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Abstract—In this paper, we introduce an intrinsically parallel
framework striving for increased flexibility in development of
robotic, computer vision, and machine intelligence applications.
The primary goal is to provide a sound and easy-to-use, but
yet efficient base architecture for complex sensor-based robotic
systems with focus on industrial scenarios.

The framework combines promising ideas of recent neu-
roscientific research with a blackboard information storage
mechanism and an implementation of the multi-agent paradigm.
Additionally, a generic set of tools for realtime data acquisition
and robot control, integration of external software components,
and user interaction is provided.

The paper is completed with a tutorial section showing how the
building blocks afore described can be composed to applications
of increasing complexity.

I. INTRODUCTION

These days, robots are common in industrial production
setups. They accompany assembly lines all over the world, as
they have interesting properties for production processes: they
never tire, provide high accurarcy, and are able to work in
environments not suitable for humans. Still, todays industrial
robots are often limited to very specific tasks, as they have to
be statically programmed (“teached”) in advance.

But times change and as the production scenarios become
more complex, industrial application tend to require greater
flexibility. In the recent past prominent buzz-words in this
context are sensorimotor integration, visual servoing, and
adaptive control, to name but a view being investigated by
academics. But how can industrial automation engineers apply
all these promising new strategies, while still allowing for
traditional approaches and moreover provide for convenient
user interaction?

This is where the proposed flexible robotics framework,
FlexRF, comes into play. The framework introduced in the
following sections provides a generic, configurable, and in-
teractive; but nevertheless sound and efficient foundation for
such tasks.

Design principles, i.e., modularity and extendability, are
combined with unique features like automatic widget gener-
ation and auto-parallelization. This allows for rapid develop-
ment and deployment of complex applications for industrial
realtime robotics. Furthermore, the framework’s generic in-
terfacing facilities enable support and integration of existing
hardware and software components.

Fig. 1. Building blocks of the flexible robotics framework

Despite its simplistic design (i.e., the building-block struc-
ture, see Figure 1), it is still possible to map most recent state-
of-the-art techniques (e.g., evolutionary mechanisms, parallel
active perception systems, multi-agent approaches, and the
like) onto the proposed architecture.

II. RELATED WORK

This section investigates how the proposed framework fits
into findings / results of existing recent research in related
fields. Here, we find relevant sophisticated approaches primar-
ily within the area of cognitive and blackboard architectures,
or multi-agent systems.

Cognitive architectures originate from psychology and by
definition try to integrate all findings from cognitve sciences
into a general computational framework from which intelli-
gence may arise. Multiple systems have been proposed to
fulfill this requirement, including Act-R [1][2] and Soar [3].

Although these approaches may be biologically plausible
and have the potential to form the foundation of some appli-
cations in reality, they all face the problem of being a mere
scientific approach to cognition. We argue that, in order to
develop applications also suitable for industrial automation, a
framework for intelligent robotics and sensorimotor integration
has to be designed keeping the application scope in mind.
Thus, certain additional requirements emerge in the conceptual
phase with high priority. Ease-of-use, generic interfacing and
graphical interaction, as well as robustness and repeatability
have to be taken into account here.

Still, the performance of biological cognitive systems is
outstanding and thus, although we do not propose a cognitive
architecture, the framework tries to integrate certain aspects
where found useful and appropriate.

The principle theory considering blackboard architectures
is based on the assumption, that a common database of
knowledge, the “blackboard”, is filled with such by a group of



experts [4]. The goal is to solve a problem using contributions
of multiple specialists. We adopt the basic ideas of this
concept in the implementation of the information storage of
the proposed framework (see Section V).

Nevertheless, one drawback with traditional blackboard
systems is the single expert, i.e., a processing thread, that
is activated by a control unit [5]. There is no strategy for
concurrent data access in parallel scenarios. Futhermore, there
is no means for training an expert over time, e.g., applying
machine learning techniques, or even exchanging a contributor
with another one in an evolutionary fashion. We deal with
these shortcomings within the proposed framework and present
our approach in Section IV and V.

