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Abstract:

This paper presents a novel and robust vision-based real-time 3D multiple human tracking system. It is capable

of automatically detecting and tracking multiple humans in real-time even when they occlude each other.
Furthermore, it is robust towards drastically changing lighting conditions. The system consists of 2 parts, 1.
a vision based human tracking system using multiple visual cues with a robust occlusion handling module,
2. a machine learning based module for intelligent multi-modal fusion and self adapting the system towards
drastic light changes. The paper also proposes an approach to validate the system through zero-error ground
truth data obtained by virtual environments. The system is also validated in real-world scenarios.

1 INTRODUCTION

This paper presents a novel real-time 3D multiple
human tracking system with the primary focus on ro-
bustness enhancement through machine learning. It
is a vision based system, capable of automatically de-
tecting human targets. After detecting the targets, the
trajectory of each detected target is tracked with a 3D
pose in real-time. The system has an ability to re-
solve target occlusions in real-time and maintain in-
dividual trajectories provided the targets do not leave
the designated tracking area. The occlusion handling
system resolves mutual occlusion between the targets
and serves as an important tool for robust tracking
under circumstances of mutual occlusion in multi-
ple camera views when the tracking scene consists of
many targets.

A machine learning based approach is introduced
to train and classify lighting conditions in the track-
ing environment. Lighting conditions being highly
influential in robust tracking, its classification helps
the tracker to take important decisions to maintain the
robustness. On the basis of this classification, intel-
ligent multi-modal fusion of two visual cues is per-
formed. Depending on the current situation, the op-
timal weights in which the visual cues are fused in
order to achieve the desired robustness is computed.
This approach improves the robustness of the tracking
system in terms of self adaptability to changing track-
ing conditions. Although the machine learning based
lighting conditions classification is useful in multi-

modal fusion, it finds an important use case in robust
pre-processing of camera images such as background
segmentation. Sudden changes in lighting conditions
can be detected and the background model can be up-
dated using this approach. The background model up-
date is not trivial in presence of foreground targets.
This paper introduces an approach to identify such sit-
uations and update the background model in presence
of foreground targets under drastic changes in lighting
conditions. It introduces a novel ground truth genera-
tion method through simulation due to un-avaliability
of standard datasets like in pedestrian detection (give
ref). Further, unlike existing systems such as (give
refs) which propose robustness to illumination but do
not provide experiments in that specific aspect, we
conduct distinct experiments to prove that the system
if robust to lighting conditions. A real-world applica-
tion involving a Industrial robot and changing lighting
conditions is also presented. Due to un-availibility of
a common benchmarking platform for stereo multi-
ple human trackers, extensive quantitative compari-
son with other systems is not presented as these sys-
tems do not benchmark their methodology in unified
way.

2 PRIOR ART

Several systems have been developed to track hu-
mans using multiple cameras in both un-calibrated



and stereo-calibrated fashion. (Santos and Morimoto,
2011) provides a systematic mention of approaches
(Eshel and Moses, 2008), (Fleuret et al., 2008), (Hu
et al., 2006), (Kim and Davis, 2006), which use un-
calibrated cameras and homography to perform peo-
ple tracking. (Santos and Morimoto, 2011) use of a
combination of the perspective geometry and the ho-
mography constraints from each camera view. This
information is fused to check for the presence of peo-
ple in each camera view.

(Soto et al., 2009) present another multi-target
tracking system using multiple cameras. Their ap-
proach is focussed on a self-configuring camera net-
work consisting of cameras with pan-tilt. The cam-
eras keep track of the targets and adjust their parame-
ters with respect to each other.

(Khan and Shah, 2008) present a slightly different
approach of multi view tracking of people. They use
information in combination from all views which is
projected back to each camera view and a planar ho-
mographic occupancy constraints for likelihood com-
putation. This is used to resolve occlusions and model
scene clutter using the Schmieder and Weathersby
clutter measure (Weathersby and Schmieder, 1984).

Multiple people trackers (Haritaoglu et al., 1998;
Siebel and Maybank, 2002; Isard and MacCormick,
2001), have the common requirement of using a very
little and generic off-line information concerning the
shape and appearance of the person, while build-
ing and refining more precise models (colour, edges,
background) during the on-line tracking task.

(Francois et al., 2006) combines target occupancy
in the ground plane with colour and motion models
to track people in continuous video sequences. This
approach requires heuristics to rank the individual tar-
gets to avoid confusing them with another.

