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Abstract— One important feature of a cognitive system is
to interact with its environment and to react in real-time to
changes in it. A pure geometric representation of the world
is therefore often insufficient. To allow a cognitive system to
refer to a prior perception, it has to be able to re-localize
itself with respect to its environment. Thus, a vision based
agent needs to register the currently seen images within its
history. In this paper, we investigate not only an image based
surprise trigger, which uses Bayesian probabilistic inference
techniques to detect pixel-wise changes, but also an online image
based homing algorithm. This is necessary to achieve a location
independent surprise trigger. Our algorithms allow a cognitive
system to localize itself within its environment and to react
online to changes respectively to a prior measurement using
only a calibrated camera. Experiments show acceptable results
in terms of a robust detection of unexpected changes in the
environment.

I. INTRODUCTION

Cognitive systems need to be aware of their environment
in order to react to changes, to adapt their behavior or
just to keep their environment model up to date. Geometric
models only allow recognition of changes in the 3D structure
in the environment. What happens if only the appearance,
like the color of an object changes or a glass of water is
not in its place anymore or if an object is too thin to be
recognized? Application examples regarding such situations
would be a human environment, where a household robot has
to recognize if the towels are changed or a bottle has been
removed, or also a factory, where damages on the surface
of a workpiece have to be recognized from an arbitrary
viewing position. In such cases it is useful to have a model of
the world which contains information about its appearance.
Besides, in order to detect missing objects it is often easier
to make use of the visual appearance of the scene than of the
geometry model, since this reduces the search for changes
from a 3D space to a 2D space. Common computer graphics
techniques achieve fairly realistic images of simple virtual
environments by mapping textures onto the triangles of a
mesh-based geometry. However, it requires sophisticated and
computationally expensive methods like raytracing to model
translucent or reflective objects in a realistic way. Effects like
the refraction of light rays are crucial for checking if they
are present or not, if they are filled or empty.
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Image-based rendering techniques ([1]) turned out to be
very suitable for the photorealistic modeling of such objects
because computational complexity does not depend on the
properties of the environment. In our approach, we use a
densely acquired set of images together with approximate
geometry information in order to predict virtual images in a
given viewpoint space. A necessary cue for view synthesis
is the knowledge about the positions and orientations of
the capturing cameras which have to be estimated. The
localization algorithm, we use is also purely based on
images. It is not the scope of this paper to explain these
underlying algorithms in detail, nevertheless, we will give
brief introductions at the appropriate places to facilitate the
understanding.

If mobile robots can localize themselves within an image
sequence, it does not mean that they can refer to a prior
perception. A relation to the history has to be found to
provide the integration of the current sensor data. In other
words, a cognitive system, which should be able to recognize
changes in the environment over time, has to be able to
register itself with respect to a specified coordinate frame.
A detailed classification of visual intensity based Homing
algorithms can be found in [14]. In [16] the efficiency of
various methods are compared. Most of them are biologically
inspired, like [15] or [17]. We will present two structure-
based “snapshot” approaches, where the structure is based
on images again. These methods allow a cognitive system to
register within a partially seen environment.

If changes in the environment are unexpected, cognitive
technical systems have to react and adapt their current action
plans. In [3], it was shown that surprise is an important
cue for the direction of human attention to unexpected
events. A variety of image change detection algorithms have
been presented in literature ([2]). However, they all have in
common that they are only applied to images taken from
the same camera at a rigid position. For a mobile cognitive
technical system this is not acceptable since it also needs to
notice changes at positions where no previous camera image
is available. Therefore, we propose in this work an algorithm
for visual surprise detection in cognitive technical systems,
which relies on accurate visual registration of the system’s
cameras and image-based environment modeling. Surprise
detection is applicable from any point in the world and at
any time because of the underlying Homing algorithms.

The remainder of this paper is structured as follows. Sec-
tion II proposes two online solutions to the Homing problem.
In Section III, our novel method for visual surprise detection,
which is based on a probabilistic approach for image-based
view synthesis, is presented. Before we conclude this work,



we present in Section IV experimental results and outline the
integration of our module into the demonstration scenarios
envisioned in the cluster of excellence CoTeSys.

