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A novel approach to retrieving total ozone columns from the ERS2 GOME �Global Ozone Monitoring
Experiment� spectral data has been developed. With selected GOME wavelength regions, from clear
and cloudy pixels alike plus orbital and instrument data as input, a feed-forward neural network was
trained to determine total ozone in a one-step inverse retrieval procedure. To achieve this training,
ground-based total ozone measurements from the World Ozone and Ultraviolet Data Center �WOUDC�
for the years 1996–2000, supplemented with Dobson-corrected Total Ozone Mapping Spectrometer
�TOMS� data to provide global coverage, were collocated with GOME ground pixels into a training data
set. Validation of the neural-network-retrieved ozone values relative to independent ground stations
yielded a rms error of better than 11 Dobson units. Comparisons performed on the basis of operationally
available TOMS and GOME level-3 maps exhibit good agreement in general, with a latitude-dependent
offset. © 2002 Optical Society of America
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1. Introduction

Measuring atmospheric parameters and constituents
on a global scale has been a challenge to atmospheric
scientists ever since the establishment of this disci-
pline and has not as yet lost any of its significance.
For the measurement of total ozone, which is one of
the most important trace gases to influence our cli-
mate and health, a ground-based detection network
was set up as early as in the 1930s through the pio-
neering work of Dobson.1 Although it has been con-
tinually growing since then, this network has never
achieved true global coverage, as its horizontal reso-
lution is limited by the number of stations and by
their inherent inability to provide arealike measure-
ments. This situation improved dramatically with
the advent of orbital instruments in the late 1960s,
which for the first time were able to sample the at-
mospheric state of the entire globe within some hours
or days. However, these instruments in turn intro-
duced their own problems, the most troubling of
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which nowadays appear to be that �a� once in orbit,
the instruments are difficult to recalibrate, �b� invert-
ing their data to yield atmospheric constituents is a
much more complex operation than for ground-based
instruments, and �c� their data rate increases faster
than the amount of available computer power and
infrastructure needed for real-time data processing
or reprocessing of historical data.

To ameliorate these problems, the development of
new retrieval algorithms is essential. In an ideal
case, such algorithms would not rely on detailed
knowledge of all physical processes involved and
would be independent of all calibration-related issues
and fast enough to be implemented directly at the
receiving stations with low-cost hardware. Because
neural networks generally exhibit these properties,
their use in satellite meteorology has grown in recent
years. For instance, Chevallier et al.2 developed a
complex neural-network scheme for long-wave radi-
ation budget calculations that increased the process-
ing speed by a factor of 106 compared with the
classical line-by-line model. Aires et al.3 success-
fully retrieved various atmospheric parameters from
the Special Sensor Microwave�Imager �SSM�I� over
land, a task that had not been successfully completed
previously because of the many unknown phenomena
involved.

In this paper we shall focus on total ozone retrieval
from the Global Ozone Monitoring Experiment
�GOME�, a UV–visible nadir viewing spectrometer
that has been operational since June 1995. Ozone
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columns are currently retrieved operationally at the
Deutsches Zentrum für Luft- und Raumfahrt by dif-
ferential optical absorption spectroscopy.4 In a first
step, slant column densities are determined; slant
columns are then converted to vertical columns by
calculation of an air mass factor �AMF� by use of a
multiple-scattering pseudospherical radiative trans-
fer model in which a climatological ozone profile is
assumed.5–7 Validation with ground-based data
showed global agreement to within �4%; however, at
solar zenith angles above 60° deviations of 10% and
more were observed.8,9

The presence of these deviations hints at the fact
that a considerable part of the observed errors stem
from problems in calculation of AMFs, whose effect is
largest at high solar zenith angles. An inherent
problem of the Differential Optical Absorption Spec-
troscopy�AMF approach is that to determine AMFs
properly one needs to know the vertical distribution
of the corresponding absorber in advance, which is
therefore inferred from climatology. A comprehen-
sive discussion of this issue and its possible solutions
is beyond the scope of this paper but can be found in
those of Marquard et al.10 and Palmer et al.11

As AMF calculation is also the most time consum-
ing part of the retrieval, efforts have been made to
speed up this part of the retrieval without jeopardiz-
ing precision. Loyola12 trained neural networks on
data calculated with a slow but accurate radiative
transfer model, achieving relative AMF differences
below 2% while reducing the calculation time to neg-
ligible amounts. However, this algorithm is so far
not part of the standard retrieval. A similar in-
crease in speed was reported by Del Frate et al.,13

who used neural networks to effectively emulate the
GOME ozone profile retrieval system of the Ruther-
ford Appleton Laboratory.14

