Adaptive and Generic Corner Detection Based
on the Accelerated Segment Test

Elmar Mair'*, Gregory D. Hager?, Darius Burschka', Michael Suppa?, and
Gerhard Hirzinger?

! Technische Universitéit Miinchen (TUM), Department of Computer Science,
Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
{elmar.mair,burschka}@cs.tum.edu
2 Johns Hopkins University (JHU), Department of Computer Science,
3400 N. Charles St., Baltimore, MD 21218-2686, USA
hager@cs. jhu.edu
3 German Aerospace Center (DLR), Institute of Robotics and Mechatronics,
Miinchner Str. 20, 82230 Wessling, Germany
{michael.suppa, gerd.hirzinger}@dlr.de

Abstract. The efficient detection of interesting features is a crucial step
for various tasks in Computer Vision. Corners are favored cues due to
their two dimensional constraint and fast algorithms to detect them.
Recently, a novel corner detection approach, FAST, has been presented
which outperforms previous algorithms in both computational perfor-
mance and repeatability. We will show how the accelerated segment test,
which underlies FAST, can be significantly improved by making it more
generic while increasing its performance. We do so by finding the opti-
mal decision tree in an extended configuration space, and demonstrating
how specialized trees can be combined to yield an adaptive and generic
accelerated segment test. The resulting method provides high perfor-
mance for arbitrary environments and so unlike FAST does not have to
be adapted to a specific scene structure. We will also discuss how differ-
ent test patterns affect the corner response of the accelerated segment
test.

Key words: corner detector, AGAST, adaptive, generic, efficient, AST

1 Introduction

Efficient corner detection algorithms are the basis for many Computer Vision
applications, e.g. to find features for tracking, tracking by matching, augmented
reality, registration or 3D reconstruction methods. Compared to edges and color
cues, corners are more accurate and provide a two dimensional constraint. Con-
sidering corners as intersection of two edges, these features have no spatial ex-
tension and, therefore, there is no ambiguity in their location. Of course, this

* This work was performed during the author’s research stay at the CIRL lab (Johns
Hopkins University). We are deeply grateful to all members of this research group
for the interesting discussions and the great support.

2 Elmar Mair et al.

aspect is only valid if the locality of a corner is preserved and the response of a
corner detector is as close as possible to the real corner location. Several different
approaches to corner detection are known in literature. All try to find a solu-
tion for efficient, accurate and reliable corner detection - three rather conflicting
characteristics.

The Harris corner detection algorithm is probably one of the most popular
corner extraction methods [1]. It is based on the first order Taylor expansion of
the second derivative of the local sum of squared differences (SSD). The eigen-
values of this linear transformation reveal how much the SSD approximation
varies if the patch would be shifted along the image axes. There are solutions
which interpret the eigenvalues based on a threshold [2] or without [3]. So called
global matching algorithms allow features to be detected within the whole image.
Therefore, a corner detector has to provide a high repeatability so that it de-
tects the same features also after large affine transformations. The global tracker
SIFT [4] uses difference of Gaussians (DoG), while the faster SURF [5] uses a
Haar wavelet approximation of the determinant of the Hessian. Both methods
have the drawback of being rather computationally expensive. Smith developed
the so called ”Smallest Uni-Value Segment Assimilating Nucleus Test” (SU-
SAN) [6] for corner detection. The brightness of the center pixel, the nucleus,
is compared to its circular pixel neighborhood, and the area of the uni-value
segment assimilating nucleus (USAN) is computed. Corner and edges can be
detected by evaluating this area, or it can also be used for noise reduction.
The advantages of this approach are that no noise sensitive derivation or other
computationally expensive operations have to be performed. In [6] a circular
disc with diameter 3.4 is used, which yields a total area of 37 pixels. A more
comprehensive survey can be found in [7].

In the last decade the processing power of standard computers has become
fast enough to provide corner extraction at video rate. However, running con-
ventional corner detection (i.e. the Harris corner detector) and performing other
intensive tasks, is computationally infeasible on a single processor. With the in-
troduction of recent techniques such as the “Features from Accelerated Segment
Test” (FAST) [8], feature extraction has seen significant performance increase for
real-time Computer Vision applications. While being efficient, this method has
proven in several applications to be reliable due to high repeatability (see [9]).
Some applications which use FAST are, e.g., Klein’s PTAM [10] and Taylor’s
robust feature matching in 2.3 us [11].

