
Virtualization Techniques for Cross Platform
Automated Software Builds, Tests and Deployment

Thomas Müller and Alois Knoll
Robotics and Embedded Systems
Technische Universität München

Blotzmannstr. 3, 85748 Garching, Germany
{muelleth,knoll}@cs.tum.edu

Abstract—In this paper, an integrated approach for cross
platform automated software builds and the implementation of a
test framework is described. The system introduced here utilizes
state-of-the-art virtualization tools to accomplish this task. In
this way a single off the shelf PC can be used to build and test
the software and in addition to that create deployable packages
for multiple target platforms. Hence, the main contribution is an
architectural concept for automated cross platform builds and
testing based on virtualization of the processes that are platform
dependent. The system was introduced for a large academic
software library project in the field of robotics and machine
vision. Here it is now productive and provides continuous
feedback for developers, as well as includes the possibility to
obtain the latest binary releases for end users.

Index Terms—Cross-Platform Software Builds; Virtual Soft-
ware Testing and Deployment; Build Report Automation;

I. INTRODUCTION

It should be of no question for any software developer to
write a little test for the classes or methods / functions he
implements. But this is by far not enough to ensure reasonable
quality and stability of a final software product. Thus, one
can argue that it would be much better to implement a more
general, more sophisticated framework to automate the testing
process and deployment.

The test toolkit introduced in this paper incorporates the
advantageous capability to integrate into an automated deploy-
ment framework, i.e., with nightly builds, automated virtual
deployment and test execution. The system was motivated by
the need for a sound process to automate these tasks for a
large software library project in the context of robotics and
machine vision. Here, many developers code at a time while
others use the library in a productive robotic setup at the same
time. Hence, the system has to ensure stability and robustness
of the generated library to these end users on multiple target
platforms.

However, the focus of this paper is not the implementation
of certain tests, nor to discuss different methods for testing
software, as there is a magnitude of work in this field, e.g. [1]
[2] [3]. Instead, the contribution of this paper is to introduce
an architectural concept for automated cross platform software
development based on virtualization of the processes that are
platform dependent.

The remainder of this paper is structured as follows: The
next sections gives a brief description of the framework and

what it was built for and how it fits in what has been achieved
before. Section IV explains the setup of our host system and
how it runs the utilized virtual machines. In Section V we
show, how the proposed framework can be used to automate
test execution and reporting. The final Sections VI and VII
explain details about our experimental setup, draw conclusions
and name possible extensions and further directions regarding
the proposed framework.

II. OVERVIEW AND SYSTEM REQUIREMENTS

The library project, which is the application scenario of the
proposed approach, comprises of three major parts, (1) the
library itself, (2) multi-layer tests and (3) tutorial applications
also detailed in a reference guide. A brief overview of the re-
quirements for the automated build, test and deploy framework
are given in Table I.

Library Tests Tutorials
Source repository Subversion Subversion Subversion,

HTTP
Binary repository Subversion, Subversion -

HTTP
Code Variability High Medium Low
Build Environment Yes Yes No
Dependencies 3rd Party 3rd Party, 3rd Party,

Library Library
Platform Windows, Windows, Platform

Linux, Linux specific
(Mac)

Package Library binaries, - Sources,
Contents Headers, Binaries,

Reference manual User guide
Error Reporting Build, Build, Build

Packaging, Execution
Installation

Access Developers, Developers Developers
Permissions End-Users End-Users

TABLE I
FRAMEWORK OVERVIEW

As one can see from the table, the three parts have different
dependencies, build specifications, deployment scenarios and
access permissions.

III. RELATED WORK

There is certainly well-known literature on automation of
software builds (e.g. [4] for a nice introduction). The major



challenge here is to build the software for different target
platforms in a clean and scaleable manner. The usual approach
would be to setup a computer running the target operating
system and configuration, then setup a build environment on
that platform, e.g. compiler and third party dependencies, and
build the binaries or packages for end users.

On the other hand, virtualization is widely known as a
tool for composing processes that need to be run on different
operating systems on a single host.