II. VISUAL HOMING

The first step in the generation of image-based models
is the accurate localization of the captured images. Our
real-time capable algorithm presented in [6] allows us to
estimate the position and orientation of the camera during
the acquisition of the image sequence. Since our method
does not require any external references like for example
artificial markers in the scene or the dimensions of a known
object in the world, it makes our algorithm very flexible
and suitable for a cognitive system navigating in real-world
environments. In order to localize itself in the world from
an image sequence, the robot has to first recognize the
motion of the world in that image stream. This is done
by automatically tracking features in the left images of the
captured stereo pairs with the Kanade-Lucas-Tomasi (KLT)
tracker ([7] [8] [9] [10]), which fits best our requirements in
terms of application, speed and robustness. The right image
of the stereo system is only used to recover the exact scale
of the features in 3D space using the intrinsic and extrinsic
calibration data. The spatial dimensions of the features are
important to estimate the exact scale of camera translation.

While our localization method provides acceptable results
with respect to position and orientation of the capturing
camera for image-based model generation, it fails as soon
as the robot looses the tracked set of features. This may
happen if the acceleration of the camera is too high, so that
the tracker looses all its references, or the robot is simply
switched off. Even if all features were saved on hard drive
over the whole time, the cameras could not be registered
within the prior world coordinate frame, as soon as the robot
has been moved outside the known trajectory. We need to
register the new sequence with respect to the old origin. Since
we do not use external markers as reference, which could be
used to determine the origin of the reference frame, we need
to initially specify an arbitrary origin. All the information
necessary to refer to this origin whenever required, has to be
stored - a so called “snapshot” has to be taken. In this chapter,
we present two different approaches how this problem can
be solved.

Let us assume that we have done a first run, where we
retrieved an image sequence and now we want to make a
second run, but with the camera poses respectively to the
coordinate frame of the first run. W.l.o.g., we call the first
sequence S1 and the second sequence S2. The reference
image is assumed to be the first image of S1 with the
initialized KLT feature set. It defines the origin of the
coordinate frame and is denoted as I1.1. Now, S2 should
be registered with respect to S1, which means that the
localization in S2 is expressed in the coordinate frame of
S1, the so called reference frame. The first image in S2 is
called I2.1 and the goal is to register it with respect to I1.1 .

First of all we have to find a relation between the two
viewpoints. To find feature correspondences between two

images, which are affected by an arbitrary affine transfor-
mation, we can not use KLT any longer. However, in the
last decades various detector-descriptor combinations were
investigated, which are also able to deal with such transfor-
mations. The most known and used is probably SIFT ([12]).
Its largest disadvantage is the speed. SIFT uses complex
detection functions and large descriptor vectors which make
it independent of any affine transformation, but slows down
the whole algorithm. An alternative, newer approach is
SURF ([11]), which is supposed to be even more accurate,
more robust and faster than SIFT. Therefore, we use SURF to
find correspondences between images, which show the same
scene, but from an arbitrary view point. SURF and KLT use
different detectors, hence the stereo-registration method used
for the visual localization can not be used between I1.1 and
I2.1.

A. Three image based Homing

In our first Homing algorithm (further on Homing1) we
use the same algorithm for extrinsic parameter estimation as
we use within the visual localization module. This technique
is called RVGPS and is an iterative method to estimate the
transformation matrix between two sets of vectors. RVGPS
is now used to estimate the rotation and translation between
the current and the reference frame. We only need I1.1
and its initialized points of interest (POIs), provided by
SURF, as snapshot. To initialize the POIs, a second image in
S1, I1.2, and the transformation matrix between this image
and I1.1 are necessary. The extrinsic parameters and the
SURF correspondences between these two images are used
to determine the 3D-structure for the SURF POIs extracted
from I1.1 by simple triangulation. Once these features are
initialized, we only need at least 3 SURF correspondences
between I1.1 and I2.1 to apply RVGPS for motion estimation.
Of course, the robustness and accuracy increases rapidly if
you have more matching features. Thus, big parts of the same
scene should be seen by these three images to ensure that
enough matches are found. Otherwise you can also use more
than one image in S1 to determine the three dimensions for
more POIs in I1.1. The more points are initialized, the higher
is the probability that you find correspondences within I2.1
and the higher is also the accuracy of the motion estimation.
Figure 1 illustrates the principle of the Homing1 algorithm.

Figure 2 shows the SURF matches needed for the Hom-
ing1 algorithm. Figure 2(a) contains the correspondences be-
tween I1.1 and I1.2, which are required to initialize the point
structure in the reference frame I1.1. Figure 2(b) represents
the matches between I1.1 and I2.1. These correspondences
are used to estimate the transformation of I2.1 to I1.1 using
RVGPS.