In this work we are going to present a novel corner detection approach, which
is based on the same corner criterion as FAST, but which provides a significantly
performance increase for arbitrary images. Unlike FAST, the corner detector
does not have to be trained for a specific scene, but it dynamically adapts to the
environment while processing an image.

Section 2 discusses FAST in more detail due to its strong relation to the
presented work. In Section 3, we will present the adaptive and generic accelerated
segment test with increased performance for arbitrary environments. Further,

AGAST Corner Detector 3

we will discuss the use of different segment pattern and show some experimental
results to demonstrate the achieved speed-up in Section 4.

2 FAST Revisited

The FAST principle is based on the SUSAN corner detector. Again, the center
of a circular area is used to determine brighter and darker neighboring pixels.
However, in the case of FAST, not the whole area of the circle is evaluated, but
only the pixels on the discretized circle describing the segment. Like SUSAN,
also FAST uses a Bresenham’s circle of diameter 3.4 pixels as test mask. Thus,
for a full accelerated segment test 16 pixels have to be compared to the value
of the nucleus. To prevent this extensive test, the corner criterion has been even
more relaxed. The criteria for a pixel to be a corner according to the accelerated
segment test (AST) is as follows: there must be at least S connected pixels on the
circle which are brighter or darker than a threshold determined by the center
pixel value. The values of the other 16 — S pixels are disregarded. Therefore,
the value S defines the maximum angle of the detected corner. Keeping S as
large as possible, while still suppressing edges (where S = 8), increases the
repeatability of the corner detector. Thus, FAST with segment size 9 (FAST-9) is
usually the preferred version, and is also used in our experiments unless otherwise
stated. The AST applies a minimum difference threshold (¢t) when comparing
the value of a pixel on the circular pattern with the brightness of the nucleus.
This parameter controls the sensitivity of the corner response. A large t-value
results in few but therefore only strong corners, while a small ¢-value yields also
corners with smoother gradients. In [9] is shown, that the AST with S = 9 has
a high repeatability, compared to other corner detectors as, e.g., Harris, DoG,
or SUSAN. The repeatability of a corner detector is a quality criterion which
measures the capability of a method to detect the same corners of a scene from
varying viewpoints.

One question still remains, namely which pixel to compare first, second, third,
and so forth. Obviously, there is a difference in speed, whether one consecutive
pixel after another is evaluated or, e.g., bisection on the circle pattern is used to
test if the corner criterion applies or cannot apply anymore. This kind of problem
is known as constrained twenty questions paradigm. When to ask which question
results in a decision tree with the aim to reduce its average path length. In [12],
Rosten uses ID3 [13], a machine learning method, to find the best tree based on
training data of the environment where FAST is applied. Doing so, it is not guar-
anteed that all possible pixel configurations are found (see Section 4.2). Already
small rotations of the camera may yield pixel configurations which have not been
measured in the test images. And even if all the pixel configurations are present,
a small rotation about the optical axis would cause the probability distribution
of the measured pixel configurations to change drastically. This may result in an
incorrect and slow corner response. To learn the probabilistic distribution of a
certain scene is therefore not applicable unless only the same viewpoints and the
same scene are expected. Note that the decision tree is optimized for a specific

4 Elmar Mair et al.

environment and has to be re-trained every time it changes to provide the best
performance.

The decision tree learning used by the FAST algorithm builds a ternary tree
with possible pixel states “darker”, “brighter” and “similar”. At each learning
step, both questions, “is brighter” and “is darker”, are applied for all remaining
pixel and the one with the maximum information gain is chosen. Hence, the state
of each pixel can be one of four possibilities: unknown (u), darker (d), brighter (b)
or similar (s). In the following we call a combination of N such states a pixel
configuration. The size of the configuration space is therefore 4V, which yields
416 =~ 4 .10 possible configurations for N = 16. For the rest of this paper we
refer to this model as restricted or four states configuration space.

