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ABSTRACT

In this paper, we address the problem of multi-person detection, tracking and distance estimation in a
complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting
the driver in avoiding any unwanted collision with the pedestrian.

We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on
static images and a particle filter as a robust tracking technique to follow targets from frame to frame.
Because the depth map requires expensive computation, we extract depth information of targets using
Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by
running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the pro-
posed tracker can efficiently handle target occlusions in a simple background environment. However,
to achieve reliable performance in complex scenarios with frequent target occlusions and complex clut-
tered background, results from the detection module are integrated to create feedback and recover the
tracker from tracking failures due to the complexity of the environment and target appearance model
variability.

The proposed approach is evaluated on different data sets both in a simple background scenario and a
cluttered background environment. The result shows that, by integrating detector and tracker, a reliable
and stable performance is possible even if occlusion occurs frequently in highly complex environment.
A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.

Keywords: Histograms of Oriented Gradients, Particle Filter, Direct Linear Transformation, Speeded
Up Robust Features

1. INTRODUCTION

In the past few years, there has been an increasing number of accidents on the street. Pedestrians are
one of the most vulnerable traffic participants. Although a passive pedestrian safety system is able to
reduce injury level upon impact, a more intelligent car needs a safety feature that is able to detect and
track the pedestrian to avoid collision ahead of time. While a lot of research is made to both tracking
and detection and a remarkable success has been achieved in the case of static camera and simple
background environment, it is still highly challenging to deal with the problem in complex, cluttered
background environments and with ego motion taken into account.

For the safety feature of a smart car, it is important to extract the depth information from targets
to the car to start the brake system immediately if necessary. For this reason, detection and tracking
systems that use single camera might not be able to obtain robust depth estimation. Therefore a
multi-camera approach is proposed and a stereo vision algorithm is used to extract depth information.
Although depth information can be achieved with great accuracy by constructing a disparity map1,2

this approach requires a lot of computational power and therefore might not be a good choice in a
real-time systems. To cope with this issue, in this paper, we propose a simple way to extract the depth
estimation based on a 3D point triangulation technique that is able to extract depth information with a
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reasonable accuracy for a braking system. The triangulation technique computes correspondent points
found by the SURF3 algorithm that is able to operate in real-time with GPU support.4

Although our main interest is to estimate the distance between a pedestrian and the car for the
braking system, it can only be achieved if we can detect the location of a pedestrian from cluttered
background5.6 Because of this, pedestrian detection is the first step we need to consider in building
a safety system. After that, we need a robust tracking algorithm that is able to follow a target from
frame to frame because even the best detector is not able to detect the same target with one hundred
percent accuracy. Furthermore, a detector is generally more expensive to execute and it might ignore
some important targets compared to others. For all of those reasons, a safety system for a smart car in
generally must deal with three important requirements:

1. The system must be able to detect interested targets within a certain safe threshold distance.
2. The system must be able to track the detected targets with robust and stable performance.
3. The system must be able to estimate the distance to interesting targets.

While the target detection process using a good detector such as Histograms of Oriented Gradients
(HOG)7 seems to be robust enough to detect pedestrian within a near distance, the tracking problem
is largely unsolved. A

visual tracking system in general can be classified into one of two main categories: Target Repre-
sentation Localization tracking or Filtering and Data Association tracking. The target representation
and localization trackers such as contour-based trackers can be very useful for rigid object tracking.
However in the highly nonlinear noise system of a moving camera and big target appearance model
variability, we decided to use a filtering and data association tracker such as particle filter. This type
of tracker can deal with complex objects along with multi-object interactions.

According to our observation, in general, almost any tracker will fail or perform badly when a big
changes in the object appearance model happens. This is because the tracker uses initial data from
the detection step to compare it with the observed data from the predicted hypothesis to track the
target. Therefore, whenever the target appearance model changes, the observed data varies much with
the initial data held within the tracker at the beginning. As a result, the tracker is likely to fail. In
order to cope with this, we propose a solution that uses a detector to update the target appearance
model whenever the likelihood between the observed data and initial data exceeds a certain threshold.
It will keep the tracker up to date and perform more stable in highly cluttered environment.

The remainder of the paper is structured as follows. After discussing related work in the next
section, we will describe how to detect a pedestrian on a single image and map it to another image to
extract depth information. Then we propose a particle filter solution for the tracking problem. Finally,
experimental results and conclusion are shown.