B. Four image based Homing

The Homing1 variant has shown that its results depend
strongly on the accuracy of the POIs’ structure. Our second
approach has been developed with the aim to avoid that lack
by not using RVGPS, but an optimal matching of the two 3D
structures in the different coordinate frames. To calculate two



Fig. 1. Visual Homing out of 3 images. The transformation between
sequence 1 and 2 is estimated using the RVGPS algorithm. Thus, only
one image of run 2 is necessary.

(a) I1.1 and I1.2 (b) I1.1 and I2.1

Fig. 2. These figures show the SURF matches for the Homing1 algorithm.
The result is used for the surprise trigger in the left image of figure 10. 33
common correspondences in all 3 images were found.

corresponding structures for our second Homing algorithm
(Homing2) we need for each sequence S1 and S2 two
images, their transformation matrices and the SURF matches
in all 4 images. We initialize the structure for an image in
each sequence, like we did for S1 in the Homing1 alternative.
Using the so called Arun’s algorithm ([13]) we get the
transformation matrix between the two domains. The result
of this method is obviously more robust, because we do not
estimate the transformation matrix and the structure of the
point set at the same time, like in Homing1. On the other
hand we need SURF matches within 4 images, which is
quite difficult to achieve. Figure 3 depicts the principle of
the Homing2 algorithm.

In Figure 4 you can see the correspondences needed
for the Homing2 algorithm. Figure 4(a) shows the matches
between I1.1 and I1.2, which are needed for the initialization
of the point structure in the reference frame I1.1. Figure
4(c) represents the matches between I2.1 and I2.2, which
are needed for the initialization of the point structure in
the S2 domain (I2.1). Figure 4(c) illustrates the matches
between I1.1 and I2.1, which are finally used to find the
correspondences between S1 and S2. Applying now Arun’s
algorithm both domains can be merged.

Which algorithm to use depends therefore strongly on
the application and the scene. Since the errors do not vary
much (compare the subfigures in Figure 10), mostly the more

Fig. 3. Visual Homing out of 4 images. The point structure in run 2 is
initialized independently of the reference sequence (run 1), so that a higher
accuracy is provided at the cost of the robustness (usually less common
features are found).

(a) I1.1 and I1.2 (b) I1.1 and I2.1 (c) I2.1 and I2.2

Fig. 4. These figures show the SURF matches for the Homing2 algorithm.
The result is used for the surprise trigger in the right image of figure 10.
Only 10 common correspondences in all 4 images could be found.

robust but less accurate Homing1 algorithm is preferable.

III. SURPRISE DETECTION

In order to predict novel views from an acquired set
of reference images, correspondences between the pixels
have to be known apart from the position and orientaton
of the capturing camera. Hence, in a preprocessing step for
view synthesis, per-pixel depth maps are computed for each
acquired reference image. On-line view synthesis is done by
selecting a small number of reference images (in this work
seven) whose image data is warped into the virtual camera,
respectively ([6]). Thus, for a given pixel in the virtual image
there are usually several color samples giving hint about the
true color value which would be captured with a real camera
at that position. In order to model the uncertainty about the
true color value, we assume that the warped color samples
from the reference views are independently drawn from a
Gaussian distribution whose mean is identical to the true
color value. By maximum-likelihood (ML) estimation, the
mean is retrieved from the sample data and written to the
given pixel in the virtual image.

The ML estimates for the mean and the covariance of
the Gaussian distribution are point estimates which give one
model which describes the statistical properties of the sample
data. However, the estimates still deviate from their true



values and there are other less probable parameterizations for
the Gaussian distribution. Unlike ML estimation, Bayesian
inference takes into account all possible models and puts
priors over the parameters of the probability distribution
of the sample data. In [3], a Bayesian framework was
presented for modeling and quantifying human surprise in
a mathematical way. Inspired by that, we propose in the
following a scheme for Bayesian visual surprise detection
based on the probabilistic concept for view synthesis.