FAST-ER, the most recent FAST derivation, has even a slightly increased
repeatability, compared to FAST-9, at the cost of computational performance [9].
The main difference is the thickness of the Bresenham’s circle, that has been
increased to 3 pixels. This results again in a more SUSAN-like algorithm, which
spans a circular area of 56 pixels, disregarding the inner 3x3 pixels. Again, ID3
is used to build the decision tree, restricting the evaluation to only a small part
of the 47 pixels.

3 Adaptive and Generic Accelerated Segment Test

In this section we present a corner detection approach which is also based on the
AST, but which is more efficient, while being more generic too. We introduce
the reader step-wise to the different concepts underlying the algorithm.

3.1 Configuration Space for a Binary Search Tree

Instead of only considering a restricted configuration space, as in FAST, we
propose to use a more detailed configuration space in order to provide a more
efficient solution. To do this, we consider to evaluate a single question per time.
The idea is as follows: choose one of the pixels to test and one question to pose.
The question is then evaluated for this given pixel, and the response is used to
decide the following pixel and question to query. Searching for a corner, hence,
reduces to traversing a binary decision tree. Since, it is required to specify which
pixel to query and the type of question to use. Consequently, the configuration
space increases by the addition of two more states: “not brighter” (b) and “not
darker” (d). Using a similar notion as [12], the state of a pixel relative to the
nucleus n, denoted by n — x, is assigned as follows:

d, In_.<I,—1 (darker)
dy Iz #I,—t A\ S,_,=u (notdarker)
g _) hisatn—t \ S, :E (similar) (1)
e s, ILnw PI,+t N\ S,_,=d (similar)
b, In.z#I,+t A\ S,_,=u (notbrighter)
b, I,_.>1I,+t (brighter)

AGAST Corner Detector 5

where S/, is the preceding state, I is the brightness of a pixel and u means
that the state is still unknown. This results in a binary tree representation, as
opposed to a ternary tree, allowing a single evaluation at each node. Note that
this increases the configuration space size to 6%, which yields 6¢ ~ 2.10'2
possible nodes for N = 16.

Associated with each branch of our tree is a processing cost, which represents
the computational cost on the target machine. These costs vary due to different

memory access times. We specify these as follows,

— cp: register access cost (second comparison of the last tested pixel),
— co: cache access cost (testing of a pixel in the same row)
— cp: memory access cost (testing of any other pixel).

Further, for each of these, an additional cost equivalent to evaluating a greater-
than operation, is required.

3.2 Building the Optimal Decision Tree

It is well known that a greedy algorithm, such as ID3, performs rather poorly
when finding the optimal decision tree [14]. However, the issue of finding such a
tree is a well-studied problem, where it has been shown that finding the global
optimum is NP-complete [15]. There are several solutions towards finding the
optimal tree [16-18], but they are either approximations to the global optimum
or are restricted to special cases, making them ill-suited for this application.

In order to find the optimal decision tree we implemented an algorithm which
is similar to the backward induction method [16]. We explore the whole configu-
ration space starting at the root of the decision tree, where none of the pixels is
known. Nodes of the tree are formed by recursively evaluating a possible question
at a given pixel. We explore the configuration space (using Depth First Search)
until a leaf is found, where a leaf is defined as the first node on the path which
fulfills or cannot fulfill anymore the AST corner criteria. The cost at a given leaf
is zero, while the cost at any given internal node, cp, is determined by picking
the minimum cost computed for each child pair C; and C_, representing the
positive and negative results of a test, by

cp = Mmoo tpeser + o tpoer = co, teo tpper (2)

where cp represents the cost of the pixel evaluation with ¢r € {cg,cc,car} and
the pp, pc, and pc_ are the probabilities of the pixel configurations at the
parent and child nodes respectively. Using this dynamic programming technique
allows us to find the decision tree for an optimal AST (OAST) efficiently. The
resulting decision tree can therefore be optimized for different cg, cc and c¢py, but
also for arbitrary probabilities for each pixel configuration, which is necessary
for our approach described in the following section.