2. RELATED WORK

Object detection. There certainly is a lot of research done in the field of object detection to make
it applicable for a variety of practical real-world applications. However, only few of them can cope
with the challenging task of detecting pedestrians in complex and highly cluttered environments. After
the success of using Haar -like features to build a cascade of boosted classifiers to detect pedestrian
on static images,8 a great success was made when in 2005, Navneet Dalal introduces Histograms of
Oriented Gradients that were able to detect people with great accuracy. In this paper, we will use HOG
as main method to detect the location of pedestrians on static images. Note that for the detector using
HOGs, a real-time GPU implementation exists.9 Therefore by using HOG detector, we aim to achieve
real-time performance for detection,tracking and distance estimation.

Multi-target Tracking. There is a lot of research in the field of object tracking. For rigid object
tracking, a remarkable success has been achieved by using some traditional tracking algorithms such as



contour-based tracking, blob tracking or a tracking technique that uses PnP10 algorithm to estimate
pose of object from frame to frame. However, there is only very limited success in the case of pedestrian
tracking in highly cluttered environment and concerning moving cameras. To cope with this challenging
requirement, a particle filter-based tracking system is proposed. It can handle multiple occlusions in
simple background environments, however, for complex and cluttered environment with appearance
model variability, we need to reuse the detector to update the tracking object model frequently. Our
particle filter tracking is based on previous work11 with OpenTL∗. Here, we use a single modality
likelihood P (z|s) as an implicit measurement model.

3. PEDESTRIAN DETECTION AND DEPTH ESTIMATION

Because the depth information can only be estimated robustly with multi-view geometry, our depth
estimation algorithm is tested on a data set †12 taken from two calibrated cameras. Different from other
algorithms that use disparity maps to extract depth information of targets, our algorithm aims to use
a simple triangulation method such as the Direct Liner Transformation(DLT) algorithm to reconstruct
3D coordinates of some pairs of correspondent points. As a result, we propose an algorithm that is able
to find correspondent points from two image patches with high accuracy. To achieve this, the usage
of Speeded Up Robust Feature (SURF) is proposed. However, the SURF algorithm needs two image
patches of the same target on both left and right images to find correspondent points. Unfortunately,
running the HOG detector on a single static image can only find a target location on a single image.
Therefore, we need an algorithm that is able to map each detected pedestrian location (represented as
a rectangle) found by HOG on the left image to the other. An exhaustive search for template matching
on 2D image is possible, but it is highly expensive. For this reason, we propose a template matching
algorithm that is performed on the rectified image pair instead. It can perform very efficiently with
only very little computational effort. Figure 1 below shows the target mapping algorithm between the
two views of the stereo system.

3.1 Static map matrices for target mapping between two views

The data set used does have some calibration files. However it does not provide static map matrices
necessary for rectified-image interpolation. Therefore, in our application, we build an algorithm con-
structs static map matrices for each camera from provided intrinsic and extrinsic camera parameters.
The static map matrix then is used to map each pixel from the rectified image to the original. We
compute the static map matrix using three following steps:

1. We compute two 3 × 3 row-aligned rectification rotation matrices Rl,Rr using provided camera
intrinsic matrix K and rotation, translation matrices R, T . Rl,Rr can put two cameras into
coplanar and row alignment.

2. We use the row-aligned rectification rotation matrices to compute corresponding pixel locations
from the rectified image to the distorted image. Because each camera has distortion parameter,
we need a third step to correct the distortion error.

3. We correct the corresponding pixel location from the second step using provided distortion coef-
ficients. In our dataset, there are only two distortion parameters. These are the radial distortion
coefficients k1, k2.

Afterwards, we construct a final static map matrix that can give us a very fast way to compute the
corresponding pixel from rectified image to original image. Given this static map matrix, it is easy
to construct a back-mapping matrix that, on other hands, is able to map a given pixel location from
original image to rectified image. Then our target mapping algorithm can be performed very efficient
as shown in Figure 1.

∗http://www.opentl.org
†http://www.vision.ee.ethz.ch/~aess/dataset/



(a) A typical pedestrian rectangle loca-
tion found by the HOG detector.

(b) Four pink corners on rectified image
(d) are mapped to the navy-colored cor-
ners in (b) using the static mapping ma-
trix of the right camera.