All the applications mentioned so far have in com-
mon the use of neural networks solely as an opera-
tional shortcut for already existing physical
algorithms. However, the capabilities of those net-
works go beyond that. When they are applied to a
training set of real measurements, they effectively
constitute an independent retrieval method that
deals with instrument calibration and degradation
independently. Krasnopolsky,15 for instance, exam-
ined atmospheric parameter retrieval from SSM�I
data over sea. A neural network used for this pur-
pose has a number of independent parameters simi-
lar to those in the corresponding physical or empirical
methods. All these models have to be tuned to a
number of collocated measurements to produce the
desired retrieval accuracy. Using these measure-
ments directly as training data for a neural network
has led to better results in all respects.

For total ozone, the advantage of using a neural-
network-based retrieval system clearly lies in the
availability of ample ground data from the Dobson
network and its successors. For the NOAA
TIROS-N Operational Vertical Sounder �TOVS� in-
strument suite, which is a combination of infrared
and microwave radiometers, it was shown that a

neural-network approach is able to account properly
for extreme slant viewing geometries at wide scan
angles of as much as �49.5° as well as for cloud-
contaminated pixels.16,17 Whereas the operational
TOVS total ozone product exhibits rms errors, with
respect to ground stations, in the order of 25 DU
greater than those of ground stations,18 the neural-
network approach reaches 15 DU. The same meth-
odology has now been adapted and enhanced for
GOME ozone column retrieval, establishing an alter-
native to the standard retrieval procedures.

2. Data and Methods

A. Collocations

We obtained GOME radiance and irradiance spectra
from the years 1996–2000 by applying the GOME
Data Processor �GDP� extraction program to the cur-
rent GOME level-1 data program �Version 2.0 �Ref.
19��. After Doppler correction of the daily solar spec-
trum, earthshine and solar spectra were interpolated
to a common wavelength grid. This and the follow-
ing Sun normalization of the earthshine spectra in-
duce some high-frequency noise, especially around
the Fraunhofer lines in the solar spectrum. How-
ever, as an alternative the neural network would
have to be provided with the relative wavelength
shift of earthshine versus solar spectrum for each
single wavelength, such that it could independently
perform some kind of correction based on these shifts.
Neural networks are generally quite noise resistant,
so using a common grid is preferable to feeding the
entire wavelength information into the network,
which would roughly double the number of input data
and slow training considerably.

The construction of a suitable set of neural network
training data requires a considerable amount of what
is commonly referred to as ground truth, meaning
reliable measurements of the quantity to be re-
trieved. To this end, ground-based total ozone mea-
surements from Dobson, Brewer, and filter
spectrometers that are collected and quality-
controlled by the World Ozone and Ultraviolet Radi-
ation Data Centre20 �WOUDC� have been utilized.
We designate this data set ground data in what fol-
lows.

However, comparing the data of individual ground
stations with satellite measurements reveals consid-
erable biases and variations.21,22 Also, these sta-
tions are not scattered evenly around the globe.
Therefore, in an effort to compensate for the sparsity
of ground stations in the Southern Hemisphere and
in the polar regions, the WOUDC database has been
supplemented with virtual stations, namely, fixed
geographical locations for which one total ozone value
per day was taken from the gridded TOMS Version 7
ozone field.23

The question of how to homogenize the resultant
mixed total ozone data set then arises. For the pur-
pose of training a neural network it is more desirable
to deal with known biases than with random scatter,
because the latter slows the training process and in-
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creases the achievable minimum error. Biases,
however, can be corrected before training com-
mences.

To reduce scatter in the training data we set up an
ad hoc ranking scheme for the ground stations, that
assigns a consistency score to each station based on
bias, standard deviation, and mean absolute errors of
ground data relative to operational TOMS and
GOME total ozone column products. This scheme
has been tested extensively with neural networks
trained to retrieve total ozone from the NOAA
TOVS,17 and it was found that selecting the most
consistent 100 of the 250 stations yields a good basis
for the training data set.

Not surprisingly, the stations retained by the
ranking process cluster around the northern
midlatitudes—where station density is highest—
and, to a lesser degree, the tropics, where low ozone
variability leads to small differences with respect to
satellite measurements. A total of 45 virtual sta-
tions were created poleward of 60° latitude. Between
60° S and 60° N, the resulting training data set thus
contains only ground data, south of 60° S exclusively
TOMS data, and north of 60° N a mixture of both data
types, with a prevalence of TOMS data.