6 Elmar Mair et al.

The binary configuration space allows for decision trees which reduce the
entropy more quickly than a ternary tree, as questions which contain little in-
formation gain are deferred to later stages of the decision process. Note that the
additional cost of re-evaluating the same pixel at a subsequent point in time is
taken into account when computing the optimal tree.

3.3 Adaptive Tree Switching

Every image has, independent of the scene, homogeneous and (or) cluttered
areas representing uniform surfaces or structured regions with texture. Hence,
instead of learning the distribution of the pixel configurations from training
images, like FAST, a first generalization would be to learn the probability of
structured and homogeneous regions and optimize the decision tree according to
this distribution. The resulting tree is complete and optimized for the trained
scene, while being invariant to camera rotations. The probability of an image
to be uniform can be modeled by the probability of a pixel state to be similar
to the nucleus (ps). The “brighter” and “darker” states are mirrored states,
which means that, e.g., a brighter pixel on the test pattern will evaluate the
current nucleus pixel as darker as soon as it becomes the center pixel. Due to
this mirroring the states “brighter” and “darker” are assumed to have the same
probability (ppq), which is chosen to sum up to one with ps (ps + 2ppa = 1).
Thus, the probability of a pixel configuration px can be computed as follows:

1 for S,,_.; = u

N P for S;,—; = s
_ ; ith ;= s n—i — 3
= eewitn =0 s —ays=e O

DPbd +ps for Sn—»i = a V Sn—»i = E

The probability distribution of the pixel configuration is therefore a trinomial
distribution with the probabilities p, and twice pyg. Note that the states d,
b and u are not samples of this distribution but represent a set of two and
three samples respectively. While this approach provides a good solution for the
trained environment, it is not generic and, as FAST, it has to be learned for each
specific scene where it is applied.

A more efficient and generic solution is achieved, if the algorithm automat-
ically adapts to the area which is currently processed, i.e. it switches between
decision trees which are optimized for the specific area. The idea is to build,
e.g., two trees and specialize one for homogeneous and one for structured re-
gions based on a small and a large value for ps. At the end of each decision path,
where the corner criterion is met or cannot be fulfilled anymore, a jump to the
appropriate specialized tree is performed based on the pixel configuration of this
leaf (see Fig. 1). This switch between the specialized decision trees comes with
no additional costs, because the evaluation of the leaf node is done offline when
generating the specialized tree. In this way the AST is adapted to each image
section dynamically and its performance is increased, for an arbitrary scene. Any
learning becomes needless.

AGAST Corner Detector 7

Pixel Neighborhood:

Homogeneous

Heterogeneous

Fig. 1. Principle of the adaptive and generic accelerated segment test. The AGAST
switches between two (or more) specialized trees as soon as the pixel neighborhood
changes. The lighter the gray of a leaf the more equal pixels are in the configuration.
The left tree achieves less pixel evaluations (shorter decision paths) in a homogeneous
pixel neighborhood, while the right one is optimized for textured regions.

Because a switch between the trees at no costs can only be performed at
a leaf, the adaption is delayed by one test. Therefore, the only case were the
adaptive and generic accelerated segment test (AGAST) would be less efficient
than FAST), is if the environment would switch from homogeneous to structured
and vice versa at consecutive pixels. This is practically not possible, due to the
mirroring effect of dissimilar pixels as described earlier. However, natural images
usually do not have a random brightness distribution, but they are rather split
into cluttered and uniform regions. If the decision trees can be strongly balanced
by varying ps, also more than two different weighted trees can be used.

4 Experimental Results

The speed and the repeatability of FAST have already been compared to state
of the art corner detection algorithms in [9]. In those experiments FAST-9 has
demonstrated better performance than, e.g., Harris, DoG, or SUSAN. Thus, we
renounce to compare our AST variation only with FAST-9. Note that our ap-
proach is also based on the AST and, therefore, it provides the same repeatability
as FAST.

First, we show and discuss an experiment where we compare the performance
of different AST masks on noisy and blurry images. In Section 4.2 we evaluate
the corner response of different balanced decision trees; and, finally, we compare
the performance of FAST with our approach.

