)

(ZmZs +1) ·Det(M) · (μ22 +Zm μ21)
.

(12)

Practically, we are interested on the maximum attenuation of the
disturbance. As it is seen in the transfer function, maximum atten-
uation is achieved when the same properties for matrix M is used
which is large determinant value for Det(M) � 0 and small values
for μ21.

4 QUANTITATIVE TRANSPARENCY MEASURE

In this work, for sake of performance analysis of our approach, we
will use double-circuit model of the human eyeball as shown in
Fig.5 in order to compare according to existing and conventional
transparency measures. The model is consisting of a low-frequency
part which is related to the under laying tissue of the eyeball, and
the high-frequency part which is originated from indenter tissues
[16]. Velocity to force mapping by environment is described by the
following frequency response model:

G(s) =
F(s)

V (s)
=

1

mS+( DK S
DK M S2+K S+D

+ d kS
d+kS

)−1
(13)

Where K,D and M are low frequency parameters, and k,d and
m are high frequency resonance parts respectively. Non of the low
frequency parameters change noticeably by the indenter type or the
force [16] but high frequency parameter m can range depending the
diameter of the indenter. The effect of this range is shown in the
Fig.6 for range of 10%. Thus, to avoid precise parameter identifi-
cation requirement we use only dissipativity parameters of systems
which is described in the following.

For the maximum transparency, we must find four variables of
b11,b12,b21,b22 in B which minimizes the difference between Zh in
equation (8) and the environment impedance Ze. As a measure for
this minimization, we use error vector magnitude (EVM) proposed
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Figure 6: Magnitude-frequency diagram of the model for 10% range
of m

in [17] with slight changes. For the best similarity between Zh and
Ze, we should have a small H2 norm for ΔZ(s) = Zh(s)− Ze(s)
which gives

Jm = ‖ΔZ( jω)‖22 =
∫ ω0

−ω0

ΔZ( jω)ΔZ( jω)∗dω,

where Jm is the defined cost for a given frequency range of ω0

and m. Hence the design problem is reduced to minimization of
summation of these differences,

J =
mmax

∑
mmin

Jm, (14)

where mmin and mmax are the boundary values for m. Number
of grid points for m can be arbitrarily defined. Finally our used
optimization problem can be written as,

argmin
bi j

J

subject to:

b11 ·b22−b12 ·b21 �= 0

0≤ bi j ≤ bmax

(15)

where i, j ∈ {1,2} and bmax is the maximum permissible value
for every bi j . Since the required properties of M (which are ex-
tracted and presented in section 4) are more of qualitative measures
than explicit values, we use PSO technique to search for local or
possible global minimums in (15). PSO method is inspired by so-
cial behaviors of moving birds flock, where birds (particles) are
moving in a space in order to achieve a common goal like find-
ing food. For extensive studies, reader can refer to the resources
like [18] and [19].

5 SIMULATIONS RESULTS

First, we will examine the performance of the algorithm by a nu-
merical example on a simple environment: we assume the environ-

ment is a time invariant spring-damper with Ze = 500
s

+ 20. Since
the dissipativity parameters σe = 20 and εe = 0, then the dissipativ-
ity matrix of environment Pe is an IFP system and will be

Pe =

[
−20 1

2
1
2 0

]
.

The left hand side system is assumed as any system with dissi-
pativity parameters which satisfies the finite gain L2-stability con-
ditions in proposition 1. Here, we assume an OFP system Σl , with
σl = 0 and εl = 10. According to proposition 1, the feedback inter-
connection of these systems without considering the time delay is
stable since

εe +σl > 0,εl +σe > 0.

To avoid local minimums due to use of swarm optimization, sim-
ulations are repeated 10 times forω0 = 100. The smallest given cost
function value which was around 2900, was repeated in each run of
the simulation. So we assume that this cost value and it’s suggested
parameters are the best we can get from this method of optimization
and given frequency points.

Table 1: Suggested optimal values for bi j

Element b11 b12 b21 b22
Value 76.51 -2.8 -2.8 4.28
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Figure 7: Difference heat map between diagonal and symmetric B
cost function.

The calculated value for the B has been shown in table 1. By
having the elements of B, we can calculate the stabilizing rotation
angle for M by using (5) and (4). So according to (5) PB is calcu-
lated as

PB =

[
−0.0035 −0.0007
−0.0007 0.0006

]
,

and the stabilizing rotation angle is achieved from inversion of
(4) gives θ = 44.50o. By having θ , and calculating the matrix M
according to (3), appeared dissipativity matrix for Σ3 is equal to the
environment which means P3 = Pe. Now the designed system is
stable since the dissipativity values of the system is appeared as the
same to the left side.