Whether TOMS or the ground data are closer to the
true total ozone columns will not be discussed here,
because the answer is not relevant for neural-
network training as long as the data sources them-
selves are consistent. However, to ensure a smooth
transition between the latitude regions dominated by
ground data and those dominated by TOMS data it is
desirable to correct for offsets between these data.
In this paper we assume that the ground data are
correct; therefore a time- and latitude-dependent off-
set function derived by Bodeker et al.22 was applied to
the virtual station data �Fig. 1� to make them consis-
tent with the ground data. The function was de-
vised for purposes of trend analysis and contains 22
coefficients, which were fitted to the difference be-
tween TOMS and ground data by least-squares re-
gression. As can be seen, the differences reach
values of 20 DU �Fig. 1�.

The maximum horizontal collocation distance be-
tween the GOME field-of-view �FOV� center and the
station location was 120 km. Only forward-scan pix-
els from the same day as the ground data were uti-
lized.

The neural-network test data set originated from
the collocation of six selected stations with known
data quality, suitable location, or both �Table 1�.
The retrieval results listed in this table are discussed
in Section 3 below. The purpose of this data set is
mainly to monitor the generalization ability of the
neural network; therefore stations from the various
training data regimes were selected. In addition to
stations at Hohenpeissenberg and Bangkok, and the
virtual stations at 85 °N and 85 °S, which together
cover the whole latitude range, we used the station at
Boulder to check whether there were any longitudi-
nal effects and the virtual station at 80 °N to check

whether the latitudinal transition from ground to
TOMS data ran smoothly.

To prevent overrepresentation of certain total
ozone values or geographical regions in the training
data set, a two-dimensional histogram with bins of 10
DU times 10° latitude was employed. The maxi-
mum number of collocations per bin was then limited
to 500, whereby excess collocations were randomly
selected and discarded. Multiple GOME FOVs col-
located with the same total ozone measurement and
vice versa have been allowed, because they help the
neural network to select relevant features in the in-
put data and allow it to deal with instrument noise as
well as with uncertainties of ground and TOMS data.
In this manner two data sets that comprised 138,489
training and 16,977 test collocations were created.

B. Neural-Network Technique

The feed-forward type of neural network employed
here is called a perceptron and consists of successive
one-dimensional layers.24 The type of training algo-
rithm employed largely determines the time needed
for training and the minimum rms error �RMSE�

Fig. 1. Fit function for the difference between the ground-based
total ozone network minus Earth probe TOMS V.7 ozone columns,
in DU �taken from Bodeker et al.22�.
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reached after learning. Here the resilient propaga-
tion �Rprop� algorithm25 yielded the best results.

Selection of suitable numbers and sizes of neural-
network layers is crucial to the neural network’s suc-
cess. To take advantage of the network’s nonlinear
approximation capabilities requires, in addition to an
input and an output layer, at least one hidden or
intermediate layer.26 The exact size of the hidden
layer has to be determined empirically.27

The most successful network configuration found
in this study uses 20 hidden neurons. The input
consists of GOME Sun-normalized earthshine spec-
tra covering the 320–340-nm range and of satellite
orientation information, e.g., on line of sight, solar
zenith angle, relative azimuth angle between the Sun
and the line of sight, and center latitude of the ground
pixel. The spectral range used here is greater than
the one used to derive the GOME level-2 Version 2.7
total ozone data �325–335 nm �Refs. 6 and 7��. To
speed up the training process we halved the number
of spectral samples by averaging pairs of Sun-
normalized radiances.

The instrumental lifetime is an additional input
parameter that allows for time-dependent correc-
tions, such as instrument degradation functions, to
be found by the network.28 This is not normally a
limitation to the applicability of the method beyond
the training data time range because the network can
extrapolate instrument degradation several months
into the future, provided that there are no abrupt
changes. In an operational regime the network
would be retrained every few months with the new
data included in the training set.

No cloud-clearing procedure was employed, which
means that cloudy, partially cloudy, and clear scenes
were treated in the same way.

3. Results and Discussion

Figure 2 shows the development of the RMSE of
neural-network output with respect to the collocated
ozone values for the first 10,000 training epochs of the
best-trained network. An epoch is defined as one
presentation of all training collocations to the neural
network. As can be seen, the training data set’s
RMSE decreases monotonically, which is a character-
istic feature of the Rprop algorithm. The test RMSE
decreases more irregularly, partially because it is cal-
culated from a much lower number of data, but both

level out after a few thousand epochs, after which
training progresses only slowly �note the double-log
scaling�. The minimum RMSE, 10.7 DU, was
reached after �50,000 epochs. The fact that the test
error decreases further than the training error hints
at the higher quality of ground data in the test data
set.