Finally, a multi-agent system (MAS) is a system composed
of a group of agents. According to a common definition
by Wooldridge [6] an agent is a software entity being au-
tonomous, acting without intervention from other agents or
a human; social, interacting and communicating with other
agents; reactive, perceiving the environment and acting on
changes concerning the agent’s task; and proactive, taking the
initiative to reach a goal.

Most existing implementations (e.g., JADE [8]) use a com-
munication paradigm based on FIPA’s agent communication
language [7], which is designed to send / broadcast text mes-
sages, but not complex data items. Thus we instead implement
the blackboard paradigm for information exchange. Still, we
acknowledge the above definition and the fact, that agents may
concurrently work on a task and run in parallel. The processing
units of our framework are hence implemented according to
the MAS paradigms.

III. CREATING APPLICATIONS

From the perspective of modularity the proposed framework
consists of the four building blocks from Figure 1). Any
application developed with FlexRF is composed incrementally
from these building blocks.

A typical FlexRF application (see Figure 2) is a loosly
coupled group (depicted as a green cloud) of processing units
(Section IV) exchanging data via the information storage
(Section V). These units may or may not utilize generic
interfaces (Section VI) to access hardware or external software
components. Automatically, widgets allow for PU interaction
with the user and visualization of feedback and processing
results (Section VII).

Some challenging application examples and showcases that
can now be easily implemented using the above building
blocks are expatiated on in Section VIII.

IV. PROCESSING UNITS

It was already in the late 19th centry, when Cajal discovered
small processing entities in his groundbreaking research on
microscopic brain structures [9]. These processing entities
we find in the brain are called neurons and the human
brain is physically enabled to perform enormously complex
information processing since it contains a large net of such
neurons. The neurons have two important properties: they

work in parallel and they exchange information with each
other.

The proposed framework is being inspired by this layout and
thus provides entities that mimic these properties. These enti-
ties are called Processing Units (PUs). Each PU implements an
thread-based interface, which instantly enables them to exploit
the parallelization capabilities of the framework. The PU
interface also provides an automatic gui-based configuration
and feedback facility (see Section VII) and a possibility to
share its information with others (see Section V).

As mentioned above, typically an application is a set of
PUs using a common storage and user interface. But apart
from a mere pool of units, any kind of inter-unit dependency
or hierarchical structure, e.g., a chain, a tree-like structure, a
fully connected or directed graph, or even layers of PU-sets
can be introduced implicitly.

In a standard application the dependency structure is intro-
duced by the programmer at compile-time. Conveniently, in
this case a programmer only needs to register the data types
that shall be exchanged, implement the PU’s run() method
accordingly, and call it when the PU is intended to start.

But, considering more advanced scenarios, like within the
field of autonomous robotics, parallel vision or machine learn-
ing, higher flexibility may be useful. Thus the framework
provides for some interesting runtime features: PUs need not
neccessarily be known at compile-time nor the data types to
be exchanged with other PUs. On the contrary, through user
interaction or triggered by some other PU, the application is
able to extend itself, at any time and according to the specific
task requirements. Therefore a unit structure or dependency
graph can also emerge from the system during runtime.

In this fashion, units can for example implement machine
learning techniques, e.g., reinforcement learning [14], support
vector machines [15], or evolutionary algorithms, to perform
on a non-trivial cognitive task, such as controlling a robot or
classifiying objects in a vision system.

Below, Section VIII will elaborate on this in greater detail
and describe a demo application

V. INFORMATION STORAGE

PUs almost inevitably need to exchange data with each
other, be it to distribute processing results, to share information
about processing tasks, create a common knowledge base or
to perform cooperative / competitive computations. Thus, as a
second building block, FlexRF defines a generic Information
Storage (IS) component.

A. Asynchronous Communication

Since the framework covers intrinsically parallel scenarios,
one must generally consider either synchronous or asyn-
chronous communication strategies for data exchange between
processes or threads [16]. With synchronous communication
the partners wait for confirmation of sent data items, so this
strategy has its main applications where the correct trans-
mission of data is essential. Though being robust, due to its
blocking nature a synchronous approach can cause problems



Fig. 2. A moderately complex sample application composed from the building blocks

especially for realtime systems where immediate responses
have to be guaranteed.