In the next step, for an extensive and overall comparison of the
designed system performance, a very large set of the systems are
simulated by the given model of

G(S) =
V (s)

F(s)
=

s

ms2 +bs+k
, (16)

where m is the inertia which is assumed to be a fixed value m = 1,
b is damping and k is the stiffness coefficient of the environment
model. Simulations are performed by sliding the parameters b and

k in the range of 100< b < 2000 (N.s
m
) and 2< k < 20 ( kN

m
) with res-

olution of 50 steps for each coefficient. The system is positive real
for every positive values of m,b and k. As a result, the requirement
of being passive for the environment is also satisfied. As mentioned
before, the inertia of the system is fixed as 1 Kg, damping and stiff-
ness coefficients are changed in 50 steps. In total 2025 different
systems from a same class of mass-spring-damper are simulated in
both diagonal and symmetric B. Dissipativity values of the systems
are calculated by CVX toolbox [20] [21]. Fig.7 shows the 2D heat
map of difference between two set of cost functions. The value on
each pixel of the map in assigned by

Di j = J∗diag(bi j,ki j)−J∗sym(bi j,ki j).

As it can be seen in the Fig.7, cost function for set of symmetric
B is always lower and therefore Di j is always positive. However
some noisy pixels (cost function values) are seen on the map which
is due to the nature of randomized optimization. Fig.8, shows the
relative ratio between J∗diag(bi j,ki j) and J∗sym(bi j,ki j) which is cal-

culated by

Ri j =
J∗diag(bi j,ki j)

J∗sym(bi j,ki j)
.
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Figure 8: Ratio heat map of diagonal and symmetric B cost function

The Ri j is also always larger than one, and the interesting inter-
pretation from the figure is, the faster the dynamics of the system
becomes (more stiffness), the larger becomes Ri j . It means sym-
metrical B provides higher transparency in the systems with higher
impedance, meanwhile performing better or equal to the set of di-
agonal B in slower systems.

6 EXPERIMENTAL RESULTS

Real experiments are also done for comparing the achieved values
from optimizations on a teleoperation robot. By using impedance
Cartesian control and using high gain motion controllers, without
loss of generality, we can extend the result of a 1-DOF cartesian
robot to mutli-DOF robots. So, we use a haptic interface consists of
a 1 DOF linear-actuated with an end-effector at the grasping point
for the user. A (JR3) force/torque sensor measures the force that
human feels at the grasping point. Human and 1 DOF actuator, act
as the Human-HSI part of the system and environment is virtually
made by a software impedance model. Velocity of the human hand
is measured by the linear actuator’s encoder and sent to the vir-
tual model. Motion controller is a very high gain PD controller, so
dynamics of the robot is neglected. The force which is generated
by the model is sent back to the HSI to be applied on human with
the sampling rate of 1 khz. Constant 10 ms time delay is placed in
both signal forward and backward paths. In Fig. 9, configuration of
the human and HSI device is depicted. All software parts are im-
plemented in MATLAB/Simulink on the Linux/PreemptRT using
MATLABs Real-Time Workshop.

6.1 Comparision of transparency

Virtual environment is assumed to be the model given in (13) with
the following parameters according to experiments in [16]:

m = 0.278g k = 1312N/m d = 0.483Ns/m
M = 8.2g K = 951N/m D = 3.03Ns/m

Optimizations are done based on (14) for a ±5% percent (total
10 %) of variation for the given m for both symmetric and diago-
nal B. Since the used device for the experiments was suitable only
for large forces and displacements, velocity/force signal has been
properly scaled to make it perceivable for the operator. To keep the
loop gain the same, scaling values for force and velocity has been
chosen inverse of each other. Human position and reflected force is

recorded for around 10 seconds with sample rate of 1 Ks
sec

. A poly-
nomial regression has been applied on around 10000 data samples
by Least Square algorithm to estimate the impedance values that
appears for human on the HSI.
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Figure 9: Configuration of Human, 1 DOF HSI and the connected
force sensor.

Table 2: Measured values for using each type of matrix B

Element Original Diagonal B Symmetric B

M 8.2 10.87 9.24

K 951 313 625

D 3.03 4.39 4.01

m 0.27 .63 0.51

k 1312 474 407

d 0.483 0.85 0.88

Table 2 and 3 shows the comparison between performance of
each kind of B matrix. Confirming the simulation results, Symmet-
ric matrix acts better in transparency. For low frequency part mass
is almost perfectly rendered, stiffness and damping are still better
than diagonal case. For high frequency part both did not show very
good performance which can be because of wave filtering in the
communication channel.

7 CONCLUSIONS

In this work we applied broader class of parameters to design the
generalized scattering parameters. Furthermore, some necessary
requirements on transformation matrix are extracted which should
be satisfied by any design method. Then, we scaled down this re-
quirements, to an optimization problem with a cost function based
on error vector transfer function’s magnitude. Although we used a
randomized method for the optimization, simulations are repeated
several times to ensure the final answer is not trapped in a local
minimum. For each given damping and stiffness values, the best
result of these optimization are chosen. Simulations showed a ma-
jor improvement in displayed impedance in its lower range of fre-
quency which is impornant in order to apply excessive force on the
tissue. Using a symmetric matrix instead of diagonal form for ma-
trix B gives more freedom to satisfy the requirements for matrix
M given in section 4. Experiments also confirmed the simulation
results and the proposed changes in the matrixB. A constructive de-
sign method for B is still missing and considered as a future work.
By using a more comprehensive cost function, which considers the
desired transparency and stability margins together, we can adjust
the performance of the system depending on the situations.
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