4.1 Evaluation of Various AST Patterns

As already mentioned, SUSAN as well as FAST use a circle radius of 3.4 pixels.
In [6] it is noted that the mask size does not influence the feature detection

8 Elmar Mair et al.

as long as there is no more than one feature within the mask. The effect of
the mask size of an image operator is well studied for filters with dense masks.
Their size affects the smoothing behavior so that larger filters are more robust
against noise. The corresponding effect for the AST pattern size has so far not
been discussed in the similar literature. While for the dense mask of SUSAN,
the same smoothing criteria as mentioned above apply, it is not obvious that
large circles have a similar smoothing effect for AST. Therefore, we use eight
checkerboard pictures acquired from different viewpoints (see Fig. 3) to evaluate
the corner response of the AST pattern shown in Fig. 2. A checkerboard provides
many bright and dark corners of different sizes if viewed from different angles.
Further, we add Gaussian blur and noise to determine the performance of these
pattern on images of poor quality. For all the tests the same threshold is applied.

Fig. 2. Different mask sizes for the AST: a 4 pixels mask (red), a squared and diamond
shaped 12 pixels mask (blue, left and right figure) and a 16 pixels mask (green). The
black pixel represents the nucleus.

Fig. 3. Checkerboard dataset.

For pattern sizes up to 12 pixels it is possible to compute the optimal path
by exploring the six state configuration space as described in Section 3.1. The
computational resources of conventional computers are not sufficient to find the
optimal tree for a 16 pixel pattern within the extended configuration space in
reasonable time. Thus, for this size we compute the optimal tree based on the
four state space, yielding a ternary decision tree. Before generating the machine
code, the tree is splatted as described in [9] to cut off equal branches.

Fig. 4 shows the corner response of a 16 pixel pattern with arc lengths of 9, 10
and 11 (12 is omitted because it does not find any features at these corners), the

AGAST Corner Detector 9

i"-d' '-i'

(a) 9 of 16) 10 of 16) 11 of 16
(d) 7 of 12 diamond (e) 7 of 12 square) 50f 8

Fig. 4. The corner response for different AST pattern. Detected features are colored
in red. The corners after non-maximum suppression are green.

12 pixel pattern with a square and diamond shape as well as the 8 pixel pattern.
The larger the mask and the larger the arc threshold .S, the more features that
are found. A small arc is more discriminating and yields features only close to
the real corner location, which is apparent in Fig. 4(c). Large patterns result in
multiple responses around a corner location, but they may lie at a distance of
about the radius of the mask from the real corner (see Fig. 4(a)). Thus, they do
not preserve the corner location. They are therefore slower for two reasons: 1) the
processing of a large pattern is of course computationally more expensive, and
2) they need to evaluate many features for non-maximum suppression. Smaller
patterns better preserve the locality constraint of a corner. However, in the case
of the pattern of size 8, the features are too close, so that a part of them get lost
after non-maximum suppression. Thus, for this size such a post processing is not
necessary, because only single responses are observed at a corner, and should
even be avoided to prevent the loss of features.

For the next experiment the original checkerboard images were modified by
adding Gaussian noise (5% and 10%) and Gaussian blur (¢ = 0.5, 1.0, 1.5).
Fig. 5 shows the performance of the different pattern on these images. Here the
advantage of the 16 pixel mask with arc length 9, 9(16), becomes apparent. It
is more robust against noise and blur. However, the same mask sizes but with
larger arcs show a similar drop-off on blurry images as the smaller pattern with
similar segment angle. The 16 pixel mask with arc length 12, 12(16), has a similar
arc angle as 5(8), while 7(12) has a similar angle as 16(10).

The size of the arc angle controls the repeatability, as shown in [9], and
the robustness against blur. The arc length and, thus, the radius of the mask
influences the robustness against noise.