For this case asynchronous “non-blocking” communication
mechanisms (ACM) have been proposed. With ACMs infor-
mation or data is dropped when capacities exceed – which is
acceptable as long as the system does not block.

Non-blocking algorithms can be distinguished as being lock-
free and wait-free [17]. Lock-free implementations guarantee
at least one process to continue at any time – though starvation
is a risk, because an operation may never finish due to the
progress of others. On the other hand wait-free implemen-
tations avoid starvation, as they guarantee completion of a
task in a limited number of steps [18]. Generally one can
claim it essential for systems utilizing an ACM to remain in
a responsive state, not to guarantee data transmission.

B. Event Driven Communication

The information storage implemented for the proposed
framework takes the advantages of an ACM and combines
them with an event driven signaling mechanism borrowed from
Nokia’s Qt framework [12].

In the Qt framework, communication is enabled by signaling
a new event within the application. A component, e.g., a user
interface, may define method stubs as being a signal. The
signal can then be emitted whenever an event relevant for other
components occurs, e.g., a mouse-click in the GUI.

Other communication partners (components of the appli-
cation) implement listeners as they register themselves for
this signal by defining a slot. The slot must have the
same signature as the signal. The event passing and integrity
checking is then performed by Qt and the only thing remaining
to do for a developer, is implementing the reaction on the event
in the slot function.

C. A Combined Approach

While the data storage requests are equal for both com-
munication strategies, considering greatest possible flexibility,
FlexRF’s information storage supports both modalities for
providing data for PUs: purely asynchronous retrieval and
signal subscription.

Figure 3 shows the workflow for data registration, storage,
and retrieval modalities as a diagram.

Fig. 3. Dataflow for a data item in the information storage

There is one disadvantage for implementations of the ascyn-
chronous retrieval that has not been mentioned before: PUs
might request data from the information storage, but there
is no relevant data at the moment. In this case the storage
still delivers an item, the NULL item, so units that perform
asynchronous requests have to deal with these situations as
well.

Clearly, these situations never occur, if all PUs within an
application only implement listeners on the new-data-signal.
Still there are situations, where signaling might not be desired,
as it decreases overall application performance and thus the
asynchronous retrieval seems more efficient. Consider for
example a vision application, where a PU connected to the
camera stores images in realtime. A complex vision PU being
signaled every single image might be slower than the camera
PU and it may not be appropriate to process every single
frame, but in deed always the most current one. In that case,
the vision PU obviously needs to utilize the asynchronous
retrieval mechanism for the image frames.

D. Practical Issues
To conclude this section, we have to discuss instantiation,

error handling, and thread safety of the proposed information
storage in a user application.

As mentioned above, the information storage is generic in
the sense of accepting arbitrary data item after having the



data type registered. To facilitate the initialization and provide
convenient access within all components of the framework, the
IS is based on the singleton design pattern [19]. Organizing
the singleton instance in a threadsafe manner concerning read
and write accesses then ensures integrity and consistency.
Therefore, after registration of a data type on first usage
(read or write access), the item is embedded in a thread safe
container, which encapsulates all access requests in a cascaded
lock-unlock mechanism (using mutual exclusions).

Error handling is implemented straight forward, as the
storage delivers the NULL data item whenever an erroneous
request was received, i.e., the data type was not registered or
no suitable data item could be found. Note, that this error
handling approach is wait-free, because it completes in a
limited number of steps [20] and thus generally avoids the
occurrence of dead locks.

VI. GENERIC INTERFACES

The third base component of FlexRF, the Generic Interface
(GI) abstraction, is deduced from the following considerations:
PUs are generally designed to operate or compute on data
in some way. But how does data pour into the system, i.e.,
how can data acquisition or execution of external processes
be realized and how can data be transformed into real-world
actions?

The proposed framework therefore provides an easy-to-use
interface abstraction. The interfaces enable convenient access
to external hardware components such as image sensors, user
input devices (mouse, keyboard, etc.), or other sensory devices,
e.g. force-torque sensors.