Table 1 lists the bias and the standard deviation of
the retrieved ozone columns with respect to the test
stations’ total ozone measurements. The RMSE is
lowest for Antarctica and the tropics, where day-to-
day variations of ozone are also quite low. Stations
within the same latitude region do not show signifi-
cant differences. The bias for virtual station data is
less than that for the ground-regime data, as the
TOMS measurements are in themselves highly ho-
mogenous. The virtual station at 80 °N, which is
located close to several training ground stations near
the Arctic Sea, does not exhibit much larger errors
than do the other test stations, therefore proving that
the latitudinal mixing of ground and TOMS data does
not have adverse effects. A considerable part of the
remaining variance is due to collocation errors: A
simple calculation of the day-to-day variations of
ozone based on all the WOUDC data reveals that
these errors are of the order of 4% within 30° of the
equator, �5% at the poles, and 7–8% in the northern
midlatitudes.

Two time series of differences between GOME re-
trieval and collocated test station data from Hohen-

Table 1. Selected Ozone Stations for the Neural-Network Test Data Seta

Station Latitude Longitude Regimeb Bias �%� � �%� RMSE �DU�

Hohenpeissenberg 48 °N 11 °E Ground 2.28 2.60 11.42
Boulder 40 °N 105 °W Ground 2.48 3.20 12.36
Bangkok 14 °N 101 °E Ground �1.21 2.92 8.00
Virtual TOMS station 85 °N 45 °W TOMS �0.38 3.15 10.97
Virtual TOMS station 80 °N 90 °E Both 0.12 3.48 11.96
Virtual TOMS station 85 °S 45 °W TOMS 0.95 4.63 8.78

aOzone column bias and standard deviation � were calculated for neural-network retrievals of the collocated GOME pixels as �GOME
minus station��station.

b“Regime” refers to the available training collocations in the respective latitude region.

Fig. 2. Development of the rms error for training and test data set
during neural-network training.
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peissenberg �48 °N� and Bangkok �14 °N� are shown
in Fig. 3. The data from Hohenpeissenberg and
Bangkok exhibit a more-or-less constant offset with
respect to the GOME results, but most data lie
within �10 DU. Note that these stations are sit-
uated in latitude regions where no TOMS data were
used for training the network; therefore TOMS
level-3 Version 7 ozone data from the same time
range have been plotted for comparison. As can be
seen, the monthly variations of the two data sets
are of the same magnitude, suggesting that the
neural-network-retrieved data are consistent in
time. Also, there seems to be no statistically sig-
nificant drift in the GOME neural-network total
ozone in time with respect to the ground data. Any
effects that may result from the accelerated differ-
ential degradation of GOME solar and nadir spectra
starting at the end of 1998 �Ref. 28� are obviously
compensated for by inclusion of the instrumental
lifetime in the neural-network input.

To examine the spatial extent of the time-
independent offset seen in Fig. 3 we created monthly
means of the global TOMS data �288 	 180 bins� and
compared them with neural-network-retrieved
GOME ozone data �subsequently denoted NN-
GOME� gridded accordingly and averaged over the
same time range. In addition, the operational GDP
V2.7 GOME ozone product �GDP-GOME� was ob-
tained and treated similarly. An example of this
comparison is shown in Fig. 4, from which, at first
glance, one can see that large-scale structures in the
global ozone distribution look much alike on all three
maps. The deviations that are obvious in the equa-
tor region and above the oceans near Antarctica hint
at a latitude-dependent offset between the NN-
GOME and the TOMS. When NN- and GDP-GOME

data are compared, the largest differences can be
observed in the northern midlatitudes, especially
near the Pacific Ocean.

Table 2 summarizes the global monthly differences
between the satellite data sets for 1999. Whereas
GDP-GOME and NN-GOME agree well from Janu-
ary through April, NN-GOME values are systemati-
cally higher later in the year. When the GDP-
GOME retrievals are compared with TOMS data the
offset is even higher, averaging to 9.99 DU over the
entire year. This figure can be directly compared
with the results of Corlett and Monks,29 who found a
systematic offset of 10.06 DU for the time period
1996–1999. Because TOMS yields systematically
higher values than GOME in almost all cases �cf. Fig.
4�, there is not much cancellation of positive and
negative errors here. If all the TOMS data are
treated with the fit function introduced above �Fig. 1�,
the difference from both GOME retrieval methods
shrinks considerably.