4.2 Corner Response Time

The corner response time of a certain decision tree is evaluated by computing
the number of tests (greater-than or less-than evaluations) for all the possible

10 Elmar Mair et al.

Original Noise (5%) Noise (10%)
2500 2500 6000
2000 2000 5000
® 1500 ¢ 1500 o 4000
2 g 2 3000
S 1000 8 1000 g
* I +* I % 2000
500 500
l I 1000
0 = 0 = 0
9(16) 10(16) 12(16) 7(12D) 7(12S) 5(8) 9(16) 10(16) 12(16) 7(12D) 7(12S) 5(8) 9(16) 10(16) 12(16)7(12D 7(12S) 5(8)
Blur (0=0.5) Blur (0=1.0) Blur (0=1.5)

2500 2500 1200

1000
2000 2000
M all

1500 1500

B non-max.

1000 1000
400
- I ” I II -
. . M m m_

9(16) 10(16) 12(16) 7(12D) 7(12S) 5(8) 9(16) 10(16) 12(16) 7(12D) 7(12S) 5(8) 9(16) 10(16) 12(16) 7(12D) 7(12S) 5(8)

#corners
corners
corners

Fig. 5. These charts compare the corner response of different patterns for blurry and
noisy images. To preserve the comparability we use the arc length S and in brackets
the mask size to label the bars. The red bars show the total amount of features found,
while the green bars represent the number of corners after non-maximum suppression.
Note that the scales of the charts are not the same.

pixel configurations of a mask. To compare the weighting effects of different
probabilities of a pixel to be similar (ps), as described in Section 3.3, the pixel
configurations are divided into classes representing the number of similar pixels.
Fig. 6 shows the deviation of the mean and the standard deviation of the corner
response time from the minimum of all tests on a class. The trees are built for 12
pixel masks exploring the six state configuration space. For zero or one similar
pixels the trees with weight p, = 0.1 and p; = 0.01 perform fewer tests as trees
with larger values for p;. Also the standard deviation of the classes is smaller
for these trees. It is apparent that the decision trees can not be balanced signif-
icantly due to the strong symmetry of this special constrained twenty questions
problem. Besides, the classes with a large number of similar pixels cannot be
balanced properly anymore, because the amount of possible configurations de-
creases drastically for them. Nevertheless, the performance of the adaptive tree
is better than if only one tree is used, as we will see in Section 4.3.

No performance increase can be achieved for different ps by exploring only the
restricted configuration space, due to the reduced degrees of freedom compared to
the full six state configuration space. The limitations of the latter space are also
apparent in the performance of the tree M12 (4st), which shows a significantly
higher average of tests as M12 (6st) in Table 1. This table compares the corner
response time for trees of various mask sizes which were built using different
methods. The second data row M12 (6st) shows the minimum time of the trees

AGAST Corner Detector 11

Deviation of the Mean Value Deviation of the Standard Deviation
0.09 0.14
008 M ps=0.01 _ W ps=0.01
M ps=0.1 012 M ps=0.1

2 oo O ps=1/3 2 O ps=1/3
2 Q2 o1
S 006 M ps=0.9] M ps=0.9
H 0 ps=0.99 - 0 ps=0.99
S o0s P g oos P
@ o
T oo T oo
c c
9 003 kel
g © o004
3 002 %
© I © 0.02

001 I I I

o lﬂ il Y n Il | ﬂ I M -
0 1 2 3 4 5 6 7 8 9 10 11 12 o 1 2 3 4 5 6 7 8 9 10 11 12
similar pixels # similar pixels

Fig. 6. This chart illustrates the performance of various decision trees, based on dif-
ferent probabilities for a pixel to be similar (p,). Each decision tree was tested with all
possible pixel combination for the mask.

compared in Fig. 6 which were specialized for different ps. Thus, these values are
achieved using the AGAST, switching between two trees which are optimized
for ps = 0.1 and ps = 1/3.

Experiments have shown, that by learning a decision tree based on 120 out-
door images as proposed in [12], only about 87000 pixel configurations out of
over 43 million possible ones could be found. Any learned decision tree should
therefore be enhanced by the missing configurations to prevent false positive and
false negative responses. The ID3 based decision tree, learned from all possible
configurations with equal weights, has shown to achieve the best corner response
of all trees witch were optimized using ID3 and various ps. Indeed, it yields the
identical corner response as the code provided in the FAST sources.*

4.3 Performance Experiments

All the timing experiments are run on one core of an Intel Core2 Duo (P8600)
processor at 2.40 GHz. We are using five images from different scenes®, shown
in Fig. 7.