There is more a developer can do with the generic inter-
facing mechanism: most important, implementing a generic
interface is not limited to accessing input devices, but in deed
one can write an interface to virtually any external component,
be it software or hardware. For instance considering software
libraries, at the time of publication, FlexRF already interfaces
to the robust model-based realtime tracking library OpenTL
[10] and the library underlying the efficient EET (explor-
ing / exploiting tree) planner [11] for advanced industrial robot
control.

Furthermore, it is relevant for most today’s real-world
applications in a robotic scenario, to access output devices
such as grippers or servos; realtime connectors for industrial
robot control; or socket connectors for remote control, data
exchange, and remote procedure calls. Interfaces for these
scenarios are thus supplied by the framework, as well as an
interface for running arbitrary executables. Reading the output
of those is facilitated in order to enable PUs to seamlessly
integrate with external applications.

Another powerful feature of generic interfaces is their
integration with PUs and the automatic configuration facilities
described in the following.

VII. INTERACTION WIDGETS

As a fourth building block, FlexRF provides a graphical user
interaction and visualization facility. As each PU and GI may

define a corresponding Interaction Widget (IW), a high-level
user interface can be composed easily from these widgets. This
is possible, because IWs inherit from QWidget, which is part
of the Qt framework.

IWs enable the user to textually or graphically inspect re-
sults the PUs or GIs produce and to alter their parametrization.
For processing units the proposed framework provides a main
window. The main window handles the initialization of Qt
(it essentially creates a customized QApplication). Then,
to display the units configuration parameters and feedback
values, the PU only has to be added to the main window.
Also, a menu bar entry is created automatically, if specified
so.

The automatic widget generation mechanism is possible,
because PUs and GIs both implement an abstract parameter
container. This parameter container may store arbitrary data.
In general three types of parameters exist in a container:
feedback, configuration and runtime parameters.

Feedback parameters state the result of operations, e.g.,
joint-feedback of a robot, status of gripper, or an image from
a camera interface.

Fig. 4. A widget with display components for an integer feedback parameter.

At the time of development the parameters are added to a lo-
cal parameter vector and the feedback values are automatically
connected to the interaction widget at start-up. Whenever the
value of a parameter changes, the IW displays these changes.
Figure 4 shows the IW automatically generated for a single
integer parameter.

Configuration parameters are loaded from an XML-file at
system start up and a PU or GI can register on a certain value,
e.g., a camera-interface might register on the input image
size, color format or camera device. The framework then
automatically creates controls in the corresponding widget for
these parameters.

Specific to configuration parameters is, that they may only
be altered, if a device (PU or GI) has not been initialized yet.
Whenever the configuration is changed, the registered PUs or
GIs have to be re-initialized to keep the system in a consistent
state.

Similar to the mechanism for configuration parameters,
the framework produces controls for runtime parameters
automatically. But opposed to those, runtime parameter are
the basis of direct interaction with the user.

Left to say is, that in spite of control generation being
automated, a developer of course may introduce new custom



or adjust the existing controls according to application specific
requirements.

VIII. APPLICATION EXAMPLES AND SHOWCASES

A. A Simple Example
In a very basic, single threaded application example, the PU

shown in Figure 5 is designed for processing data from and
sending data to the robot and interaction with a PC keyboard.

Fig. 5. Application scheme for a simple keyboard controlled robot

The actual hardware components are accessed utilizing the
generic interfaces. The PU requests feedback from the robot
interface and the keyboard interface in a endless while-loop.
Then, corresponding to the key pressed by the user, a robot
action is computed and sent via the robot interface to the actual
hardware.

No communication with other PUs is implemented here,
so the application does not need to initialize an information
storage. A widget provides for feedback visualization of robot
movements. This widget is statically embedded in a Qt-
based graphical user interface, the application main window
discussed above.

Clearly, integration of all hardware interfaces and computa-
tions into a single PU is non-optimal considering load distri-
bution and parallelization. Therefore, the next example shows,
how performance of such an application can be improved using
multiple PUs and the information storage.