Zonal means and standard deviations of the
GOME–TOMS difference are depicted in Fig. 5. A
plot for April 1999 has been added give an impression
of the seasonal variation of the differences. The dis-
tinctive latitude-dependent offset between NN-
GOME and TOMS seems to follow the correction
function of Bodeker et al.,22 which is also shown in the
figure. Virtual stations that use this correction were
employed only poleward of 60° latitude, whereas be-
low 60° latitude the neural network derived the cor-
rection function independently, thereby confirming
the statistical analysis presented in Ref. 22. The
deviation from the curve from 30° to 60° can be par-
tially attributed to geography, of which the neural
network knows nothing as yet. Inasmuch as only a
few WOUDC stations are situated at a higher eleva-

Fig. 3. Time series of the difference of neural-network-retrieved GOME total ozone �solid curves� and TOMS Version 7 total ozone �dashed
curves� with respect to ground measurements. Neither ground station was used in training the network. The differences are plotted as
monthly median values, whereas the thin straight lines represent linear regression based on all data.
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tion, the neural network tends to overestimate total
ozone above mountainous regions.

The GDP-GOME data in general agree better with
NN-GOME than with TOMS data, but there are ma-
jor deviations poleward of �45°. These findings are
in line with what Corlett and Monks29 describe in a

much more thorough study that also incorporates
TOVS ozone data.

The standard deviation generally lies near 5 DU
but in some cases increases quickly at the very edge
of the polar night, suggesting high solar zenith angle
problems, which are common with all UV-backscatter

Fig. 4. TOMS monthly mean total ozone field for October 1999 and difference maps for all sensors and processing algorithms considered
�DU�. Both operational products had been provided as level-3 daily maps; therefore neural-network ozone values were averaged into daily
maps as well, before the monthly mean was calculated.

Table 2. Monthly Global Mean Deviations for 1999 �DU�a

Ozone Fields Compared

Mean Deviation (DU)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

GDP–NN 0.85 �0.28 �0.22 2.59 3.40 5.98 5.14 4.14 5.22 3.91 2.63 3.23 3.05
Generic TOMS data

TOMS–GDP 8.52 7.71 7.28 9.12 8.90 11.08 10.03 9.76 11.65 11.79 11.68 12.40 9.99
TOMS–NN 7.88 8.27 7.57 6.93 5.66 5.25 5.61 6.35 6.68 7.94 8.97 9.38 7.21

TOMS data fitted to ground networkb

TOMS–GDP 0.46 �0.48 �0.64 2.02 2.79 5.64 3.89 2.55 3.85 3.76 3.67 4.39 2.66
TOMS–NN �0.27 �0.02 �0.45 �0.25 �0.33 �0.36 �0.70 �1.03 �1.32 �0.26 0.75 �1.09 �0.44

aNN, neural-network-retrieved total ozone values; GDP, operational GDP V2.7 ozone product; TOMS, Version 7 TOMS ozone values.
The means were calculated on monthly averaged level 3 data weighted by surface area.

bRef. 22.
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instruments as the result of physical limitations in-
duced by the slant path geometry.

4. Conclusions and Outlook

It has been shown that neural networks can retrieve
high-quality total ozone columns from GOME data if
an appropriate collocation database is provided.
The retrieved ozone values are consistent in space
and time, making them suitable, e.g., for long-term
ozone monitoring. In essence, the neural-network
technique can be viewed as a method of effectively
globalizing ground-based measurements by estab-
lishing a nonlinear relationship to spectral satellite
data and using supplementary statistical informa-
tion to correct for instrumental effects such as cali-
bration uncertainties and degradation. Cloud
contamination is obviously also accounted for by re-
placing missing physical information in the spectra
with statistical estimates, such that no cloud struc-
tures can be discerned in the total ozone maps.

In most cases the retrieved ozone values more
closely resemble to the ground data than do those of
the TOMS and the GDP-GOME, even in latitude re-
gions where no TOMS data were used for training.

However, this proves that a combined dataset of
ground data and corrected TOMS data is consistent
enough for a neural network to establish a global
relationship between the top-of-atmosphere radi-
ances and total ozone. Should it later turn out that
for some reason TOMS is actually more accurate than
the ground network, one could in turn correct the
ground data by using the same function and train a
network to accurately reproduce the TOMS data from
GOME measurements. In any case, the neural-
network method always takes advantage of the most
accurate data source available by directly transform-
ing it into an inverse retrieval model on a global scale.

Current studies focus on some of the remaining
problems, such as high elevation and spatially un-
even training data distribution; after their comple-
tion the neural-network total column ozone from
GOME will be made available operationally, as has
already been done with a neural-network ozone prod-
uct from TOVS data.17 A similar technique for re-
trieving ozone profiles from GOME data is also
currently under development.30
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