For surprise detection the set of samples consists of seven
RGB-tripels from reference images captured in the past and
an additional color value from the current observation. As
depicted in Fig. 5, the virtual camera and the real camera
capturing the current image have identical position and orien-
tation. Hence, accurate localization of the cognitive system’s
camera is crucial for robust surprise detection. Similar to
the processing of color information in the human visual
system ([4]), we compute from each RGB reference image
a luminance signal and two color opponency signals (red-
green and blue-yellow), respectively. Thus, surprise detection
does not have to be performed jointly in RGB-space but
can be done independently in three decoupled pathways. For
the luminance of a pixel in the virtual image the following
likelihood function for a univariate Gaussian model results:

p(XI | µI, σ
2
I ) =
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XI = [xI,1, . . . , xI,7] is a vector containing the luminance
samples from the reference images. µI denotes the true
luminance value at the pixel in the virtual image which is
also the mean of the Gaussian distribution. For the choice
of the prior distributions it is more convenient to use the
precision λI, which is defined by the reciprocal of the
variance (λI ≡ 1

σ2
I

). Assuming that the mean is given by
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∑7
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precision which has the form of a gamma distribution
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dt denotes the gamma
function which serves as a normalization constant. The shape
of the distribution thus depends on the two hyperparameters
a0 and b0.

With Bayes’ formula the posterior distribution of the pre-
cision given the sample data is calculated from the likelihood
function and the prior up to a scaling factor by

p(λI | XI) ∝ p(XI | µI,ML, λI) · p(λI) = (3)
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Note that the posterior is again a gamma distribution

with the hyperparameters a = a0 + 7
2 and b = b0 +

1
2

∑7
k=1 (xI,k − µI,ML)2 which depend on the sample data.

The kind of prior whose posterior has the same functional
form is called a conjugate prior. The advantage of conjugate
priors is that their posteriors can again be used as priors for
further analysis.
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Fig. 5. A dissimilarity between the color value of the current observation
and the warped colors from previously acquired reference images leads to
a surprise trigger. With the data obtained from the homing algorithms, the
virtual camera is placed at the current position of the cognitive system’s
camera.

Now we augment our set of luminance samples by the lu-
minance value which the current observation of the cognitive
technical system provides (X′I = [xI,1, . . . , xI,7, xI,ob]). The
posterior distribution over λI is then calculated by

p(λI | X′I) ∝ p(xI,ob | µI,ML, λI) · p(λI | XI) (4)

which results in a gamma distribution with the hyper-
paramters a′ = a+ 1

2 and b′ = b+ 1
2 (xI,ob − µI,ML)2.

In [5], the Kullback-Leibler divergence (KLD) as the
difference between the posterior distribution over the model
parameters given a new observation and the prior distribution
is proposed as a quantitative measure for surprise

KLD (p(λI | X′I); p(λI | XI)) =

=
∫
λI

p(λI | X′I) log
(
p(λI | X′I)
p(λI | XI)

)
dλI. (5)

It can be shown that the KLD between two gamma
distributions is a function their hyperparameters

KLD (p(λI | X′I); p(λI | XI)) =

= a · log
(
b′

b

)
+ log

(
Γ(a)
Γ(a′)

)
+ b · a

′

b′

+ (a′ − a) · ψ(a′) (6)

where ψ(a′) =
d
dx Γ(x)|

x=a′
Γ(a′) is the digamma function. We

evaluate (6) for each pixel in the virtual image and get so a
pixel-wise surprise trigger.

IV. INTEGRATION IN DEMONSTRATION
SCENARIOS

In principle, our module for visual camera localization
and image-based environment modeling can be integrated in
any demonstration scenario in CoTeSys. In this section, we
show a possible episode for the assistive household scenario,
together with experimental results and give an outlook for the
integration within JAHIR.



A. Assistive Household Scenario
The episode we envision within the assistive household

scenario is the acquisition of an image-based model of
a typical household environment which is the basis for
cognitive processes. With our module a cognitive robot in the
household should be able to update its environment model at
any time by surprise detection and classify the objects around
it into static or dynamic ones. Moreover, surprise about
unexpected events should influence the robot’s action plans.
Robust visual localization should enable it to retrieve its
current position in the environment and to evaluate its current
observation with respect to the already acquired reference
model. Fig. 6 shows the acquisition of an image sequence
S1 with a stereo camera head (640x480 pixels) mounted on a
Pioneer 3-DX robot during AUTOMATICA 2008. The robot
went along an approximately circular trajectory around a
table set with household objects like glasses, plates etc. with
the stereo camera looking towards the objects and capturing
213 pairs of images. The set of images was subsampled by
a factor of two.

Fig. 6. Acquisition of an image sequence with a stereo camera head
mounted on a Pioneer 3-DX.