B. Multiple PUs and Information Sharing
Using the IS to share and exchange processing data enables

the application developer to decompose a problem into se-
mantically independent tasks and distribute them to multiple
task-specific PUs.

Fig. 6. Multithreaded application for keyboard control of a robot

Figure 6 shows a control system, where keyboard / mouse
events are handled by the GI of the upper PU, also offering

some configuration options in the interaction widget (shown in
the right part of the screenshot). The PU in this case posts a
data item containing the user’s selection for the new target
position of the robot’s end-effector. The robot control unit
implements a listener on that new target position. It computes
a trajectory to move the robot to the target and sends the
corresponding commands via the robot GI.

Note, that in the example the listener is not implemented
event based (i.e., it does not implement a slot to the new target
signal), but in an asynchronous manner. This ensures, that the
robot smoothly completes a motion. Only after the movement
has finished the next trajectory may be computed.

C. A Complex Visual Servoing System

Figure 7 shows a rather complex sensorimotor example
application, where most previously described concepts and
building-blocks of the flexible robotics framework are applied.

Fig. 7. Scheme for an evolutionary visual servoing application

The application features a realtime robot control unit send-
ing new position commands every seventh millisecond and
simultaneously sharing position feedback information. The
interaction widget provides for visual feedback and additional
manual robot control through the GUI. Another IO unit, the
image acquisition unit, connects to the camera, retrieves new
images, and stores them in the IS.

In the application, each of the focus of attention (FoA)
units implements the attention condensation mechanism [21].
This approach speeds up visual processing by performing a
relevance evaluation on the visual field as it creates regions of
interest for salient areas appropriately. Saliency is expressed
using a multivariate rating function, thus an evolutionary
mechanism can be applied to optimize the performance, i.e.,
by mutating the parameters of the function.

The attention evaluation unit shown in the figure realizes a
high-level cognitive component used for cloning, mutations,
and deletions of FoA units. Performance of a FoA unit
can be judged on by checking, how many of the created
regions actually contained relevant objects, i.e., wherein the
recognition units found either a target or obstacle.

The set of PUs for object recognition and tracking runs in
parallel. A unit in this set asynchronically requests a region of
interest from the IS for object detection. If there is no relevant
region, a suspension time for a PU is calculated according the



optimal back-off algorithm [22]. In this way, a recognition unit
tries to optimally estimate the suspension time until the next
relevant data item can be delivered.

Fig. 8. The GUI for the visual servoing system

The graphical user interface for the application shown in
Figure 8 is, as in the examples above, a composition of
interaction widgets. The robot control buttons (red arrows)
are created from runtime parameters and their location in the
widget is customized. Also, the robot control PU has custom
widget for the robot’s joint-feedback, a 3D display of the
robotic setup.

Imagine investigating the information flowing in the system
on user interaction: whenever the user presses a button, the
robot PU’s runtime parameters are changed accordingly. The
change-event then causes the PU to compute a new target pose
for the robot’s endeffector. As the joint-feedback of the robot
interface is connected to the robot PUs feedback parameter
vector, a change their causes the feedback widget to adjust
the robot in the 3D view.

IX. CONCLUSION AND FUTURE WORK

The paper introduces a flexible framework for parallel,
asynchronous and decoupled processsing on recent hardware
architectures like multicore or multiprocessor systems.

It is shown, that the typical modular application is an
unordered set of instances of the building blocks. The set
may comprise a structure of processing units; a blackboard
for storage and exchange of data; a graphical interfacing and
configuration machanism; and a magnitude of interfaces to
hardware or external software components.

Future improvements include the implementation of the
Message Passing Interface standard [23]. This extends the
parallelization capabilities, as it allows for automatic load
distribution on multi-platform architectures, such as computer
clusters or grids. Another future feature is a possibility to
priorize certain PUs in favor of others. This may eventually
be useful for industrial applications where safety critical com-
ponents for human-robot interaction have to be implemented.

Yet, as the design concepts of the framework are mature and
especially the user application interfaces remain stable, exist-

ing applications may be easily transferred to future versions
of FlexRF.
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