(Focken and Stiefelhagen, 2002) introduces a sys-
tem for tracking people in a smart room. They use a
calibrated camera system within a distributed frame-
work. Each camera runs on a dedicated PC. The de-
tected foreground regions are sent to a tracking agent
which computes the locations of people from the de-
tected regions.

Another work is presented by (Cai and Aggarwal,
1996). They use grey scale images from multiple
fixed cameras to perform the tracking. They use mul-
tivariate Gaussian models to estimate closest matches
of humans between consecutive image frames. The
system proposed by (Dockstader and Tekalp, 2001) is
aimed at tracking human motion with key focus on
occlusions. Each camera view is independently pro-
cessed on a individual computer. Within the Bayesian
network, the observations from the different cameras
are fused together in order to resolve the indepen-

dent relations and confidence levels. An additional
Kalman filter is used to update the 3D state estimates.

(Chang and Gong, 2001) present a multi camera
people tracking system using Bayesian filtering based
modality fusion. They employ a modality fusion tech-
nique based on the approach by (Toyama and Horvitz,
2000).

(Hayashi et al., 2004) present a stereo camera
based people tracking system. They address the prob-
lem of tracking in rooms where the camera cannot
be mounted high enough. They propose a method
to project the 3D voxels on the tracking floor and
thereby track their peaks for the purpose of ignoring
view changes due to low camera mounting.

(Zhao et al., 2005) presents another stereo cam-
eras based people tracking system. It is a real-time
system to track humans over a wide area. A multi-
camera fusion modules combines tracks of a single
target in all view to a global track.

Considering the state of the art, the primary contri-
bution of this work is made in the form of robustness
enhancement through machine learning which makes
the system robust to drastic changes in lighting condi-
tions and improves the tracker robustness through in-
telligent multi-modal fusion of two visual modalities.
Another important contribution is a robust occlusion
handling system which can resolve multiple occlusion
in real time.

3 SYSTEM ARCHITECTURE

The 3D multiple human tracking system uses vi-
sual information from multiple cameras in order to
automatically detect and tracks humans in real time.
The detection process operates independent of the
tracking allowing detection of new targets when they
enter the tracking area ! while the tracker is tracking
existing targets.

The target shape is modelled as a 3D rectangu-
lar box approximating to the dimensions of a human.
The appearance model is generated in the form of a
2D joint probability histogram in all camera views.
The target dynamics is modelled using the constant
white noise acceleration (CWNA) motion model. The
tracker uses a bank of SIR particle filters (Isard and
Blake, 1998), working on a 3D motion model, ap-
pearance model and optical flow. The particle filter
provides the sequential prediction and update of the
respective 3D states = (x,y,z). For real-time perfor-
mance, a global particle set is maintained and dis-

IThe predefined camera workspace where the cameras
can view the targets.



tributed evenly among the bank of particle filters in
order to maintain real-time performance.

3.1 Tracking Pipeline

Fig. 1 describes the complete pipeline of the track-
ing system. Each module is discussed in detail in the
subsections below.

3.1.1 Pre-processing of Sensor Images

Each sensor image undergoes a initial background
segmentation step followed by RGB to HSV colour
space conversion and optical flow segmentation.

3.1.2 On Line Target Detection

This module automatically detects targets when they
enter the tracking area by performing a scan along the
tracking floor area using the 3D box target model. A
target is recorded if the target occupancy is beyond
a certain threshold in 2 or more cameras. The target
data consists of: 1. Unique Target ID, 2. Initial 3D
pose, 3. Shape data, 4. Appearance data, 5. Occlusion
test information, 6. Current 3D pose, 7. Velocity.

3.1.3 Occlusion Testing

It determines if a target is occluded by other targets
in a particular camera view. This information is es-
sential during target detection and tracking. These re-
gions are obtained by warping the 3D pose of each tar-
get under consideration on to each camera image (id=
0,....,M). Each target is defined by a 3-dimensional
container box comprised by 8 vertices

Vo(t)={v;eR?| j=0,1,...,7} 1)

where, v; is the j vertex of target shape model
defined in Cartesian space for the state s (7). These
vertices are projected on each camera as follows:

Sa(t)={rjeR*|r;=K[R|T]v;,¥v; €V, (t)}
2
where, S, (¢) is a set of the projected vertices of
the target n. K,R, and T describe the camera model.
Then, we define d,, () as the Oriented Bounding Box
(OBB) of S, (1).