Table 2 shows the performance of various AST-decision trees with different
mask sizes and built by different methods. Please note, that the achieved speed-
ups do not only affect the corner detection step, but also the computation of the
pixel-score for the non-maximum suppression.

To compare the performance of our decision trees with the conventional
FAST-9 algorithm, we use the code from the FAST sources mentioned in Sec-
tion 4.2. The FAST and optimal AST (OAST) trees are built based on a uniform
probability distribution, which means that the probability for any pixel configu-

* http:/ /svr-www.eng.cam.ac.uk/~er258 /work /fast.html
5 The lab scene is provided in the FAST Matlab package at
http://svr-www.eng.cam.ac.uk/ er258 /work /fast-matlab-src-2.0.zip

12 Elmar Mair et al.

Table 1. This table compares the average tests performed for each class of configuration
using various mask sizes and different methods to find the best decision tree. From left
to the right: mask size 8 exploring the six states configuration space, mask size 12
exploring the six states space, mask size 12 exploring the four states space, mask size
16 exploring the four states space and the ID3-learned decision tree trained on all
possible configurations. The probability of all configurations was assumed to be equal
for all trees beside M12 (6st), which represents the minimum tests for all decision trees
of Fig. 6. These trees were built by exploring the six state configuration space for a
mask size of 12 pixels using different weights.

ne || M8 (6st) | M12 (6st) | M12 (4st) | MI6 (4st) | M16 (ID3)
0 5.54 6.53 7.80 8.1528 8.3651
1 5.32 6.17 7.27 7.6485 7.8073
2 5.07 5.82 6.77 7.1948 7.3094
3 4.81 5.48 6.33 6.7893 6.8692
4 4.59 5.19 5.93 6.4277 6.4812
5 4.41 4.94 5.59 6.1044 6.1388
6 4.26 4.74 5.28 5.8144 5.8354
7 413 4.56 5.01 5.5529 5.5649
8 4.00 4.41 477 5.3160 5.3223
9 - 4.29 4.55 5.1003 5.1033
10 - 4.18 4.35 4.9031 4.9043
11 - 4.08 4.17 4.7221 4.7225
12 - 4.00 4.00 4.5554 4.5555
13 - - - 4.4013 4.4013
14 - - - 4.2583 4.2583
15 - - - 4.1250 4.1250
16 - - - 4.0000 4.0000

ration is the same. This probability distribution yielded the trees with the best
overall corner response and therefore the best performance.

As mentioned earlier, it is not possible to search for the optimal decision
tree for a 16 pixel mask within the complete configuration space in reasonable
time on conventional computer. Therefore, the tree is optimized in the four state
configuration space and achieves an average speed-up of about 13% regarding
FAST-9. For the 12 pixels mask the ideal tree can be found in the six state space
and by combining the trees specialized for ps = 1/3 and p; = 0.1 a mean speed-
up of about 23% and up to more than 30% can be gained. Using the AGAST-5
decision tree on the 8 pixels mask results in a performance increase of up to
almost 50%. Of course, with the drawback of its sensitivity regarding noise and
blur as discussed in Section 4.1.

The C-sources for OAST-9, AGAST-7 and AGAST-5 are available for down-
load at http://www6.cs.tum.edu/Main/ResearchAgast. The trees have been
optimized according to standard ratios of memory access times.

AGAST Corner Detector 13

(a) Lab (b) Outdoor) Indoor (d) Aerial) Medical

Fig. 7. The scenes used for the performance test are a lab scene (768x288), an outdoor
image (640x480), an indoor environment (780x580), an aerial photo (780x582) and an
image from a medical application (370x370).

Table 2. This table shows the computational time of various AST-decision trees. The
value in parentheses, close to the tree names, stands for the mask size which the tree is
based on. The specified speedup is relative to the FAST performance. The first value
represents the mean speedup for all five images while the value in parentheses shows
the maximum speedup measured.