(c) Four navy-color corners from (a) are
mapped to four pink-color corners of the
same target on (c).

(d) A simple template matching algo-
rithm to map the target location from
(c) to (d).

Figure 1. The target mapping algorithm between two views.

3.2 Distance Estimation

To estimate the distance between the pedestrian and the car using point triangulation, we need to
find at least one pair of correspondening points. As shown in figure 1, we choose the centres of two
rectangle patches on the left and right rectified image (red color) and map them back to left and right
original images to obtain a first pair of correspondent points (blue color). Because there is an error
in our estimation, we need an algorithm to reduce the error so that the triangulation yields results
with reasonable accuracy. To achieve this, we use the optimal triangulation method in13 to minimize
the geometric error subject to the epipolar constraint of this pair of corresponding points and then
triangulate this pair using DLT to obtain a rough target depth estimation.

After that, we use SURF to find correspondent points from two mapped pedestrian rectangle lo-
cations on left and right images. The SURF algorithm returns many pairs of correspondent points as
shown in the figure 2. However it also returns some false matches. As a result, we need an algorithm
to filter the matching points so that only good matching points are kept for depth triangulation.



Figure 2. Pairs of correspondent points obtained with SURF. Red color is used to denote wrong matches or
non-interesting correspondent points from background.

We then define good matching points for depth estimation based on two criteria:

1. Two matching points must follow epipolar geometry. We compute the fundamental matrix F using
the provided intrinsic and extrinsic camera parameters. Then we use this matrix to eliminate
wrong matching points.

2. We have the rough depth estimation from 3D triangulation of the first pair of two correspondent
points as described in the previous section. All pairs of SURF matching points are triangulated
to get a list of distances from each corresponding 3D point to the camera. The distances from
the list are compared to the rough depth estimation to eliminate all points that belong to the
background (see Figure 3). The purpose is to only keep good matching points that belong to the
target of interest.

Figure 3. Good pairs of corresponding points after using the filter algorithm. Each pair is then corrected in
order to closely follow epipolar geometry.

After having a good list of correspondent points, we correct them so that each pair of correspondent
point follows exactly epipolar geometry using the same algorithm described in.13 Afterwards, we use
DLT to triangulate those points to get an average depth estimation for the target.



4. MULTI-TARGET TRACKING

4.1 Object Pose Representation

A target location can be represented by a rectangle in an image. Therefore we can represent the object
pose by using a simple 2D pose model that consists of three degrees of freedom: translations tx, ty and
scale parameter s. In our model, tx, ty are coordinates subject to the upper-left corner of rectangle
in the image coordinate system and the scale parameter s can be used to compute sizes of the target
locations under a given pose. The transformation matrix that is used to project targets under the given
pose to the image can then be represented as:

T =


s 0 0 tx
0 s 0 ty
0 0 1 0
0 0 0 1

 (1)

Of course, one could use four degrees of freedom to represent the object pose with different scale
parameters sx, sy for different x, y directions. However, more degrees of freedom increase computational
complexity. Therefore in our application, we restrict ourselves to three degrees of freedom.

4.2 State-Space Model

In general, a state-space representation model of a discrete-time linear dynamic system with additive
white Gaussian noise can be written as follows:

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k) (2)

where x(k) is the state vector of dimension nx, u(k) is the input (control) vector of dimension nu and
wk is a zero-mean white Gaussian process noise vector of dimension nx. A(k) is a nx × nx system
matrix, B(k) is the input gain nx × nu matrix. The process noise covariance matrix can be denoted as
Q(k) = E[w(k)w(k)T ]. This matrix can be adapted from time to time for 2D tracking to update the
state of the particles.

Using the given pose representation, we can use three degrees of freedom tx, ty and scale parameter
s to model a state vector. Because of random pedestrian motion, unknown car velocity, unknown car
and pedestrian direction of motion, we can only model the state transition as a simple Brownian model
without any information about velocity or acceleration for each incremental parameter of the target
state. Therefore in our application we use a simple state transition model as follows:

S(k + 1) = S(k) + w(k) (3)

where S(k) is the state vector at time k and w(k) is the noise vector generated from the adaptive noise
covariance matrix Q(k).