W(t)={(ny) R | (xy) €da ()} (3)

The geometric meaning of /, (¢) is all the pixels within
the OBB d,, (¢). These pixels are used for the occlu-
sion test.

Fig. 2
illustrates
the occlusion
test system.
This system
considers all
the  targets
and computes
their  occu-
pancies in
each camera
image  and
computes the euclidean distance from the camera to
each target. The bounding box of target farthest from
the camera is computed and rendered first. Once
all targets are rendered an overlap test is conducted
between the rendered regions to check which targets
are occluded.

Figure 2: The figure illustrates the oc-
clusion test system.

3.1.4 Tracker

Each target is equipped with its own particle filter.
The visual modalities used are 2D colour histograms
and optical flow. The tracking pipeline is as follows:
Tracker prediction: The particle filter generates
several prior state hypotheses s! from the previous dis-
tribution (s*,w'),_; through a prediction model. In
this system the constant velocity model was used,
= st ST T @
where, §i_; is the velocity and is constant, v} is a
random acceleration. 7T is the sampling interval.
Likelihood: The likelihood is computed on the
projected hypothesis in each camera view. The colour
matching is computed through a distance measure of
the underlying and reference histograms through the
Bhattacharyya coefficient (Bhattacharyya, 1943)

2

Bm(qi(S%q?‘):[l—Z q; (n)qi(sm)] ©)

The colour likelihood is then evaluated under a
Gaussian model in the overall residual
P(z|s;) o< exp(~ ] ] (B} /M) (©)
M
with given covariance A.

Similarly, the optical flow distance measure if
computed by comparing the projected motion vector
of the hypothesis and the underlying motion vectors
in the hypothesis region.

Fn (fi(s), f7) = [1—; fi (n)fi(s,n)] @
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Figure 1: The figure illustrates the block diagram of the multiple human tracking system.

F,, is the resulting distance measure from the op-
tical flow modality for an individual hypothesis. The
optical flow likelihood is computed as follows.

P("|s}) o< exp(— [ [(F?/A) ®)

M
Multi-modal Fusion: The intelligent multi-modal
fusion module described in the next sections, gen-
erates the normalized weights W,,; and Wy,,. The

global likelihood for the hypothesis si is then given
by

P81 |57) = P(2°s))Weot + P(Z/ 5) Wrion (9)

Computing the estimated state:
The average state s,

= —Zw,s,, (10)

is computed and the three components (X,7,7) are re-
turned. In order to reduce the jitter in the output, the
average pose can be smoothed using an exponential
filter.

4 Machine Learning to Enhance
Robustness

This section introduces an approach to improve
the robustness of the system using machine learning
techniques.
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Figure 3: Building blocks of the SVM trainer for lighting
conditions

4.1 Learning Lighting Conditions

Multi class support vector machines (Crammer and
Singer, 2001) can be used as an important tool to learn
the different possible lighting conditions that could
occur during tracking. They are divided into classes
where each class consists of a wide variety of pos-
sible lighting conditions. From the learning process,
a model is generated which can be further used for
online classification of the lighting conditions. Us-
ing this information the contribution of the individual
modalities towards multi-modal fusion module can be
computed.

Fig. 3 illustrates the building blocks of the sup-
port vector machine based training module for light-
ing conditions. It consists of a large set of training
samples in the form of images. Each training sam-
ple is processed to obtain the training data. Once the
training data is available, it is used by the svm train-
ing module to generate a model based on the classes
in which the training data were grouped. The light-
ing types are Insuf ficient lighting, Good lighting
and Saturated lighting representing classes Bad and



Good. The three stages in training are, see Fig. 4,

1. RGB to HSV Colour Space Conversion

2. Histogram Computation: N bin normalized his-
togram of the V channel is computed representing
the intensity distribution.

3. Labelling: A class label is generated through au-
tomatic analysis or manual observation. The class
label together with the histogram data forms one
training data sample for the multi-class support
vector machine.

Around 4000 images of each class were used to
generate the training data. This makes the total train-
ing data set to consists of 12000 data samples. These
samples were generated using camera images ob-
tained from the real scene and from 3D simulations of
the entire scene, where the lighting conditions could
be controlled.

4.2 Classification of Lighting
Conditions

Classifier Class

- 2 |

Model = ‘ SVM

Input Image Data to be classified
for lighting condition |

Histogram of V

Figure 4: Building blocks of the SVM classifier for a light-
ing conditions.