Image Lab | Outdoor | Indoor | Aerial | Medical | Speed-Up [%)]
FAST-9 (16) 1.8867 2.4242 1.8516 | 2.2798 1.1106 -
OAST-9 (16) 1.5384 2.2970 1.6197 | 1.9225 0.9413 13.4 (18.5)
AGAST-7 (12) || 1.2686 1.9416 1.4405 | 1.8865 | 0.8574 23.0 (32.8)
AGAST-5 (8) 0.9670 1.4582 1.3330 | 1.8742 | 0.7727 33.0 (48.7)

5 Conclusion and Future Work

We have shown how to increase the performance of the accelerated segment
test by combining specialized decision trees. The optimal trees are found by
exploiting the full binary configuration space. The algorithm dynamically adapts
to an arbitrary scene which makes the accelerated segment test generic. In doing
so no additional costs arise. This makes this approach to the currently most
efficient corner detection algorithm to our knowledge. Moreover, any decision
tree learning to adapt to an environment becomes needless. By exploring the
full configuration space also the processor architecture and its memory access
times can be taken into account to yield the best performance on a specific target
machine.

Further, we have discussed the influence of different AST mask sizes and
shown that, for images of good quality, smaller mask sizes should be preferred.
They reduce the processing time and emphasize the locality constraint of a
corner. Dealing with blurry and noisy images, patterns with a larger radius are
favored.

For future research we would like to implement an approximation for decision
tree learning as proposed in [17], which considers also the length of the decision
path and not only the minimization of the entropy, as ID3. In this way, we can
also balance trees of pattern sizes 16 or more pixels and implement the AGAST
for these masks. Further, we are looking for an efficient combination of different
mask sizes to yield high robustness while preserving the real corner location.

14 Elmar Mair et al.

6 Acknowledgments

We want to particularly acknowledge Raphael Sznitman for the fruitful discus-
sions and his support. Further, we want to thank Frank Sehnke and the TUM-
Cogbotlab group for allowing us to use one of their PCs, which sped up the
development significantly.

This work was support by the DLR internal funding for image-based navi-
gation systems.

References

1. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings
of The Fourth Alvey Vision Conference. (1988) 147-151

2. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’94). (1994) 593-600

3. Noble, A.: Descriptions of Image Surfaces. PhD thesis, Department of Engineering
Science, Oxford University (1989)

4. Lowe, D.G.: Object recognition from local scale-invariant features. International
Journal of Computer Vision 60 (2004) 91-110

5. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: European
Conference on Computer Vision (ECCV’06). (2006) 404-417

6. Smith, S.M., Brady, J.M.: Susan - a new approach to low level image processing.
International Journal of Computer Vision 23 (1997) 45-78

7. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Foun-
dations and Trends in Computer Graphics and Vision 3 (2008) 177-280

8. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking.
In: IEEE International Conference on Computer Vision (ICCV’05). Volume 2.
(2005) 1508-1511

9. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning ap-
proach to corner detection. IEEE Trans. Pattern Analysis and Machine Intelligence
(PAMI) (2009)

10. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’07), Nara, Japan (2007)

11. Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3us. In:
IEEE CVPR Workshop on Feature Detectors and Descriptors: The State Of The
Art and Beyond. (2009)

12. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
European Conference on Computer Vision (ECCV’06). Volume 1. (2006) 430-443

13. Quinlan, J.R.: Induction of decision trees. Machine Learning (1986)

14. Garey, M.R., Graham, R.L.: Performance bounds on the splitting algorithm for
binary testing. Acta Informatica 3 (1974) 347-355

15. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete.
Information Processing Letters 5 (1976) 15-17

16. Garey, M.R.: Optimal binary identification procedures. SIAM Journal on Applied
Mathematics 23 (1972) 173-186

17. Geman, D., Jedynak, B.: Model-based classification trees. IEEE Transactions on
Information Theory 47 (2001)

18. Kislitsyn, S.S.: On discrete search problems. Cybernetics and Systems Analysis 2
(1966) 52-57