4.3 Measurement Model

In our application, we use an implicit form of the measurement model to compare the initial object
model with the target region hypothesis on the current image under a given pose. We use a likelihood
function P (z|s) to express the probability of the observed data if the hypothesis about target state is
correct. This likelihood function helps us dealing with the uncertainty arising from nonlinear noise.
The computed likelihood then is used to set the weight of each particle according to the probability of
the target under a certain state hypothesis.

Many different likelihood models have been developed in computer vision. In our application, we
use a single visual modality, a color-based likelihood. This likelihood function uses the Bhattacharyya
distance14 as a metric to compare the Hue-Saturation color histogram data with the corresponding color



histogram of the initial object model. Given a covariance of the residual noise R, a simple Gaussian
likelihood function can be obtained by the following formula:

P (z|s) ∝ exp

(
−B2

2R2

)
(4)

where B is Bhattacharyya distance between two color histograms of the target region under a given
hypothesis and a corresponding reference object model.

4.4 Particle Filter Tracking

There are three main steps in the tracking module:

• Initialization step: we initialize the set of particles for each target with a prior uniform distri-
bution using a specific uniform noise range vector.

• Prediction step: from the previous state posterior, we use the state transition equation described
in the previous section to generate the prior distribution. The prediction step is used to predict
the states of sets of particles of every target. Note that different targets have different noise
covariance matrices.

• Correction step: In the correction step, we use the measurement model described above to
measure the likelihood of observed data under given state hypothesis. The result of the likelihood
function is used to set the weight for each particle. In case of a highly nonlinear measurement
model, Sample importance resampling is suitable to avoid the problem of degeneracy and to
update the weight of low-weight particles.

Afterwards, we use the weighted average of the particle set to output the current pose hypothesis for
each target.

5. RESULTS

We want to test the robustness of our tracker in a large number of frames. Because the output of
the tracker is a rectangle, we refrain from using the distance-error in pixels as criteria for tracking
evaluation. Instead, we use the same tracking evaluation methodology as in15 to evaluate our tracker
performance. The methodology tests the robustness of a tracker based on the overlap areas between
tracker output and ground truth annotation data. An overlap that is greater than 0.33 is considered as
a hit. Specifically, the proportion of overlap is computed as follows:

OverlapProportion =
OverlapArea

GroundTruthArea + TrackingArea−OverlapArea
(5)

We use different data sets for testing. The purpose is to evaluate our system performance in different
situations. Because our tracker is a feature based tracker, we want to evaluate its performance in the
case of small target model variability. This means there is no big variation in the target appearance
model. Then, we test our tracker with more challenging data sets that evaluate large target model
variability. The purpose is to show the importance of updating the object appearance model during the
tracking process because most traditional trackers are likely to fail when the object appearance model
changes too frequently. Figure 4 shows our tracker tested on BoBot data sets‡. It consists of a 320×240
video sequence with more than 1000 frames taken from a moving camera at 25fps and encoded with
MPEG2. The data set contains multiple temporary occlusions.

‡http://www.iai.uni-bonn.de/~kleind/tracking/



(a) Frame #141 (b) Frame #147 (c) Frame #171 (d) Frame #211

(e) Frame #234 (f) Frame #324 (g) Frame #557 (h) Frame #982

Figure 4. Tracker quality performance on BoBot data set. The ground-truth data is shown in green, while the
tracker result is shown in blue.

The BoBot data set is provided together with a Java evaluation tool for result evaluation. After
slight adaptation of the evaluation code, we process the data from random runs and compare it to the
ground truth file to get a statistic value. The mean and standard deviation of the first run are shown
in the Figure 5. In the figure is very little difference between the three analyzed trials. The variation
between three tests is 0.0008401186. This shows that our tracker result is stable, although it uses a
probabilistic approach. The total mean of overlap area of the first trial test is more than 0.6. This
shows the effectiveness and robustness of our tracker because an overlap that is above 0.33 is considered
as a hit.

After that we test the perfomance of our tracker on more challenging data set. Figure 6 shows
the result of our tracker tested on ETHZ’s image sequence§ with moving camera in highly cluttered
environment.

Our tracking framework currently supports unlimited numbers of targets . However, because we
want to analyze data in a large number of frames, for evaluation only the two targets shown in Figure 6
were chosen to track and analyze results:

• Those two targets are visible in the whole image sequence of 354 frames.

• They are targets that are at the right most on the image.