Combining the two above approaches, we follow the idea
of having just one host machine that automates not only
software builds for a single target platform / configuration, but
also handles automatic testing and reporting. For this purpose
we setup a set of virtual machines on the host that actually
perform the build, install and testing. Furthermore, the host is
configured to collect reports and binaries provide them on a
website for authorized users.

IV. VIRTUAL MACHINE SETUP

According to the project partitioning, a host machine has
to be set up to perform the required tasks automatically for
cross platform target systems. In this stage of expansion the
physical host PC runs instances of virtual machines themselves
running different operating systems. For each target operating
system there is a dedicated virtual OS for compilation and
packaging of the library and for compilation and execution of
the tests and compilation tutorials. Moreover, a clean, freshly
installed virtual OS for unattended library installation and test
execution is used.

This strategy helps avoiding corrupt test results and ensures
that a certain OS is compatible. Furthermore, the architecture
is open, so whenever a new OS shall be supported, one only
needs to setup a virtual machine running the new target OS
and run the toolchain (see below) on that system. For cross-
platform builds and configuration of unattended installation
the open-source build system CMake is used, which creates
NullSoft installer packages for Windows and Debian packages
and tarball-archives for Linux. Please refer to [5] and [6] for
further details.

Figure 1 shows the toolchain for library build, packaging,
deployment and report generation (step 1) and unattended
library installation, test build, execution and report generation
(step 2). The toolchain for part three of the project, the
tutorials, is analogous to the process for testing.

As indicated in the figure and Table I, access restrictions
might apply depending on the permission status assigned to
a user. Developers may access each of the library source
revisions as well as reports regarding the result of a build
and the binaries (installer packages for each supported target
platform). They are also allowed to view all reports, be it
library build reports, test build and execution reports or tutorial
build reports.

Users are only allowed to download the latest binary
package of the library when the tests were run successfully.
However, they are allowed to view reports on the library
builds, as this might provide useful information for debugging

Fig. 1. Toolchain

or additional information about new features, e.g., from the
change log.

The host PC system runs a webserver that lists files from
directories, which allow write access for the virtual machines.
The virtual machines first collect information about success of
the build, deploy, install and test execution locally and then
create a timestamped subfolder for each cycle of the toolchain
and upload their data to that folder after completion. Figure 2
shows a snapshot of the resulting generated public directory
structure on the filesystem of the host machine.

Fig. 2. Generated directory structure on the filesystem of the host after a
build, deploy and test run on a Windows and a Linux virtual machine.

From here, authorized users may download and inspect the
log files or binaries using a web-interface. The access per-
missions are applied considering Apache’s per folder directive
mechanism[7].

V. LIBRARY TESTING

To give the reader a better understanding of what the
system actually has to achieve, Figure 3 shows the multi-layer
architecture of the library project [8], [9] which has to be built,
tested and deployed by the proposed framework.



Fig. 3. Library Modules (September 16, 2008)

The library itself is a rather complex compilation of modules
with both extrinsic and intrinsic dependencies. Extrinsic de-
pendencies occur throughout the modules and require certain
third-party software to be installed at build-time, e.g., the boost
c++ libraries or GSL, the GNU Scientific Library (details at
[10] and [11]). These dependencies are taken “as is” and are
thus not particularly subject matter of this paper.

Intrinsic dependencies are structured hierarchically, as one
can see from the architecture snapshot in Figure 3. This
layered architecture allows for a bottom-up design of the
test system. The test framework executes the functional tests
written by developers for each of the modules, in a bottom-
up manner. Thus, when tests on a lower layer fail, testing is
aborted and the report is generated. For functionally tested
lower level modules - each of which becomes a software
library module (e.g. .dll on Microsoft Windows or .so on
Linux) - integration tests take place as a next step. This is
an intuitive process, as for example, after testing the Math
module, the Core module’s tests are run, which heavily rely
on the underlying math algorithms. Hence, the Core tests
automatically do black-box and integration testing with these.