Fig. 3 illustrates the building blocks of the sup-
port vector machine based lighting conditions clas-
sifier which uses the model generated by the SVM
trainer.

Figure 5: On-line classification of the lighting condition.
Red: Bad, Green: Good

Fig. 5 illustrates the test conducted for the on-
line classification of lighting conditions. The model is
able to classify and associate the current lighting con-
ditions in the camera views to their respective classes.
In this experiment, the SV M model was trained for
three classes of lighting conditions.

4.3 Background Model Update in the
Presence of Foreground Targets

Updating the background model when light changes.
The background model update is trivial in case of an
empty scene, but becomes a complex task in the pres-
ence of foreground targets in the scene being tracked.

/ Status
Checker

Background
Model

If complete /
scene sampled

Light Change| | Background Sampler
Detector Model Updator 4
Targets

(position)

Figure 6: Background model update in presence of fore-
ground targets.
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This paper proposes an approach to update the
background model under changing lighting condition
while foreground targets are present in the scene. It
exploits the fact that during the course of tracking the
targets will move and expose the regions previously
occluded by them. The occluded regions can be in-
cluded into the background model once they are vis-
ible due to target motion. The assumption that the
target will move is valid because, if the they do not
move, then the tracker only needs to perform a ex-
tremely small local search to keep track of the target
which does not require information from the back-
ground subtracter. Fig. 6 illustrate the Background
Model Update Procedure (BMUP) under changing
lighting conditions and in the presence of foreground
targets. The BMUP comprises of three main parts:

e Light Classifier: determines which class the
lighting conditions in the current camera image
belongs to.

e Light Change Detector: continuously reads
the classification result from the Light Classifier
and compares it with the classification results of
the previous instance and thereby detects drastic
changes in lighting conditions.

o Background Model Updater: updates the back-
ground model when it is notified about a light
change event by the Light Change Detector. It
uses the target positions, region sampler and the
status checker modules. If number of targets N =
0, the background model is updated with the im-
age l;y. If N > 0, from each target position the
occupancy region L;y of each camera (id=0,...,.M)
is obtained. This is given by:



N
Lity= @) (11)
j=1

where /; is given by Eq. 3.

This is the area that can not be included in the ref-
erence image for the new background model, and
needs to be included when exposed. The current
area for the reference image is initialised as:

D (1p) = (ANL(t))° (12)

Then the background image is initialized,

Ler = {I(x,y) | x,y € D(t0)} (13)

where A ={(x,y) | x=1,2,...,width, y=1,2,...,heigh

The unupdated regions are updated in time when
the targets are in motion, thereby exposing the
previously hidden regions, this is computed in the
next form:

h() = (L—D\(LONLE-1))  (14)

where /i is the new exposed pixels in the current
frame. Then the background image is updated us-
ing these pixels as follows:

Irff = {I(X,y) |x7y S hL (t)} (15)

Finally, the current area at time ¢ is updated as
below:

D()=D({t—1)Uhy(r) (16)
D (¢) is updated until |D (r)| = |A].

When the background update process is initiated
the tracker suspends the new target detection pro-
cess. Further, instead of generating the HSV image
from the background segmented image, the tracker
uses a mask to highlight only the local regions sur-
rounding each target. Once the background model
update is complete, the tracker activates the back-
ground subtraction module in the target detection and
initial pre-processing phases. Figs. 7 illustrates the
process. See video: http://www.youtube.com/
watch?v=LpnUkf2GEQ4

4.4 Modality Weight Generation for
Multi-modal Fusion

Fig. 8 describes the module performing the task
of generating the weights for the individual visual
modalities through scene analysis. This module con-
sists of two scene analysis units, each analysing the
usability of the individual modality in the current

Figure 7: Background update in presence of foreground tar-
gets..
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Figure 8: Intelligent fusion module to generate weights for
the individual modalities through scene analysis.

scene. The usability of the modalities can be repre-
sented in the form of classes. The class categories
can be divided into two simple types namely, Bad and
Good or more if needed.

The optical flow usability class is considered to be
Bad when,

e The target is stationary or moving with a velocity
below a certain threshold V;

e The target is moving closer than a defined thresh-
old d,;i; to another target and the absolute differ-
ence of the optical flow direction components is
below a certain threshold 6,,;,.

On the other hand, the optical flow usability class
is considered to be Good when,

e The target is moving with a velocity higher than
the defined threshold Vi, and at a distance greater
than d,,;, with respect to all other targets.

e It has a velocity component higher than V;, and
the absolute difference of its optical flow direction
component with other targets is greater than 0,,,.