In order to test our algorithm for surprise detection we
captured another image sequence S2 on a trajectory which
was close to the first one but not identical. We changed the
scene by removing the two glasses. The task of the cognitive
system is to detect these changes. One image of the second
set, which is the current observation of the cognitive system,
was localized with respect to the world coordinate system
of the first set. For pose estimation we “manually” looked
for a similar image from the first set. This image is depicted
in Fig. 7 (left) together with a photorealistic virtual image
rendered from reference images which were selected only
from the first set of images (right). Note that there is no real
camera image from the first set which was acquired exactly
at the position of the observation.

Applying our algorithm from Section III on the luminance
signals of the two images, we obtained the surprise trigger
shown in Fig. 8 (left). The figure clearly shows a region of
high KLD values around the missing glasses. The right part
of Fig. 8 shows the pixel-wise absolute difference between
the two luminance signals, a method which is still widely
used in image change detection. Obviously, our method
behaves more robust around the knife and at the edge of the
table where the two images are not identical due to geometry
and pose inaccuracies.

Among the luminance and the color opponency path-
ways we only obtained a significant surprise trigger for

Fig. 7. Observation of the cognitive system (left) and virtual image
rendered from the set of reference images (right) at the current position
of the observing camera.
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Fig. 8. (Left) Surprise trigger obtained from the pixel-wise calculation of
the KLD between prior and posterior distribution over the precision of the
color samples. (Right) Surprise trigger obtained from simple differencing.

the luminance since the glasses do not convey much color
information, as Fig. 9 shows.
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Fig. 9. (Left) Surprise trigger calculated in the red-green opponency
pathway. (Right) Surprise trigger obtained in the blue-yellow pathway. Both
figures show a much lower surprise trigger around the glasses than in the
luminance pathway.

Fig. 10 shows our results for surprise detection applying
the two strategies for the homing problem described in
Section II. Since the pose is not that accurate in case of
automatic localization the surprise trigger is higher in regions
where indeed no changes occured compared to Fig. 8 (left).
However, in the region around the missing glasses, the
surprise trigger is still much higher than in the rest of the
surprise map.

B. JAHIR / Cognitive Factory

Further integration of our module into the demonstration
scenario cognitive factory is planned in terms of the JAHIR
project. An episode which demonstrates joint action is
planned in JAHIR. The goal is that a robot mounts a product
while communicating with a human worker by speech and
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Fig. 10. Bayesian surprise trigger: The cognitive system automatically
localizes itself using the Homing1 algorithm described in section II-A (left)
and the Homing2 algorithm presented in section II-B. Even if the results
for the Homing2 algorithm seem to be more accurate, the Homing1 method
is preferable, due to its robustness.

virtual buttons which are projected onto the working table.
We are going to integrate our algorithms described in this
work during the quality assessment step after the product is
mounted. To this end, an image sequence of the mounted
error-free product is first captured which is processed for
a reference image-based model. Our algorithm for surprise
detection detects unforeseen changes in the product which
might be due to failures in the single production steps. It
is desirable that the inspecting camera is localized with
respect to the product and not with respect to the robot’s
coordinate system since this does not require that the product
is exactly at the same position as during the acquisition of
the reference model. We plan to solve this issue with our
homing algorithms. The cognitive robot uses this surprise
trigger for making decisions about repair strategies and the
next production steps. Fig. 11 shows a pair of stereo images
captured from a workpiece with the JAHIR robot. The left
image also shows features extracted with our algorithm for
localization.

Fig. 11. A stereo image pair of an image sequence acquired using the
JAHIR robot. On the left image also the tracking and visual navigation
results are displayed.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an approach for visual surprise
detection which is based on image-based models of a cogni-
tive system’s environent. Bayesian probabilistic inference al-
lows computing pixel-wise surprise triggers which give hints
about unexpected changes in dynamic environments. Exper-
imental results show that this method provides more robust
results than simple differencing. Accurate self-localization
of mobile cognitive systems in their environment tackles
the well-known homing problem and is crucial for robust

surprise detection. We proposed two solutions for the homing
problem. Furthermore, we outlined the possible integration
of our work into the demonstration scenarios in CoTeSys.

Our future research work will focus on the segmentation of
environments into static and dynamic objects. Our algorithm
for surprise detection should contribute to the generation
of ontologies for a understanding of the environment and
execution of tasks on higher cognitive levels. We plan to
further increase the accuracy of our homing algorithms such
that robust and reliable surrpise triggers can be generated.
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