If all tests succeed hierarchically, some (up to this mo-
ment trivial) black box tests are applied. These only execute
some predefined High-API applications. As the subject of
the library is mainly model-based stochastic visual tracking,
processes happening in the library are intrinsically random
- the only objective measure is the accuracy of the tracking
result.

As an example of a high-level test executed by the frame-
work, one can see from Figure 4 the 3D face tracking
application implemented as part of the library. A screenshot
of the input video is shown on the left. On the right side
in the figure, the computed 3D data, being the output of the
tracking application, is back-projected to the image plane. This
visual feedback is only neccessary for manual evaluation, as
for human it is most convenient to judge about the result by
inspection - one can see, whether the output of the tracker

makes sense.

Fig. 4. For manual evaluation the tracking result has to be back-projected
to the original video sequence

On the other hand, when the framework automatically
executes tests inside a virtual machine, there is no need for
such visual feedback. The framework rather takes advantage
of the intrinisc representation of a tracking result. Clearly, the
result is set of parameters, in this example composed of the
3D pose and a motion and deformation estimate. Thus, for test
automation, a corresponding set of values has to be stored in a
ground truth data file for each test manually by the developer.
The test is considered to be successful, only if the parameters
computed by the tracking application on the input video match
the ones being loaded from this ground truth data.

As mentioned above, the test results are made available to
dedicated user groups on the project website. To automate
this, the free tool CDash [12] is used. CDash generates the
executables for the testcode from library developers inside a
virtual machine. These tests are then run by the framework and
the results are published to a dashboard that is provided by
the host machine. These results can then be reviewed in great
detail and with all available history information by authorized
users. Figure 5 shows a screenshot of the generated dashboard
startsite. In the figure, one can see successful submissions from
a Linux and a Windows virtual machine.

VI. EXPERIMENTS AND RESULTS

The system proposed in this paper is run on a off-the-
shelf host PC, precisely a AMD Athlon(tm) 64 X2 Dual Core
Processor 3800+ with 2048 MB of RAM.

Each of the virtual machines are allowed to use one core of
the host CPU, 512 MB of RAM and 10 GB of disc storage
at the most. As described in Section IV, each of the steps
in the toolchain requires an instance of a virtual machine, so
in order to avoid exceeding the physical limits of the host, a
scheduling algorithm is applied. The host OS is Ubuntu 8.10
and thus scheduling can be easily done by installing cron
jobs for the desired tasks.

Furthermore, as virtualization software the free VMWare
Server 2.0.0 is used, so running the virtual machines in
non-persistent mode leaves the actual image unchanged after
performing the desired tasks.

The system is scheduled to distribute library builds, test
builds and executions and tutorial builds over a whole day.



Fig. 5. The CDash start page used to make testing results available for the software library OpenTL

Therefore, the chance that virtual machines interfere with each
other is very low, although up to now three operating systems
and several configurations are supported.

Figure 6 shows screenshots of two virtual machines after a
library build. From the directory structure one can see the fresh
checkout of the trunk source code from subversion [13]. Inside
this folder the binaries are being built. For this purpose, the
environment_template folder contains the target folder
structure for each build. At a scheduled execution of the build
script, this folder is renamed to the timestamped version and
all processes write to that folder. After completion, the source
code is being removed and the log files are copied together
with the resulting binaries (if any) to the host system. The
host system’s public share is either mounted directly into the
filesystem (Linux) or mapped as a network drive (Windows)
as atknoll131.

The contents of the host’s public share is shown in Fig-
ure 7 form a Windows virtual machine perspective. Here, the
.htaccess file contains the access permissions, the footer,
header and style templates for the website and some additional
software (e.g. third party software) users need to run library
applications.

Figure 8 contains a detail of the generated website depicts
the actual content that is accessible to authorized users.