Once the usability classes of the respective visual
modalities are known, this information is supplied to
the modality weight generator. The rule based fusion
technique is constructed through a fixed set of rules
defined by the user. These rules specify the combina-
tion of normalized weights to be assigned to the two
modalities for each possible combination of classes.
Fig. 8 illustrates a simple fusion rule data-bank for
the binary classes consisting of Bad and Good labels.
As mentioned above, these classes can be extended to
a wider range along with a more dense rule data-bank.

Once the individual weights for each modality is
obtained, they are fused in order to obtain a global



likelihood. The fusion operation is performed for
each hypothesis generated by the particle filter and
for each camera view. When both modalities are un-
suitable for tracking, the tracker declares a target loss
and instantiates the target recovery mechanisms in the
form of re-detection. The mathematical representa-
tion of the complete fusion procedure is formulated
below:

ou 1
U = Lonlia, U™ = AfiowTia (17)
(Wcolour,Wflaw) =R (Uicolour7 Uflow) (18)

ltid
where, Ui ig the usability class for the colour
modality in the i*" hypothesis, L, is the machine
learning based lighting condition classifier and f;; is

the current image from the camera. Ui,f,- f;’w is the us-
ability class for the optical flow modality in the i
hypothesis for the target with id tid. Ay, is the func-
tion which performs the optical flow usability check
on the motion parameters of the current target given
by Tiia. (Weotour Wriow) are the unique weights for
the two modalities using the fusion rule data-bank R.
Finally, Lyijser, is the global likelihood.

S Experiments
In this section the experiments are discussed.
5.1 Ground Truth Generation

There is no unified benchmarking and quantitative
analysis framework for stereo multiple human track-
ers. Different system test their method in differ-
ent ways making quantitative comparisons difficult.
Ground truth generation methods are either manual,
semi-automatic or automatic (D’Orazio et al., 2009),
(Dollér et al., 2009). They cannot guarantee accu-
racy since they themselves have a certain tolerance.
In order to generate ground truth without inherent er-
rors, our test environment was modelled in 3D in its
completeness using Blender (Roosendaal and Selleri,
2004). The cameras were reproduced with exact in-
trinsic and extrinsic parameters. The light sources
were modelled similar to the ones used in the lab en-
vironment. The humans were modelled using simple
models. For each target, the motion trajectories can be
planned and simulated. This implies that the human
targets move with 2 DOF and an additional degree of
freedom for rotation along the trunk axis. Once the
animation is ready, it can be rendered using the per-
spective of the cameras. The simulated trajectory data

of each target was extracted through a python script
within Blender.

7000 500

T 20 0
Frama Numbor [rame]

Figure 9: The lab environment modelled in 3D and extrac-
tion of simulated trajectory data.

5.2 Experimental Validations

The experiments were carried out in the virtual envi-
ronment and real scenarios. The system was tested
for various aspects. It was first tested with 5 targets
in a scene, where two targets have similar appearance
and move close to each other. This was followed by a
similar test with 3 targets in the real environment. An-
other test was conducted with two targets with exact
similar appearance moving very close to each other
and in the same direction. Further, the system was
tested both in the virtual and real environment under
drastically changing lighting conditions. Finally the
intelligent multi-modal fusion was tested. In all the
tests the tracker never lost a target and always main-
tained its target Id.

Fig. 10 illustrates the first test with 5 targets. It
shows the plots of the tracked trajectories along with
the actual trajectories obtained from the ground truth
generator. The right most column represents the er-
ror computed in the X and Y directions. It can be
seen that the standard deviation of the error computer
over the entire sequence is below 10 cm even un-
der increased numbers of mutual occlusions simul-
taneously in multiple cameras. See video: http:
//www.youtube.com/watch?v=-Y-sZ2g53fM

For the real world scenario actual ground truth
data is not available. Then, the system was tested in
the actual laboratory. The experiment was performed
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Figure 10: Illustration of the tracking system with 5 targets in the scene moving close to each other and two targets having

similar appearance.

with 3 targets due to the limited area in our lab. In or-
der to get an estimate of the trajectories, a fixed path
was marked in the tracking area and the humans were
asked to move along this path.

Fig. 11
illustrates

the results
obtained.