ETHZ provides annotation data for the data set. But every target in the scene is annotated, numbered
randomly. Therefore by choosing targets that are at the right most on the images, we can write a simple
annotation filter to filter the annotation files of the two interesting targets only. The data annotation
is used to compare with tracker result. The statistics of tracker performance of two targets then are
shown in the Figure 7(a).

As shown in Figure 7(a), while the tracking result is quite stable for the first target (yellow) on 354
frames of the whole ETHZ image sequence, the second target is declared lost during frame #140 to

§http://www.vision.ee.ethz.ch/~aess/dataset/



Figure 5. Descriptive statistics of three runs show the effectiveness and robustness of the tracker.

(a) Frame #9 (b) Frame #29 (c) Frame #50 (d) Frame #84

(e) Frame #118 (f) Frame #136 (g) Frame #155 (h) Frame #349

Figure 6. Tracker quality performance within a highly cluttered scenario. The ground-truth datas are shown
in green, while the tracker results are shown in yellow and pink. No detector feedback is used in the tracking
process.



(a) Only tracker is used without detector feedback
on both targets.

(b) Detector feedback is used to correct tracking
error on the second target. Threshold values in-
crease from thrid to first.

Figure 7. Results for multi-target tracking on the ETHZ image sequence with and without detector feedback.

frame #250. From our observation, the tracker loss second target when it goes below the shadow of
the building. The first target, on other hand, doesn’t change its appearance model much during the
whole image sequence. Therefore, the tracker can handle the first target successfully but fails when the
appearance model of the second target varies much compared to its initial object model. Because the
tracker successfully handles target 1 (yellow), we focus the discussion on how to improve the performance
of tracking the second target (pink). At the right of Figure 8 is the tracking result when integrating
detector and tracker. The proposed system uses a predefined likelihood threshold. Our scheme is to
update the appearance model and reference histogram using the HOG detector whenever the likelihood
for observed data and initial data drops below this threshold. As shown in Figure 7(b), there is a big
improvement for tracking second target. Figure 7(b) shows the tracker performance tested with three
different predefined likelihood thresholds that we use as thresholds to update target appearance model.
As shown in Figure 7(b), tracker performance with the first and second likelihood thresholds seems to
be better compared to tracker performance with the third one. This can be explained as follow:

• Tracker with first or second likelihood threshold is a typical type of a tracker based on detector.
For this kind of tracker, information from the detector is used extensively. This type of tracker is
generally more computationally expensive.

• Tracker with third likelihood threshold is a normal tracker with detector feedback. For this kind
of tracker, information from detector is used only in a few occasions. This type of tracker is in
general more efficient considering computational resources.

For both kinds of above trackers, when the likelihood between the observed data and initial data drops
below the predefined threshold, the information from detector is used to reset states of every particles
for every targets. The adaptive motion noise covariance matrix Q(k) is also reset. The reference color
histogram is re-computed under a given pose. As shown in Figure 7(b), even with the third threshold,
the tracker performance for the second target has been improved a lot compared to the tracker without
detector feedback.



(a) Frame #9 (b) Frame #29 (c) Frame #50 (d) Frame #84

(e) Frame #118 (f) Frame #136 (g) Frame #155 (h) Frame #349

Figure 8. Tracker quality performance on a challenging ETHZ image sequence. The ground-truth data is shown
in green, while the tracker results are shown in yellow and pink. Detector feedback is used in the tracking
process.

6. CONCLUSION

In this paper, we propose a novel method for the pedestrian detection and tracking problem. Our vision
system has 3 main modules. The tracking module uses Histograms of Oriented Gradients to detect
pedestrians on a single static image. After that, we extract the depth information by using Direct
Linear Transformation to triangulate correspondent points found by Speeded Up Robust Features. A
particle filter approach then is proposed as a robust solution for the tracking problem. It can track
targets reliably on a simple background case. However, to achieve stable performance on a real world
scenario with complex background and cluttered environment, we use the detector to provide feedback
to the tracking process. By integrating detector and tracker, we show that the stablility of tracking
performance increases significantly, even in highly cluttered environment.

In future work, we plan to use depth information more extensively. The depth cue and other cues
can be fused to provide an even more reliable measurement model. We also plan to optimize the system
by offloading expensive computation to the GPU. As a result, real-time performance can be achieved.
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