VII. CONCLUSION AND FUTURE WORK

The work proposed in this paper covers implementation
and setup of a software build, deploy and test framework.
This framework is able to accomplish tasks for cross platform
target operating systems and various software configurations.
This can be achieved due to virtualization. Virtual operating
systems are instantiated for each task in a non-persistent mode,
so at start-up it can be guaranteed, that the virtual machine is
in a “good” state. Thus the system produces repeatable results
for equal sources on each of the target platforms. These results
are manually being cross-checked on physical instances of
the target OS from time to time, so it can be assumed, that

Fig. 7. Screenshot of the public share of the host from within a Windows
virtual machine.

using virtual OS is equivalent to using physical ones and the
proposed system is transparent.

Furthermore, based on the setup of the virtual machines, it
is quite easy to exactly specify the requirements of physical
hardware for the end user and investigate the performance
difference emerging from higher memory capacity, better CPU
availability, etc. For this purpose one simply has to reconfigure
the virtual machine, which facilitates the evaluation process
enormously. Finally, it is also possible to replace the host
system conveniently, as the virtual machine images can simply
be copied to the new host and run directly. All the new host
needs to do is provide a public folder for the results and take
this folder as the document root for a webserver.



Fig. 6. Screenshots from within the virtual machines, showing the scheduled tasks and local build structure

Fig. 8. Snapshot of the website generated for public / restricted access

Nevertheless, there are some problematic aspects in the
setup described here. First, which is a rather general aspect
in software testing, it is rather difficult to automate the
interactive parts of an application. This is of minor relevance
for the proposed system in the current scenario, as its purpose
is testing a mostly non-interactive software library. Second,
incremental bottom-up software testing of modules sometimes
is inconsistent, as there is not only one module on each layer
(see Figure 3).

One of the next steps is the extension of the system to
include GUI- and / or interactive testing tools in the specific
virtual machines to automate a high-level test cycle. An-
other idea is to separate platform dependent from platform
independent code modules and only apply virtualized testing
to the platform dependent pieces. This could increase the
performance, i.e. the duration of a test run, significantly, as
there are very little platform dependent modules.

ACKNOWLEDGMENT

This work is supported by the German Research Foundation
(DFG) within the Collaborative Research Center SFB 453 on
”High-Fidelity Telepresence and Teleaction”.

REFERENCES

[1] M. Fewster and D. Graham, Software Test Automation. ACM Press,
1999.

[2] R. Black, Pragmatic Software Testing: Becoming an Effective and
Efficient Test Professional. Wiley Publishing Inc., 2007.

[3] D. J. Mosley and B. A. Posey, Just Enough Software Test Automation.
Prentice Hall PTR, 2002.

[4] J. Minnihan, “Build and Release Management ,” 21-Aug-2009,
http://freshmeat.net/articles/build-and-release-management.

[5] CMake, “Cross Platform Make,” 21-Aug-2009, http://www.cmake.org.
[6] NSIS Wiki, “nullsoft scriptable install system,” 21-Aug-2009,

http://nsis.sourceforge.net.
[7] Apache HTTP Server, “Directive Quick Reference,” 21-Aug-2009,

http://httpd.apache.org/docs/2.2/en/mod/quickreference.html.
[8] G. Panin, C. Lenz, S. Nair, E. Roth, M. in Wojtczyk, T. Friedlhuber,

and A. Knoll, “A unifying software architecture for model-based visual
tracking,” in IS&T/SPIE 20th Annual Symposium of Electronic Imaging,
San Jose, CA, Jan. 2008.

[9] G. Panin, E. Roth, T. Röder, S. Nair, C. Lenz, M. Wojtczyk, T. Friedl-
huber, and A. Knoll, “ITrackU: An integrated framework for image-
based tracking and understanding,” in Proceedings of the International
Workshop on Cognition for Technical Systems, Munich, Germany, Oct.
2008.

[10] boost C++ Libraries, “Getting Started,” 21-Aug-2009,
http://www.boost.org.

[11] GNU Project, “GSL - GNU Scientific Library,” 21-Aug-2009,
http://www.gnu.org/software/gsl.

[12] CDash, “An open source, web-based software testing server,” 21-Aug-
2009, http://nsis.sourceforge.net.

[13] Tigris.org, “Subversion,” 21-Aug-2009, http://subversion.tigris.org.