In the first
row, it can
be observed
that the tar-
gets are at
their  initial

Desied Tlajaclnses for each target

World Zero

Observed Trjectories

Py
World Zero

position
and
tracked.
Towards
the right,

a red box can be observed, which represents the
path the targets are supposed to move on when
observed from the top view. The second row shows
the targets being tracked after they have moved.
To its right, the generated trajectories have been
plotted which approximate the desired shape. The
trajectory of each target is plotted and is similar to
the colour id set by the tracker. See video: http:
//www.youtube.com/watch?v=wePVQ7cXB9c

being Figure 11: Experiment results in real

world environment with 3 targets and
the motion trajectories generated.

The next experiment consists of two targets with
exactly the same appearance. The two targets enter
the tracking area and move very close to each other
at a distance less than 10 ¢m. To increase the track-
ing complexity, the motion in certain parts of the se-

quence are in the same direction.
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Figure 12: Experiments results between the tracked posi-
tions with respect to the ground truth of 2 targets with ex-
actly similar appearance and very close motion in the same
direction.

Fig. 12 and video http://www.youtube.com/
watch?v=u60FTVIWO-qg presents an experiment in a
scenario consisting of two targets with exactly the
same appearance. It can be observed that there is a
sharp overshoot in the error in the dominant direc-
tion of motion when the targets start moving in the
same direction but recovers in a few frames through
the occlusion handling module. The average error is
appeared to be twice as much as normal due to the
overshoot, but in other parts of the sequence the error
is still lower than 10 cm.

Fig. 13 illustrates an experiment that validates the
use of intelligent multi-modal fusion in order to main-



tain the robustness of the tracker. The experiment
plots the feature matching distance from the colour
and optical flow modalities.
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Figure 13: Experiments results for multi-modal fusion.

The quality of lighting in the second scene is very
bad as compared to the first one. From the distance
plots it can be observed that, the feature matching dis-
tance of colour histogram worsens in the bad light-
ing condition while the optical flow distance remains
fairly constant. This shows the robustness of op-
tical flow and the sensitivity of the colour distribu-
tions in changing lighting conditions and that optical
flow information is a good supporting feature under
such circumstances. In each of the two scenarios,
two likelihood plots are generated. The first repre-
sents likelihood computed using only colour informa-
tion followed by likelihood computed through multi-
modal fusion of colour and optical flow information.
The likelihood without fusion degrades in bad light-
ing conditions while the likelihood with multi-modal
fusion remains fairly constant. This indicates that un-
der bad lighting conditions the multi-modal fusion
of colour and optical flow ensures robust and stable
tracking results.

Figure 14: Experiment results in real world environment
under drastically changing lighting conditions.

Fig. 14 illustrates the experiment conducted to
validate the performance under drastic changes in
lighting conditions in a real scenario. The system
requires to detect such events and update the back-
ground model in presence of foreground targets. The

top-left shows how the tracker successfully tracks
the two targets. Top-right represents the background
model. The bottom-left represents the frame in which
the light changes drastically. Finally, the bottom-right
shows the complete background model updated in
each camera view and the tracker successfully tracks
all the targets. See video: http://www.youtube.
com/watch?v=yZHCXgdDf14

6 CONCLUSIONS AND FUTURE
WORK

This paper introduced a vision based 3D multiple
human tracker with primary focus on robustness en-
hancement. Novel techniques in the direction of ro-
bustness enhancement were introduced and validated.
Multiple cameras and visual modalities were inte-
grated in a single workstation. The system is highly
robust and maintains real-time performance irrespec-
tive of number of targets. The primary contributions
are: A vision based real-time 3D multiple human
tracking system based on a modular building blocks
approach. It is capable of detecting and tracking mul-
tiple humans in real-time within a desired area of in-
terest. A module which detects and handles multiple
occlusions between human targets while they are be-
ing tracked has been also introduced. This ensures
robust tracking of targets, maintaining their Ids. A
model trained to classify the current lighting condi-
tions into one of its pre-defined classes. Depending
on the classification results the quality of the light-
ing conditions is determined. The model is trained
using a large dataset of lighting conditions represent-
ing the desired classes. A module that uses the ma-
chine learning based lighting conditions classifier in
order to detect drastic changes in lighting conditions.
It further performs the non trivial task of updating the
background model in the presence of foreground tar-
gets being tracked. From the analysis of each visual
modality the correct weights are generated in order to
maintain the robustness of the tracker. Furthermore, a
novel approach through which zero error ground truth
data for evaluation and validation of the tracker was
introduced. This is based on a 3D model of the com-
plete workspace with great detail and simulation of
human motion to extract the trajectories.
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